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Abstract The Soil Conservation Service Curve Number

runoff model is widely used in runoff prediction and has

been incorporated into many software packages for

watershed modeling. The Curve Number (CN) is the key

parameter in the model, but it is largely dependent on

Hydrologic Soil Group (HSG) classifications which may

induce aggregation of detailed soil information. However,

little attention and efforts have been paid to reduce such

aggregation effect for retaining those valuable soil infor-

mation to derive more detailed CN. This study proposed to

integrate fuzzy logic to derive detailed CN. Membership of

a given soil to each HSG is first calculated based on soil

properties and HSG classification criteria; then, detailed

and continuous CN is derived using the membership as

weight for CN of each soil-cover complex. The proposed

approach was incorporated into an automation system and

its further effects on runoff modeling were examined. A

case study shows fuzzy CN possesses more spatial details

and leads to obvious spatial differences of simulated run-

off. The developed system could also be used to detect

inconsistency of HSG placements.

Keywords Runoff curve number � Hydrologic soil

group � Fuzzy logic � Soil and water assessment tool

(SWAT) � Distributed hydrological modeling

Introduction

The Soil Conservation Service Curve Number (SCS-CN)

runoff model (Soil Conservation Service 1972) is widely

used in surface runoff modeling for various areas and has

been incorporated into many popular hydrologic software

packages (Young and Carleton 2006; Mishra et al. 2008;

Elhakeem and Papanicolaou 2009). In practical work, the

derivation of CN is usually accomplished via look-up table

given by National Engineering Handbook for each hydro-

logic soil-cover complex (USDA 2004), e.g., combination

of hydrologic soil group (HSG), land use, and treatment

class. Theoretical CN value falls in the range of 0–100, but

practical design values validated by experiences, are more

likely to be between 40 and 98, with few exceptions (Van

Mullem 1991). As a result, the SCS-CN model is extremely

sensitive to CN parameter with a relative narrow range

(Ponce and Hawkins 1996). And slight drifting in CN

would lead to a significant difference in runoff model

simulation. Therefore, CN determination is a key proce-

dure during runoff modeling.

R. Li � X. Rui � X. Song (&)

College of Resources and Environment, University of Chinese

Academy of Sciences, Beijing 100049, China

e-mail: song.osgeo@gmail.com

R. Li

e-mail: lirk@ucas.ac.cn

A.-X. Zhu � J. Liu

School of Geography, Nanjing Normal University,

Nanjing 210023, China

A.-X. Zhu � L. E. Band

State Key Lab of Resources and Environmental Information

System, Institute of Geographical Sciences and Natural

Resources Research, Chinese Academy of Sciences,

Beijing 100101, China

A.-X. Zhu

Department of Geography, University of Wisconsin-Madison,

550 North Park Street, Madison, WI 53706, USA

L. E. Band

Department of Geography, University of North Carolina at

Chapel Hill, Chapel Hill, NC 27599, USA

123

Environ Earth Sci (2015) 73:3197–3205

DOI 10.1007/s12665-014-3620-z



One of the major influencing factors over CN is the HSG

assignment of soils (Shirmohammadi et al. 1997; USDA

2004). About 14,000 types of soils had been identified in

the United States (McCuen 2004), and were assigned into

four HSGs (A, B, C, and D) according to soil permeability

(Musgrave 1955). Under given surface conditions, a certain

representative CN value is assigned to an HSG and CNs for

different HSGs vary largely. Therefore, HSG classification

is critical for the derived CN and the predicted runoff.

HSG assignment greatly facilitates the application of

SCS-CN model, but potentially raises two issues need to be

concerned about:

1. Aggregation effect on detailed soil information. Soils

usually vary gradually in property domain and space

domain (Zhu 1997), but these soils are classified into

various soil types and further aggregated into four

HSGs during soil survey. HSGs are classified based on

soil hydrologic characteristics, such as soil water

permeability, to represent levels of runoff potential,

labeled with increasing potential from A, B, C, to D.

Assigning various soils to four HSGs may induce two

aspects of uncertainty: (a) soils having different

hydrologic attributes would likely be designated to

the same HSG, thus the final HSG mutes the differ-

ences among original soils; (b) Similar soils close to

the bounds of HSG may be assigned to neighboring

different HSGs and the small differences between

original soils would be exaggerated (Mark and Csillag

1989; Zhu 1997); this will lead to a big jump of CN.

For example, HSGs A, B, C, and D combining with

woodlands at good hydrologic condition would have

CN of 30, 55, 70, and 77, respectively, which means

difference of CN between the neighboring HSGs

would be up to 25 (between group A and B).

Therefore, HSG classification may cause sudden jumps

of CN by assigning similar soils into different HSGs,

otherwise will erase the influence of soil difference on

CN by assigning different soils to the same HSG. Such

aggregation effect of HSG on soil information has been

verified by previous studies, and its subsequent influ-

ence on watershed modeling has also been discussed

(Ye et al. 2011; Li et al. 2012).

2. Inappropriate HSG placement. Only some initial

groupings within selected small watersheds were

conducted based on rainfall-runoff data and infiltrom-

eter plots, and most soils were actually assigned to the

corresponding HSGs based on soil scientists’ interpre-

tation of the published criteria (Soil Survey Division

Staff 1993). As the interpretation has varied through

time and across states and regions, HSG classification

criteria is not uniformly applied over the United States,

which may cause improper placements of soils into

HSGs. This situation mostly occurs when comparing

soils with similar hydrologic and physical properties

but different hydrologic group placement (Nielson and

Hjelmfelt 1998; Hjelmfelt et al. 2001; Van Mullem

et al. 2002).

Though the issues above have drawn wide attention, few

effective solutions have yet been raised. A joint work group

was formed in 1990 by the US Department of Agriculture,

with the principal aim of reconsidering the hydrologic soil

classification after recognizing the vastly expanded data-

base and the capabilities of modern computers (Van Mul-

lem et al. 2002). The research group developed a rule based

on automated fuzzy system to reduce the errors associated

with soil scientists’ interpretation of the HSG criteria

(Nielson and Hjelmfelt 1998). However, classification of

group B and C is difficult and finally leads to misclassifi-

cation. The reason was attributed to the fact that a given

soil may not be fitted entirely into a single HSG.

For this reason, an improved method taking advantage

of detailed soil information from soil database to derive

finer HSG classification and CN is clearly needed. Dis-

tributed watershed modeling highlights the spatial distri-

bution of modeling results, but such spatial detail would

probably be obscured due to aggregation effect of HSG on

detailed soil information. Meanwhile, there has been a

significant accumulation in basic soil attribute data since

the initial classification of HSG in the 1950s (Musgrave

1955), and this will greatly facilitate the refining of HSG.

The purpose of this study is: (1) to develop an automated

system based on detailed soil attribute data to mitigate the

aggregation effect of HSG on CN, (2) to examine the

misplacement of HSG, and (3) to investigate the potential

effects of the proposed approach on the derived CN and the

modeled runoff.

Materials and methods

SCS-CN model

The SCS-CN runoff equation is an empirical model that

consists of water balance equations and two fundamental

hypotheses (Mishra et al. 2006) expressed as:

P ¼ Ia þ F þ Q ð1Þ
Q

P� Ia

¼ F

S
ð2Þ

Ia ¼ kS ð3Þ

where P = total rainfall depth (mm), Ia = initial abstrac-

tion (mm), F = cumulative infiltration (mm), Q = direct

runoff (mm), and S = potential maximum retention (mm).
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The initial abstraction, Ia, is commonly appropriated as

0.2S (k & 0.2). A combination of (1), (2), and (3) leads to

the popular form of SCS-CN model:

Q ¼ P� 0:2Sð Þ2

Pþ 0:8S
ð4Þ

S can be transformed to CN scale using the following

relation:

S ¼ 25:4
1000

CN
� 10

� �
ð5Þ

where CN = curve number. For a given rainfall

(P [ 0.2S), higher CN generates more runoff.

Typical CN for medium antecedent moisture condition

(AMC II), usually labeled as CN2, is provided by SCS

Engineering Division for each HSG for practical use

(Ponce and Hawkins 1996; USDA 2004). The transfor-

mation of CN2 to other moisture conditions (AMC I and

AMC III) can be accomplished with several conversion

formula (Mishra et al. 2008). CN2 are given in the table for

each of the four HSGs (A, B, C, and D), with group A

standing for low runoff potential, group B for moderate rate

of infiltration, group C for slow rate of infiltration, and

group D for high runoff potential, respectively (Fig. 1).

USDA-NRCS Soil Survey Staff defines HSG as a group of

soils that having similar runoff potential under similar

storm and cover conditions (USDA 2007). Based on the

classification procedure showed by Fig. 1, aggregation

effect on detailed soil information can be observed. The

aggregation would cause two kinds of uncertainty: (1) all

types of soils will be simplified to four HSGs and many

different soils will be put into the same group; the differ-

ences between original soils were omitted; and (2) some

similar soils around the group boundary would be separated

into different groups; the original small differences

between those soils were exaggerated.

Soils were originally assigned to HSGs based on mea-

sured rainfall, runoff, and infiltrometer data (Musgrave

1955). HSG is determined according to saturated hydraulic

conductivity of the least transmissive layer, and depth to

water impermeable layer (dense and cemented horizon,

such as a fragipan or duripan with saturated hydraulic

conductivity \0.1 inches per hour) or depth to a phreatic

water level (USDA 2007).

Deriving CN from fuzzy HSG

Soils are traditionally classified to the corresponding HSGs

which are further used as surrogate of soil hydrologic

information to derive CN. Thus, the original soil attributes

are aggregated by HSG assignment process (Fig. 1). To

reduce the aggregation effect during this process, we pro-

posed a fuzzy HSG concept to retain influence of detailed

soil information on the derived fuzzy HSG and further on

the CN.

The proposed fuzzy HSG approach describes the rela-

tion between soils and existing HSGs based on fuzzy logic.

Under fuzzy logic (Burrough 1989; Zhu 1997; Zhu et al.

1997, 2001), a soil can be assigned to more than one

hydrologic group with different degrees of similarity.

These degrees of similarity are referred to as fuzzy mem-

berships. The fuzzy representation allows a soil to bear

partial membership in each of the prescribed HSG. Each

fuzzy membership is regarded as a similarity measure

between the soil and the HSG. All fuzzy memberships are

retained in this similarity representation (Fig. 2), which

forms a four-element vector (HSG similarity vector, or

fuzzy membership vector), Sx (SA, SB, SC, and SD), where

SA in the vector represents the similarity of soil x to soil

hydrologic group A, ranging from 0 to 1; SB, SC, and SD

represent similarity of soil x to group B, C, and D, so and

so forth. In this way, a single soil type would no longer be

approximated by individual HSG, but represented by

multiple groups with varying memberships. Therefore,

soils with small differences would be distinguished through

their detailed memberships, and similar soils would possess

similar memberships.
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Fig. 1 Procedure from soil physical property to HSG and CN
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Fig. 2 Fuzzy representation of HSG using similarity vector
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The proposed fuzzy HSG approach includes two steps:

(1) the fuzzy memberships of a soil to all HSGs are cal-

culated based on its hydrologic and physical properties; (2)

the memberships are used as weights of the traditional CN2

values to compute the final CN for different conditions. In

this way, the fuzzy logic method allows the soil-cover

complexes to have intermediate CN other than only four

levels of the traditional CN.

The similarity between a soil and each HSG is essential.

The process to derive similarity consists of three major

parts (Fig. 3): (1) collect soil hydrologic information which

is needed when assigning soil to HSG, including depth to a

restrictive layer or phreatic water level and saturated

hydrologic conductivity; (2) calculate the similarity of soil

to each HSG using the fuzzy membership function, and (3)

calculate fuzzy CN using a linear weighted method (the

fuzzy memberships are used as weights of HSGs), with the

incorporation of CN look-up tables to each soil-cover

complexes. Soil-cover complexes will be assigned contin-

uous CNs if their corresponding soil properties are similar.

The fuzzy HSG approach largely circumvents the gener-

alization of soil information caused by HSG assignment.

