Skip to main content

Advertisement

Log in

A multi-scale assessment of human vulnerability to climate change in the Aral Sea basin

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Vulnerability to climate change impacts is defined by three dimensions of human–environmental systems, such as exposure, sensitivity, and adaptive capacity. Climate change affects various aspects of human–environmental interactions, such as water stress, food security, human health, and well-being at multiple spatial and temporal scales. However, the existing protocols of vulnerability assessment fail to incorporate the multitude of scales associated with climate change processes. Changing trends in the Aral Sea basin are driven by multiple interconnected factors, such as changes in the global atmospheric circulation associated with the GHG-enhanced warming, regional hydrological and hydrometeorological changes caused by mountain-glacial melting and massive irrigation, land-use and land-cover changes, as well as hydrological, biogeochemical, and meso- and microclimatic changes in the remains of the Aral Sea and its exposed dry bottom. This review examines the role of scale in the assessment human vulnerability to climate change and offers a multi-scale approach to vulnerability assessment. In addition to the global climate change impacts, it takes into account regional and local land-use and land-cover changes, social, cultural, political, and institutional factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abdolvand B, Winter K, Mirsaeedi-Gloßner S (2014) The security dimension of water: insights from Central Asia. Environ Earth Sci (this issue)

  • Akiner S (2000) Central Asia: a survey of the region and the five republics. UNHCR Centre for Documentation and Research, WRITENET Paper No. 22/1999, United Nations High Commissioner for Refugees, Geneva, p 50

  • Aladin N, Crétaux J-F, Plotnikov IS, Kouraev AV, Smurov AO, Cazenave A, Egorov AN, Papa F (2005) Modern hydro-biological state of the small Aral Sea. Environmetrics 16(18):375–392

    Article  Google Scholar 

  • Alcamo J, Henrichs T (2002) Critical regions: a model-based estimation of world water resources sensitive to global changes. Aquat Sci 64:1–11

    Article  Google Scholar 

  • Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob Environ Change 14:31–52

    Article  Google Scholar 

  • Barlow M, Cullen H, Lyon B (2002) Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J Clim 15:697–700

    Article  Google Scholar 

  • Chub VE (2000) Climate change and its impact on the natural resources potential of the Republic of Uzbekistan. Gimet Tashkent (in Russian)

  • Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, Revich B, Woodward A (2007) Human health. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 391–431

  • Crighton EJ, Elliott SJ, van der Meerc J, Small I, Upshur R (2003a) Impacts of an environmental disaster on psychosocial health and well-being in Karakalpakstan. Soc Sci Med 56(2003):551–567

    Article  Google Scholar 

  • Crighton EJ, Elliott SJ, Upshur R, van der Meerc J, Small I (2003b) The Aral Sea disaster and self-rated health. Health and Place 9:73–82

    Article  Google Scholar 

  • Elpiner LI (2003) A scenario of possible effect of changes in the hydrological conditions on the medical and environmental situation: on the problem of global hydroclimatic changes. Water Resour 30(4):434–444

    Article  Google Scholar 

  • FAO AQUASTAT (2013) AQUASTAT FAO's information system on water and agriculture. http://www.fao.org/nr/water/aquastat/main/index.stm. Accessed Dec 2013

  • Fischer G, Shah M, Tubiello FN, van Velhuizen H (2005) Socioeconomic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos Trans Royal Soc B 360:2067–2073

    Article  Google Scholar 

  • Fort M (2014) Natural hazards versus climate change and their potential impacts in the dry, northern Himalayas: focus on the Upper Kali Gandaki (Mustang District, Nepal). Environ Earth Sci (this issue). doi:10.1007/s12665-014-3087-y

  • Glantz MH (2005) Water, climate, and development issues in the Amu Darya basin. Mitig Adapt Strat Glob Change 10(1):1381–2386

    Article  Google Scholar 

  • Groll M, Opp C, Kulmatov R, Ikramova M, Normatov I (2014) Water quality, potential conflicts and solutions—an upstream–downstream analysis of the transnational Zarafshan River (Tajikistan, Uzbekistan). Environ Earth Sci (this issue). doi:10.1007/s12665-013-2988-5

  • IPCC (2001) Climate change: the scientific basis. In: Houghton JT, Ding Y, Griggs M (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, UK

  • IPCC WGI (2007) Climate Change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • IPCC WGII (2007) Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Jensen S, Mazhitova Z, Zetterstr R (1997) Environmental pollution and child health in the Aral Sea region in Kazakhstan. Sci Total Environ 206(1997):187–193

    Article  Google Scholar 

  • Kariyeva J, van Leewuven W (2011) Environmental drivers of NDVI-based vegetation phenology in Central Asia. Remote Sens 3(2):203–246. doi:10.3390/rs3020203

    Article  Google Scholar 

  • Kayumov AK, Mahmadaliev BU (2002) Climate change and its impacts on climate change. Avesto, Dushanbe (in Russian)

  • Kirilenko A, Dronin N (2011) Climate change and adaptations of agriculture in the countries of the Former Soviet Union. In: Yadav SS, Redden B, Hatfield JL et al (eds) Crop adaptation to changing climates. Wiley-Blackwell, Hoboken, NJ, pp 84–106

    Chapter  Google Scholar 

  • Jönsson P, Eklundh L (2004) TIMESAT—a program for analyzing time-series of satellite sensor data. Comput Geosci 30(8):833–845

    Article  Google Scholar 

  • Lioubimtseva E (2002) Arid environments. In: Shahgedanova M (ed) Physical geography of northern Eurasia. Oxford University Press, Oxford, UK, pp 267–283

    Google Scholar 

  • Lioubimtseva E (2007) Possible changes in the carbon budget of arid and semi-arid Central Asia inferred from land-use/landcover analyses during 1981–2001. In: Lal R, Suleimenov M, Stewart BA, Hansen DO, Doraiswami P (eds) Climate change and terrestrial carbon sequestration in Central Asia. Taylor & Francis, London, pp 441–452

    Chapter  Google Scholar 

  • Lioubimtseva E (2014) