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Abstract
Landslides and slope instabilities are major risks for human activities which often lead to economic losses and human fatali-
ties all over the world. The main purpose of this study is to evaluate and compare the results of Landslide Nominal Risk 
Factor (LNRF), Frequency Ratio (FR), and Analytical Hierarchy Process (AHP) models in mapping Landslide Susceptibil-
ity Index (LSI). The study case, Nojian watershed with an area of 344.91 km2, is located in Lorestan province of Iran. The 
procedure was as follows: first, the effective factors of the landslide basin were prepared for each layer in the GIS software. 
Then, the layers and the landslides of the basin were also prepared using aerial photographs, satellite images, and fieldwork. 
Next, the effective factors of the layers were overlapped with the map of landslide distribution to specify the role of units 
in such distribution. Finally, nine factors including lithology, slope, aspect, altitude, distance from the fault, distance from 
river, fault land use, rainfall, and altitude were found to be effective elements in landslide occurrence of the basin. The final 
maps of LSI were prepared based on seven factors using LNRF, FR, and AHP models in GIS. The index of the quality sum 
(Qs) was also used to assess the accuracy of the LSI maps. The results of the three models with LNRF (40%), FR (39%), and 
AHP (44%) indicated that the whole study area was located in the classes of high to very high hazard. The Qs values for the 
three models above were also found to be 0.51, 0.70 and 0.70, respectively. In comparison, according to the amount of Qs, 
the results of AHP and FR models have slightly better performed than the LNRF model in determining the LSI maps in the 
study area. Finally, the study watershed was classified into five classes based on LSI as very low, low, moderate, high, and 
very high. The landslide susceptibility maps can be helpful to select sites and mitigate landslide hazards in the study area 
and the regions with similar conditions.
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Introduction

Landslides cause great damages in residential areas, roads, 
facilities, agricultural fields, gardens, grasslands, etc. Recog-
nizing the mechanism and zoning of prone areas to landslide 
occurrence play a crucial role in disaster management. It can 
be employed as a standard tool to support decision-making 
in different areas (Bui et al. 2016). According to its defi-
nition by engineering geology, landslide is the downward 
movement of a mass of material on a slope.

Nojian watershed in Lorestan province of Iran is located 
in Zagros tectonically active folded mountains across 
the Zagros Big Fault and the earthquake-prone belt of 
Alpine–Himalayan zone. Therefore, potentially there are 
suitable conditions for slope instability related to the alter-
nating layers of limestone and thin layers of the marl and 
deeply weathered formation on the slopes. Due to geomor-
phological properties such as lithology, tectonics activity, 
altitude, seismicity, slope, climatic conditions, deeply weath-
ered formation and human impact, the study watershed was 
potentially highly prone to landslide occurrence. Further-
more, conditions of topography and geomorphology, clima-
tology and human impact of the study area have provided the 
best position for sliding small or large masses of materials 
of the slopes.
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According to the reports of the global organization of 
natural dangers in 2012, landslide was among the seven most 
dangerous natural disasters. Landslides, due to their nature 
and diversity and because of their potential hazards and 
the catastrophic effects for human’s life and property, have 
always been examined by scholars of various disciplines of 
earth sciences including engineering geology, geomorphol-
ogy, and watershed management. Therefore, planning to 
control and mitigate its damages seems important and nec-
essary. Using different models of LSI mapping is one of the 
methods to identify the prone areas for future landslides and 
preventive activities should be taken to prevent or decrease 
their damages in those areas.

The United Nations proclaimed the 1990s as the Inter-
national Decade for Natural Disaster Reduction (IDNDR); 
UNESCO named 1990s as the decade of dealing with 
natural disasters (Erich and Wolfgang 1994; Geeraay and 
Kariemi 2010). Therefore, these days in different centers of 
academia, extensive research is being carried out on land-
slides as an instance of natural disaster by many scholars 
worldwide. As the aim of this research is an evaluation of 
LNRF, FR and AHP models in mapping (LSI) in Nojian 
watershed; therefore, we will focus on the related literature 
having the purpose of the current study in mind. Although 
the mechanism of landslide occurrence has been studied 
by many geologists and geomorphologists at a large scale 
through quantitative methods (statistical), multi-criteria 
decision-making (MCDM), support vector machine, logistic 
regression, artificial neural network (ANN), frequency ratio 
(FR), including:

GIS-based landslide susceptibility mapping using analyti-
cal hierarchy process (AHP) and bivariate statistics (Zhu and 
Huang 2006; Fanyu Liu 2007; Yalcin 2008; Gupta and Joshi 
1990; Akgun and Turk 2010; Bhatt et al. 2013; Kayastha 
et al. 2013; Dai and Lee 2002; Abedini et al. 2017; Gravina 
et al. 2017), Landslide Susceptibility Index (LSI), Logistic 
Regression (LR), and Artificial Neural Network (ANN), 
Frequency Ratio (FR) (Romer and Ferentinou 2016), land-
slide susceptibility mapping based on Frequency Ratio and 
Logistic Regression models (Ayalew and Yamagishi 2005; 
Lee and Sambath 2006; Lee and Pradhan 2007; Solaimani 
et al. 2013; Umar et al. 2014; Shahabi et al. 2014; Pham 
et al. 2015; Shirzadi et al. 2017b; Costanzo et al. 2014), 
comparison of logistic regression and Naive Bayes classi-
fier (Tsangaratos and Ilia 2016), landslides susceptibility 
by dynamic landslide run-out model (Byron et al. 2016), 
multivariate and bivariate (Kavzoglu et  al. 2015), auto 
logistic molding (Atkinson and Massari 2011; Costanzo 
et al. 2014), artificial neural network and comparison with 
frequency ratio and bivariate logistic regression (Pradhan 
and Lee 2010), static methods (Shirani and Seif 2012), ana-
lytical hierarchy process and multivariate statistics (Komac 
2006; Pourghasemi et al. 2013; Amir Yazdadi and Ghanavati 

2016), comparison between bivariate statistical and multi-
variate adaptive regression (Wang et al. 2015), two-class 
kernel logistic regression (Hong et al. 2015), support vector 
machine, artificial neural network kernel, logistic regression 
and logistic tree, Bui et al. (2016), frequency ratio, statisti-
cal index and certainty factor (CF):Wu et al. (2016a, b), 
landslide susceptibility mapping by support vector machine 
methods (Ballabio and Sterlacchini 2012; Gravina et al. 
2016; Shirzadi et al. 2017a, b), random forest decision tree 
methods (Zhang et al. 2017), shallow landslide susceptibil-
ity assessment using a novel hybrid model (Shirzadi et al. 
2017a, b), frequency ratio, statistical index, and weights 
(Razavizadeh et al. 2017), etc., has been done.

In addition, review of the literature indicated some 
researches results such as Gupta and Joshi (1990); Shad-
far et al. (2011); Mohammadi et al. (2014) and Malik et al. 
(2016) indicated LNRF method has suitable method in land-
slide susceptibility mapping.

Our review of the literature of landslide-related research 
revealed that no research has ever been done on the study 
watershed with comparative models. On the other hand, 
this area is highly prone to slope instability, therefore, this 
research the main purpose of comparison and performance 
of the three models based on GIS has been done. In addition, 
based on the results of some studies in Iran, these methods 
are almost slightly better in providing and forecasting the 
landslide susceptibility maps. Therefore, to comparatively 
assess landslide susceptibility, three models of LNRF, FR, 
and AHP were selected for study area.

It is noted that data preparation and processing were 
carried out using ArcGIS Ver. 10.3. Although nowadays 
many methods have been employed for landslide suscepti-
bility mapping around the world, the results of this study 
can practically be used in land use planning and identifying 
areas prone to landslide. However, there is an essential need 
to using methods and techniques to improve the accuracy 
of landslide prediction on a regional scale. Therefore, the 
major aims of this study are to select the most important and 
effective factors in landslide susceptibility and assess them 
with LNRF, FR, and AHP models by Mapping Landslide 
Susceptibility Index in the Nojian watershed in the Zagros 
Mountains of Iran. In addition, comparison of the results of 
LNRF, FR, and AHP models is made for study area. It should 
be mentioned that data preparation and processing wee done 
using Arc GIS 10.3, SPSS and Expert Choice (EC) software.

The study area

Nojian watershed, with an area of about 344.91 km2, is 
located in the 30  km Southeast of Khorramabad city, 
Lorestan province, Iran. This basin is located between 
48°23′E and 48°40′E longitude and 33°06′N and 33°17′N 
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latitude (Fig. 1). Its average annual rainfall is 686 mm, 
and its climate is semi-moist with very cold winters. The 
average altitude is 1635 meters above the sea level. Due 
to geological properties such as lithology, tectonics, seis-
micity, and specific climatic conditions, Iran has areas of 
potential landslide. Located on the earthquake-prone belt 
of Alpine–Himalayan passing Zagros Big Fault, Lorestan 
province has plausible conditions for instability in large sec-
tions of the mountains slopes due to the alternating layers 
of massive limestone and thin embedded layers of the marl, 
shale, gypsum and conglomerate formation.

According to field and geology maps, the lithology of this 
basin is more diverse: massive limestone, shale and sand-
stone, dolomite, marly limestone, gypsum and sandstone, 
conglomerate with sand stone and red marl, quaternary allu-
vial and sediment.

Methodology

Landslide inventory map

In all versions of susceptibility mapping models, preparing 
landslide inventory map is the first step of data production. 

According to the basic assumption, future landslides will 
occur under the same conditions (Lee and Talib 2005).

In this research, to identify the relationship between the 
landslide distribution and the relevant conditioning factors, 
the existing landslide inventory map is necessary. Therefore, 
to come up with a detailed and reliable inventory map for 
the study area, two processes were utilized including field 
surveys and laboratory interpretations. Therefore, the dis-
tribution location of landslides was collected from the For-
ests, Rangelands and Watershed Management Organization 
of Iran. Then, using field surveys, this location was checked 
and some characteristics of each landslide were recorded 
including length, width, and surface area of landslides using 
aerial photographs (1:40,000 scale), GPS and TM satel-
lite images interpretation. In addition, we utilized SPSS to 
perform the statistical calculations in the models, Expert 
Choice (EC) software to determine the relative weighting of 
the effective factors, aerial photographs with the scales of 
1:50,000, also topographic map with the scale of 1:50,000 
and geological map with the scale of 1:100,000 and Isohyet 
is a line on map connecting which are the regions having 
same amount of rainfall. Landslide zoning includes dividing 
the land into separate regions and ranking them according 
to real degree or sensibility potential caused by landslide on 
hillside slopes. Due to the fact that the main purpose of this 

Fig. 1   The map of the geo-
graphic location of Nojian 
watershed
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study is the evaluation of LNRF, FR and AHP models in 
mapping LSI, the research method involved attritional form, 
morphometry, field work and experimental manipulation. In 
doing so, we pursued the following four steps:

1.	 Collecting and reviewing the relevant books, theses, arti-
cles, and any source related to the topic of the study,

2.	 observing the field,
3.	 doing the calculations and processing the data,
4.	 presenting the final report of the research.

Using aerial photographs, satellite imagery, and exten-
sive fieldwork, landslide areas were identified. Then, the col-
lected data were digitized using GIS to produce the landslide 
distribution map of the basin. Figure 2j shows the map of 
landslide distribution of the area.

1.	 Elevation Altitude change of each region is one of the 
very effective factors in the creation of soil erosion and 
slope mass movement. This factor intensively controls 
runoff direction and rate of drainage density (Hossein-
zadeh et al. 2009: 29). The maximum altitude of the 
region is 2848 m and the minimum altitude is 762 m. In 
addition, the general altitude variance will be 2086 m. 
For this reason, the map of height was assorted in seven 
classes (Fig. 2a).

2.	 Slope In most studies related to landslide sensibility zon-
ing, slope percentage is one of the most important fac-
tors (Abedini et al. 2017). Theoretically, with increasing 
the slope, shear stress is augmented and consequently 
increasing slope instability potential is expected. Slope 
map of the study region is prepared in six classes 
(Fig. 2b).

3.	 Aspect This factor has an important role in utilizing 
the amount of rainfall, sun energy and kind wind blow-
ing in the any area and reflecting the influence of soil 
thickness, vegetation, moisture, etc. The study area is 
located in the middle attitude, therefore, in whole direc-
tion of slopes of landslide susceptibility is different. The 
aspect map of the study area is prepared in eight classes 
(Fig. 2c).

4.	 Lithology Lithological conditions of the basin are very 
effective in slope instability and landslide occurrence. 
On other hand, the stronger rocks give more resistance to 
the driving forces in compared to the weaker rocks, and 
hence are less prone to landslides and vice versa (Yalcin 
2008). In determining the lithological resistance of the 
study area, the type of rocks, the tectonic condition, and 
their resistance to weathering factors were considered as 
the most important factors. From lithological perspec-
tive, the most susceptible area to landslide occurrence 
in the study watershed is where the formations contain 
marl and limestone, shale, gypsum and marly conglom-

erate are dominant. Therefore, to clarify landslide ten-
dency of the structures, the density of existing landslides 
in different structures must be assessed (Fig. 2d).

5.	 Distance from fault Especially active faults play an 
important role in landslides from two points of view. 
First, they are the origin of earthquake occurrence. Sec-
ond, active faults have important roles in cracking stones 
and creating instability. This discontinuity of geology 
formation leads to decreases in shear resistance of the 
slide and preparation of landslide occurrence (Fig. 2e).

6.	 Distance from road Roads have the most effective role 
in the concentration of runoff, therefore experience and 
existing statistics about landslide during reconstruction 
and road widening shows the necessity of using this fac-
tor in landslide sensitivity zoning. So, this layer consists 
of five classes (Fig. 2f).

7.	 Distance from drainage network The drainage density is 
one of the factors that have a determining role in mass 
movements as in some hillsides with low slope, water-
way, and landslide aggression are high. This shows the 
importance of waterway aggression in landslide occur-
rence. In this study, the map of distance from drainage 
system was drawn in five classes (Hosseinzadeh et al. 
2009: 32) (Fig. 2j).

8.	 Land use The form of land use is an important index in 
inconstancy of the slopes that affects the earth’s traits 
and results in changes in its action. This map was drawn 
in five classes (Fig. 2h).

9.	 Rainfall Climate of the basin and rainfall intensity and 
its durability play an important role in landslide creation 
which depends on climate factors, topography, geology, 
and slope (Lydia and Daniel 2002: 183). Campbell also 
believes that precipitation over 254 mm and rainfall 
intensity about 6.35 mm causes landslide. In this study, 
precipitation map of the study area was drawn in five 
classes (Fig. 2i).

Description of methods

Analytical hierarchy process (AHP) method

The model of analytical hierarchy process (AHP) was 
proposed by Saaty (1980) for the first time. This model 
measurement through pairwise comparisons of effective 
factors in study and relies on the judgments of experts to 
derive priority scales. In addition, pairwise comparisons 
can allow decision makers to weigh coefficients and com-
pare alternatives with relative case or factors in obtaining 
the suitable results (Saaty 2008). It works first with being 
weighted to every effective factor considered for zoning, 
and alternatives to be selected (Abedini et al. 2017). In 
AHP model, GIS is used for zoning. This section includes 
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entering the data into a GIS, then analyzing the production 
of the layers of information. The mapping of LSI using 
AHP model and EC and GIS was done as follows:

1.	 prioritization of the effective factors,

2.	 production of the pairwise comparison matrix based on 
expert opinion,

3.	 calculation of relative weight and the inconsistency rate 
determination using the EC software,

Fig. 2   The contributing factor maps in landslides of the basin (a–i) and the landslide distribution map of the area (j)
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and then points to any of classes corresponding to each 
of the factors, acquired coefficients based on them provide 
the final model. The main advantage of this method is that 
it helps the decisions to a complex problem be open to 
the hierarchical structure, and then solves it. Furthermore, 
AHP is a decision support system to seek optimum con-
ditions for a complex circumstance through hierarchical 
structures, which comprised targets to be attained, various 
criteria for decision

4.	 calculation of the final weight of effective factors and 
prioritizing them,

5.	 preparation of the weighted maps based on the values of 
the final weight of units,

6.	 preparation of the zonation map through the sum of the 
weighted maps,

7.	 calculation of the area and the percentage of the area at 
risk zones.

Numerical risk factor (LNRF) model

Landslide susceptibility map was integrated to compute the 
numeric value of each factor with the help of a Landslide 
Numerical Risk Factor (LNRF) model.

Landslide Numerical Risk Factor (LNRF) model that is 
a suitable model especially in the mountainous regions to 
landslide susceptibility mapping (Gupta and Joshi 1990). 
In this model, (LNRF > 1) indicates that the special cate-
gory of that geo-environmental factor is more susceptible to 
landslides than the average. The lower value of (LNRF < 1) 
means that the particular geo-environmental category is 
associated with more stable slopes and less susceptible to 
landside occurrence (Gupta and Joshi 1990), (Mohammadi 
et al. 2014). This model is calculated from Eq. (1):

where A is the landslide area in every unit, and E is the mean 
area of landslide in the whole unit.