Typical soil property value to HSG

To calculate fuzzy HSG membership, the typical soil

property values for each HSG must be defined. Based on

the criteria of NEH, HSG covers a wide range of soil

hydrologic attributes (USDA 2007). For example, a group

C soil with a depth to water impermeable layer larger than

100 cm would have a wide range of saturated hydraulic

conductivity of the least transmissive layer (KMINsat) from

1.44 to 14.4 mm/h (Fig. 4). As soil hydrologic properties

generally follow an approximate logarithmic normal dis-

tribution (Schaap et al. 2001; Zhai and Benson 2006), soil

saturated hydraulic conductivity was transformed to loga-

rithmic value at the beginning. For the HSGs with two

boundaries (e.g., group B and C), the mean values of

KMINsat were used as the typical values. While typical

values for the single bounded group A and D were defined

by an incremental to the bound of neighboring group

(Fig. 4). Then the range and typical KMINsat for each HSG

could be defined (Table 1). The typical value and range of

each HSG was later fed into the fuzzy membership func-

tion to calculate the fuzzy membership of a given soil to

each HSG.

Calculating fuzzy membership of HSGs

Fuzzy membership functions were constructed to calculate

the fuzzy membership value of a given soil to the four

HSGs based on hydrologic properties of the soil. The

membership function should possess the following char-

acteristics (Fig. 5): (1) maximum membership value of 1.0

is achieved at typical KMINsat, (2) membership to one group

decreases smoothly from 1.0 to 0.0 as KMINsat deviates

from the group’s typical value to that of the neighboring

group, and (3) membership will be 0.5 at the bound of two

neighboring groups.

The membership function proposed by Burrough (1989)

was modified to fulfill the requirements mentioned above.

Modifications are shown in Eqs. (6) and (7):

Si¼ 1

1þ x�xi
x0:5�xij j2

� x�xj
x0:5�xj

��� ��� ; x�xij j\ xj�xij j

S
i
¼0 ; x�xij j[ xj�xij j

8><
>: ð6Þ

where Si = membership of a soil (with its KMINsat = x) to

hydrologic soil group ‘‘i’’, x = KMINsat of the soil, xi and xj

is the typical KMINsat value of soil group ‘‘i’’ and the

neighboring soil group ‘‘j’’, respectively, and x0.5 -

= KMINsat value at the neighboring bound between group

‘‘i’’ and group ‘‘j’’.

If the sum of the soil memberships to all HSGs is not

equal to 1.0, the memberships will be standardized to a sum

of 1 applying the equation:

S0i ¼ Si= Si þ Sj

� �
S0j ¼ Sj= Si þ Sj

� �
(

ð7Þ
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Fig. 3 Concept of representing continuous CN using fuzzy HSG with

similarity vector
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Fig. 4 Sketch showing the range and typical value for each HSG. KA,

KB, KC, and KD—typical KMINsat for soils A, B, C, and D, respectively
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where Si and Sj are memberships of the soil to group i and j

before standardization, respectively, S0i and S0j are mem-

berships after standardization.

The variation of fuzzy memberships with soil attributes,

i.e., KMINsat, was calculated according to Eq. (6) and (7)

(Fig. 6). Membership for each soil group changes smoothly

from 1 to 0, which exhibits the gradual transition of soil

group from one to another in accordance with soil attri-

butes variation. Neighboring membership curves intersect

at 0.5 (Fig. 6). The shapes of membership curves for dif-

ferent soil groups are not exactly the same because of

different ranges of KMINsat, e.g., ranges for group A and D

may not be in the same order of magnitude. A soil with

KMINsat small or close to 0 general has high membership to

group D and close to 1; with the increase of the KMINsat,

membership will alternatively increase to 1 in soil groups

C, B, and A (Fig. 6). Finally, the fuzzy membership of a

given soil to each soil group can be derived.

Computing CN using fuzzy membership

For a specific land cover, CN for the four HSGs (CNA,

CNB, CNC, and CND) are defined. Based on the derived

membership vector S (SA, SB, SC, and SD) for a soil, a

detailed CN (indicated as fuzzy CN) could be calculated

using a linear weighted function:

CNfuzzy ¼
PD

i¼A Si � CNiPD
i¼A Si

ð8Þ

where CNfuzzy = fuzzy CN for a given soil at specific land

cover condition, Si = membership of the soil to HSGi,

CNi = CN for corresponding HSGi (i = A, B, C, D)

defined in the look-up table.

Development of an automation system

To facilitate the application of the developed method, an

automated fuzzy system coupling the existing CN2 tables

and soil databases was developed. The proposed method

was realized with Visual Basic language. Fuzzy CNs for a

new area could be derived automatically once the soil

database and land use data were provided.

The difference between a derived fuzzy CN and the

original CN from NEH of a specific soil-cover complex is

presented in Fig. 7. The four original CN values from NEH

(CN_NEH) appear as descending ‘‘terraces’’ according to

the increase of KMINsat, which are caused by the sudden

shift of HSGs. Thus, CNs differ largely from each other if

the soil is assigned to different HSGs, e.g., in the described

case, CN difference between group A and group B would

be up to 28. However, the fuzzy CN derived through fuzzy

membership approach changes continuously and smoothly

with KMINsat. The proposed fuzzy membership approach

enhances gradual CN change with soil properties variation,

Table 1 The value and range of KMINsat for each HSG under a logarithmic coordinate

Parameter Zimper
a [ 100 cm 50 cm \ Zimper \ 100 cm

HSG D C B A D C B A

Typical -0.14b 0.66 1.36 1.76 0.26 1.06 1.86 2.26

Left width / 0.50 0.20 0.20 / 0.50 0.30 0.10

Right width 0.30 0.50 0.20 / 0.30 0.50 0.30 /

Range \0.16 0.16–1.16 1.16–1.56 [1.56 \0.56 0.56–1.56 1.56–2.16 [2.16

a Zimper depth of the impermeable layer bellow soil surface (cm), ‘‘/’’ value not definite
b KMINsat under a logarithmic coordinate with a base of 10, that is, [log 10] (mm/h)
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Fig. 5 Sketch of the membership curves. Depth to water imperme-

able layer [100 cm. SA, SB, SC, and SD—memberships for group A,

B, C, and D
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facilitating the fuzzy CN variation within a soil group and

between neighboring groups.

Case study and discussions

Description of study site

The differences between CN derived from the fuzzy

method and the traditional NEH method and the conse-

quent hydrological effects have been examined in the Lake

fork watershed. The Lake fork watershed (1,219.8 km2,

with 111 km2 water surface area) is located at Texas state

of the United States (Fig. 8), and the Soil and Water

Assessment Tool (SWAT) software package was applied

and SCS-CN module in the model was adopted to simulate

hydrologic process. Soil Survey Geographic database

(SSURGO) at 1:24,000 and National Land Cover Database

(NLCD) with a 30 m spatial resolution from US Geological

Survey were used for derivation of spatially distributed CN

for the watershed. CN2 was obtained using both the NEH

method and the fuzzy method.

Analysis of the soil map reveals there are overall 67

soil types in the study area. All these soils are classified

into four HSGs in the soil database. Finally, many soils

are classified into the same HSG, for example, the

number of soils contained in group A, B, C, and D is 4,

11, 16, and 36, respectively. Therefore, it can be inferred

that the aggregation effect of traditional HSG on soil

information does exist as a large number of soils are

assigned to the same HSG. Those soils assigned to the

same HSG would have the same CN value if other

conditions are the same, although their attributes vary

from each other.

Spatial differences of CN

The spatial distribution of CN2 was mapped separately for

the proposed fuzzy CN2 and the traditional CN2 (NEH

CN2). Spatial differences of CN2 between the two

approaches were calculated by subtracting NEH CN2 map

from fuzzy CN2 map using raster calculator tools in ESRI

ArcGIS software.

CN2 differences are widely distributed in the study area,

mostly concentrated at riparian areas (Fig. 9). About 21 %

of the area has CN2 difference while 18 % of the area has a

difference[3.0. These differences are mainly associated to

soils not exactly at HSGs typical values, with varying fuzzy
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Fig. 7 Comparision of fuzzy CN (CN_Fuzzy) and the original CN

(CN_NEH). (Depth to water impermeable layer [100 cm)

Fig. 8 Geographical setting and terrain of the Lake Fork watershed

area (Texas, United States)

Fig. 9 Spatial differences between fuzzy CN2 and NEH CN2
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CN2. Most of the differences are negative, suggesting that

the fuzzy CN2 is lower than NEH CN2 for the relating soils

in the study area.