(1)LNRF = A∕B or LNRF =
Npix (Si)

�
∑n

i=1
Npix(Si)

��

n
,

Fig. 2   (continued)
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In this method, which is called the credibility factor of 
landslide risk, using the occurred slip surface in a unit than 
mean occurred slip in the whole unit, the index is prepared 
(Mohammadi et al. 2014) (Table 1).

Frequency ratio (FR) method

The Frequency Ratio (FR) model is one of the important 
probability methods in landslide susceptibility mapping 
based on the observed relationship between distribution of 
landslides and each landslide-related factor. Put simply, the 
frequency ratio (FR) is the ratio of the study area where 
landslides occurred in the whole study area. It is also the 
ratio of the probabilities of a landslide occurrence to a non-
occurrence for a given attribute (Lee and Talib 2005). This 
model is a complete model including more independent vari-
ables that play an important role to determine the dependent 
variables (Abedini et al. 2017). As one of the serial gen-
eralized linear models, it is very useful for analyzing the 
existence of dependent variables and anticipating hillside 
instability (Dai and Lee 2002). The frequency ratio (FR) 
model is calculated through Eqs. (2–4). Every unit of each 
factor is the percentage of the landslide cells (A) divided 
by the percentage of no slip cells (B). The percentage of 
the landslide cells is the number of slide cells of each unit 
(A) divided by the total landslide cells of the basin (B) mul-
tiplied by 100. The percentage of the no-slide cells is the 
number of cells of each unit (C) divided by the total cells 
of the basin (D) multiplied by 100 (Solaimani et al. 2013; 
Razavizadeh et al. 2017).

Mapping of LSI using FR model and GIS software was 
as follows:

1.	 preparation of the factor maps and their classification,
2.	 preparation of the landslides maps and the factor maps 

of the basin (cell size: 5 m × 5 m),

(2)FR =
A(%)

B(%)

(3)A(%) =
a

b
× 100

(4)B(%) =
c

d
× 100

3.	 overlapping the raster layers of the factors with the raster 
layers of the basin landslides,

4.	 calculation of the landslide cells and the no-slip cells,
5.	 calculation of the FR values based on Eqs. (2–4),
6.	 preparation of the weighted maps based on the FR values 

obtained for the units,
7.	 preparation of the zonation map through the sum of the 

weighted maps,
8.	 calculation of the area and percentage of the area at risk 

zones.

Landslide conditioning factors

The most common method of identifying effective factors is 
the use of questionnaire and morphometry of the landslides 
available inside the basin and using fieldwork which we did 
for Nojian watershed. The first important step in the zoning 
of landslide susceptibility is to identify locations of landslide 
occurrence in the past and present (Jiménez-Perálvarez et al. 
2011). One of the basic steps in zoning landslide suscepti-
bility is creating a dataset and collecting the required data 
(Kavzoglu et al. 2015). In fieldwork, cases such as the land-
slides location, structure lithology, soil type, land use in the 
area of landslides, vegetation, slope, aspect, linear elements 
(roads, drainages, and faults) are considered. The height was 
necessary and the relevant expert could study these to some 
extent to specify the effective factors in landslides (Abedini 
et al. 2017). Based on a review done on the basin, parameters 
such as land use, distance from faults, rainfall, lithology, 
slope, elevation, distance from the main drainage and the 
distance from the road, landslide zone were identified as 
effective factors in the occurrence of the landslide. The maps 
related to each factor were prepared by GIS. Using modula-
tion of nine effective layers in landslide, drawing the final 
map of landslide sensibility zoning in the study area is the 
main objective of this study. Figure 2a–i shows the map of 
the factors influencing landslides in the study area.

Discussion and results

Weighting the effective factors

In AHP model, according to the different degrees of the 
effective factors in creating landslides, it is necessary to 
identify and prioritize the correct factors. Part of this is done 
by questionnaire and the other part by comparing each fac-
tor. To compare the paired items and determine the amount 
of the priority of the different factors relative to each other, a 
major scale was used with values from 1 to 9. In this matrix, 
two by two effective factors in landslide occurrence of the 
basin were compared and scored. In the combined weighting 
method, the effective factors were prioritized according to 

Table 1   The weight related to 
the amount of LNRF (Gupta 
and Joshi 1990)