Large negative CN differences are mainly attributed to

the soils close to the bound of neighboring HSGs. For

example, soils of map unit A374401 (equivalent to soil

name) (9.3 % of area), A374405 (6.2 % of area) and

A374384 (2.0 % of area) are all assigned to HSG B

according to NEH method. However, as their water

impermeable layer depth [100 cm and KMINsat = 32.4

mm/h, these soils are close to the boundary (36 mm/h)

between group A and group B. In the fuzzy system, these

soils are associated to CN close to the average value of

typical CN for group A and B, which will be obviously

smaller than the typical CN of group B.

Identification of improper HSG placement

The developed automation system can also help identify

improper HSG placement. It automatically calculates the

fuzzy memberships of a soil to all HSGs; these four

memberships (elements in the similarity vector) vary from

0 to 1 with HSG, and there must be one HSG possesses the

largest membership among the four. Thus property of that

soil is most similar to the HSG with the largest membership

(Figs. 3, 5) Thus, the HSG corresponding to the maximum

membership should be the one assigned during soil survey,

supposing the manual classification during soil survey is

correct. Therefore, the HSG with the maximum member-

ship in the fuzzy system can be compared with the HSG

recorded in the soil database to examine if there’s any

inconsistency. In case inconsistency occurred, such soil

should be carefully checked to verify their classifications.

Inconsistent assignment of HSG checked out by the

automation system is shown in Table 2. Soil map unit

A576058 was assigned to group C in SSURGO database,

but it has greatest similarity to group B based on the fuzzy

system. The fuzzy system successfully detected this

inconsistency in this experiment.

Effect of fuzzy CN on runoff modeling

According to SCS-CN model, differences of CN will pro-

mote simulated runoff differences in runoff modeling,

especially for spatially distributed modeling. Thus, the

increased capability of fuzzy CN in representing detailed

soil information would be useful for distributed watershed

modeling.

To examine the effect of fuzzy CN on runoff mod-

eling, CN derived from the fuzzy approach and tradi-

tional methods was separately input into SWAT model

for runoff modeling, given other conditions completely

the same. Simulated runoff for 2 years (average precip-

itation = about 1,229 mm) is extracted and average

yearly runoff differences based on the two CN approa-

ches were calculated (Fig. 10). The runoff map shows a

considerable different area and most of it is larger than

10 mm. Meanwhile, relative runoff difference map

(Fig. 10b) shows about 20 % of the total area has runoff

differences larger than 10 %. Comparing Fig. 10 with

Fig. 9, it could be clearly observed that runoff differ-

ences were highly correlated with CN differences, and

variation of CN would cause significant runoff differ-

ences (e.g., [20 %).

The large differences between simulated runoff reveal

that CN derived from different approaches significantly

affects the spatial distribution of simulated runoff. As fuzzy

CN is conceptually reasonable and technically available, it

is helpful to derive detailed CN for further use in distrib-

uted runoff modeling.

Conclusions

The traditional process of generalizing soil types into four

HSGs during curve number acquisition induces significant

aggregation of detailed information which would be

important in watershed modeling. This study proposed a

fuzzy HSG concept and developed an automated system to

obtain continuous relationship between CN and soil

properties.

The proposed method was applied and verified in a case

study in the United States, with the effects of the fuzzy CN

on runoff modeling also evaluated. The obtained results

indicated that the fuzzy system had the potential to check

improper HSG classifications, reduce soil information

aggregation, increase spatial detail of CN and affect the

simulated runoff. In addition, such an automated system

Table 2 Improper HSG assignment checked out by the fuzzy system

Soil Soil depth (cm) DImper
a (cm) Db

1 (cm) Kc
1 (mm/h) D2 (cm) K2 (mm/hr) HSG in SSURGO HSG with largest membership

A576058 203 None 0–33 32.4 34–102 32.4 C B

a DImper = depth from surface to the first water impermeable layer (cm)
b Di = depth of ith soil layer (cm)
c Ki = saturated hydrologic conductivity of ith soil layer (mm/h)
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will also facilitate consistent assignment of hydrologic

groups in the future by adopting the same standard in

different places or by different organizations.
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