Number Amounts 
LNRF

Weight

1 0 > 1
2 1 1–2
3 2 < 2
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the judgment of experts and then each effective factor was 
classified in criteria’s and weighted. The weights of crite-
ria are calculated from the pairwise comparison matrix. To 
calculate the relative weight for effective factors, the values 
were entered into Expert Choice (EC) Ver. 10.3, and finally 
the relative weight of each factor was obtained. Therefore, 
based on the relative weight, the factor of lithology (0.242), 
slope (0.197), land use (0.183), distance from the fault 
(0.174), rainfall (0.103), altitude (0.043), aspect (0.026), 
distance from the road (0.018), and distance from the main 
drainage (0.014) in the order of priority were identified as 
the effective factors contributing to landslide occurrence in 
the Nojian watershed. The amount of the incompatibility 
rate1 also was obtained to be 0.08, indicating the correctly 
paired comparisons of the effective factors.

To calculate the final weight, effective factors in landslide 
occurrence of the basin were divided by the units. We over-
lapped the landslide distribution map on each of the layers, 
and the percentage of the sliding surface was calculated for 
each unit. Finally, the percentage of the sliding surface of 
each unit was allocated a rate from zero to 100. This way, 
different values were given to each unit that had the maxi-
mum percentage of the sliding surface of the 100 value, and 
for other units also proportional to the amount of the per-
centage of the sliding surface. The scores obtained for every 
unit of each factor were multiplied by the relative weight of 
its factor to calculate the ultimate weight for each unit. By 
summing the final weights of the units together and the final 
weight for each factor was obtained (Table 2).

In FR model, first, the map of the effective factors was 
prepared and classified (cell size 5 m × 5 m). Then, the 
overlapped raster maps of factors with the raster map of 
landslides of the basin and the number of slide cells and the 
number of no-slide cells for every unit of each factor were 
obtained using GIS. Finally, using equations related to the 
model, the amount of the frequency ratio for every unit of 
each factor was calculated.

In LNRF model, first, the landslide area for every unit 
of each factor was calculated. Then, their average was 

calculated. Finally, using the equation corresponding to the 
model, the amount of LNRF was obtained for every unit of 
each factor, and the values were standardized.

The values obtained for every unit of each factor showed 
that in all three models, two factors of the distance from 
the road and distance from the main drainage due to lack of 
logical relation with landslide distribution did not influence 
the landslide of the basin in the sense that with increasing 
distance from the road and distance from drainage, the per-
centage of landslides increased which was not logical. So 
these two factors were removed and were not considered in 
the preparation of the final maps of the zonation.

Landslide susceptibility mapping

After calculating the final weight by the models, raster 
maps were obtained based on these weights. The maps of 
the weighted raster and the map of LSI were obtained for 
each model. Figure 3 shows these maps that have been clas-
sified into five susceptibility classes. Area and percentage of 
area for each of the classes of risk in the zonation maps are 
provided in Table 3.

As shown in Table 3, the results of assessment and clas-
sification of landslide susceptibly in the study area have been 
determined using the three models. The whole watershed 
area according to the landslide susceptibly hazard is classi-
fied into very low, low, high, medium, high and very high 
zones. Based on the landslide susceptibly hazard classifi-
cation in the study watershed, AHP (44%), LNRF (40%), 
and FR (39%) form the total area located in the high and 
very high hazard zones. Therefore, the comparative results 
of the three models are very close together showing that the 
watershed is potentially very prone to landslide occurrence.

Model validation and comparison

For the assessment accuracy and comparison of the zon-
ing maps, quality sum (Qs) index was used. The amount of 
Qs index represents the desirability function of methods in 
predicting the landslide hazard in the study area. Therefore, 
in assessing the method, the greater the value of this index, 
the more desired utility and this method indicated accurate 
prediction. To determine this index, first the density ratio 
(DR) must be calculated. The amount of DR is obtained 

Table 2   The final weighting of the effective factors and their priority

Priorities 1 2 3 4 5 6 7 8 9

Effective factors Lithology Slope Distance from 
the fault

Land use Rainfall Aspect Altitude Distance from 
the road

Distance from 
the main 
drainage

The final weight 82.76 45.90 44.54 35.86 22.45 14.17 8.72 5.79 3.12

1  If the obtained inconsistency rate is more than 0.1, this represents 
that the paired comparison and ratings were not done correctly, and 
this operation should be performed again with changes in the points.
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through Eq. (5). In this equation, Si is the sum of the area of 
the landslides in each class risk, Ai is the area in the class of 
risk and n is the number of risk classes in a zonation map.

The amount of Qs index also is obtained through Eq. (6) 
in which, Qs is the quality sum index, DR is the density 
ratio and S is the area ratio of each risk class to the total 

Fig. 3   The LSI maps of Nojian 
watershed

(A) AHP 
model

(B) FR 
model

(C) LNRF 
model
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area (David 1992; Amir Yazdadi and; Ghanavati 2016). 
Table 4 shows the assessment results of the zonation maps 
of the basin using the Qs method.

As shown in Table 4, in the hazard zones, the amount of 
density ratio (DR) has increased commensurate with the 
increased risk which represents a high level of the accu-
racy of the risk zone in the zoning maps. Moreover, the Qs 
values obtained for FR, AHP are 0.70, and 0.70 and 0.51 
for LNRF models, respectively, representing the higher 
performance of these two models than the LNRF model in 
determining the zones susceptible to landslide occurrence 
in the study area.

(5)Dr =

Si

Ai
∑n

i
Si

∑n

i
Ai

,

(6)Qs =

n
∑

i=1

(

(Dr − 1)2 × S
)

.

Predicted accuracy values for FR (0.70), AHP (0.70) and 
LNRF (0.51) models showed that the map obtained from 
frequency ratio model and AHP is more accurate than the 
LNRF model. The results revealed the better performance 
of these two models (FR and AHP) than the LNRF model in 
determining the zones susceptible to landslide occurrence in 
the Nojian watershed.

Discussion and conclusion

Landslide susceptibility mapping methods play an impor-
tant role in providing a suitable approach to decision makers 
and authorities, particularly in landslide prone areas. Essen-
tially, Landslide Susceptibility Mapping Index (LSMI) pro-
vides very fundamental knowledge of the effective factors 
and causes of landslide occurrence. In addition, it can be 
an effective method in hazard management and mitigation 
measures.

In the present study, we attempted to compare the results 
of landslide susceptibility mapping using three different 
models, namely Landslide Nominal Risk Factor (LNRF), 

Table 3   The area and 
percentage of the area of the 
hazard zones in the zoning maps

Models Hazard zones Si (km2) Ai (km2) DR S Qs

AHP model Very high 10.14 72.35 2.36 0.21 0.70
High 6.6 79.47 1.4 0.23
Medium 1.97 63.29 0.52 0.18
Low 1.43 68.82 0.35 0.2
Very low 0.05 57.34 0.01 0.16

LNRF model Very high 6.71 54.23 2.16 0.15 0.51
High 6.42 82.59 1.36 0.24
Medium 4.49 64.82 1.21 0.18
Low 1.7 76.57 0.38 0.22
Very low 0.15 63.05 0.04 0.18

FR model Very high 6.95 50.92 2.46 0.14 0.70
High 7.06 75.54 1.68 0.22
Medium 3.53 80.62 0.78 0.23
Low 1.19 65.42 0.33 0.19
Very low 0.18 68.79 0.04 0.20

Table 4   The assessment results 
of the zoning maps of the basin, 
using the Qs method

Parameters The area of the hazard zones (km2) Percentage of the area of the 
hazard zones (%)

Models LNRF FR AHP LNRF FR AHP
Susceptibility zones
 Very high 54.32 50.92 72.35 16 16 21
 High 82.59 75.54 79.47 24 23 23
 Medium 64.82 65.42 63.29 19 20 19
 Low 76.57 65.42 68.82 23 20 20
 Very low 63.05 68.76 57.34 18 21 17
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Frequency Ratio (FR), and Analytical Hierarchy Process 
(AHP).

The main objective of this study was to investigate poten-
tial application of LNRF, FR, and AHP models in mapping 
Landslide Susceptibility Index (LSI) especially compare 
each of them in the Nojian watershed in Lorestan province 
of Iran.

In the study area, landslides are mainly affected by alti-
tude, faulting, slope, rainfall, various geological formations, 
road construction, and land use changes. For the preparation 
of the LSI map, there are numerous weight combining meth-
ods. In the present comparative study, FR, AHP, and LNRF 
models were employed for landslide susceptibility mapping 
in Nojian watershed located in the Lorestan province of Iran. 
The results revealed that density ratio (DR) and area ratio 
S, variant weights, and data value were the most accurate in 
dividing the classes of landslide. The preparation of the LSI 
map is important through which one can detect susceptible 
areas for the future landslides and use these maps for the 
future planning. The evaluation of the final weight of the 
effective factors and the resulting overlay of these layers 
with the landslides layer area revealed the highest landslide 
due to the kind of geological formation.

From lithological perspective, the most susceptible area 
to landslide occurrence in the study watershed is where the 
formations contain marl and limestone, shale, gypsum and 
marly conglomerate are dominant.

The majority of landslides were in the class of slope more 
than 30°, the class of altitude more than 2000 m, the dis-
tance less than 2 km from the faults, the forest land use (due 
to deforestation and conversion to agricultural land), and 
the class of rainfall more than 850 mm. Two factors of the 
distance from the road and distance from the main drain-
age were excluded due to the lack of reasonable relationship 
with the percentage of landslides, in the sense that, with an 
increase in distance from the road and distance from the 
main drainage, the percentage of landslides increased, which 
was not reasonable. So, based on the above models, seven 
factors of lithology, slope, distance from the fault, land use, 
rainfall, slope and elevation, respectively, were identified as 
the effective factors in the landslides of the basin.

Although the results of MCDM such as AHP, fuzzy 
logic, LNRF, FR, AHP, support vector machine (SVM), 
artificial neural network (ANN), and logistic regression 
(LR) models are slightly different from region to region, 
but the accuracy of the models is very close in providing 
the landslide susceptibility mapping. Meanwhile, many 
studies have found overall accuracy rate relatively similar 
in some models such as LNRF, FR, AHP, SVM, ANN and 
LR (Jin et al. 2010; Park et al. 2012), Conditional proba-
bility (CP), LR, ANN, and SVM (Yilmaz 2010; Gupta and 
Joshi 1990; Akbari and Mashayekhan 2012; Mohammadi 

et al. 2014), MCDA, SVM, and LR (Kavzoglu et al. 2015; 
Abedini et al. 2017), heuristic and bivariate statistical 
models (Bijukchhen et al. 2012), probabilistic, bivari-
ate and multivariate models (Pradhan and Youssef 2010; 
Kevin et al. 2011; Ozdemir and Altural 2013; Shahabi 
et al. 2014; Wu et al. (2016a, b).

On the other hand, a host of studies such as, Ayalew and 
Yamagishi (2005), Komac (2006), Yalcin (2008), Esmali 
Ouri and Amirian (2009), Jin et al. (2010), Dehban and 
Stakhri (2013), Bhatt et al. (2013), Pourghasemi et al. 
(2013), Kumar and Annadurai (2015), Amir Yazdadi and 
Ghanavati (2016), Romer and Ferentinou (2016), Wu et al. 
(2016a, b), Abedini et al. (2017), Shirzadi et al. (2017a, 
b), Razavizadeh et al. (2017) indicated that FR and AHP 
models were more often better than the logistic regression 
in Japan, Iran, China, respectively.

In addition, some research results such as Gupta and 
Joshi (1990); Shadfar et al. (2011); Mohammadi et al. 
(2014) and Malik et al. (2016) indicated LNRF method 
has suitable method in landslide susceptibility mapping.

The results based on LNRF, FR and AHP models in 
study watershed, respectively, accounted for 40, 39 and 
44% of the area of the basin located in the classes of the 
high to very high hazard zones due to the landslides sus-
ceptibly. The prediction performance of the susceptibility 
map is checked by considering quality sum amount (Qs). 
The quality sum (Qs) values for the three models above 
also were obtained to be 0.51, 0.70 and 0.70, respectively. 
Therefore, according to the amount of Qs and comparison 
of the results, we conclude that the two models of AHP 
and FR have better performance than the LNRF model 
in determining the LSI maps in the Nojian watershed. In 
addition, comparison of the past landslide occurred map 
(Fig. 2j) with provided landslide susceptibility map by 
LNRF, FR, AHP models (Fig. 3a–c) was showed high con-
formity. In other words, this demonstrates the high capa-
bility of these models in the preparation and evaluation of 
landslide susceptibility maps in the studied watersheds.

Finally, the study watershed was classified into five sen-
sitivity classes of very high, high, moderate, low and very 
low. Based on the results, landslide hazard zoning maps 
and information can be useful for general development 
planning, landslide risk management, selecting sites and 
mitigating landslide hazards for decision makers in the 
regions with similar conditions.
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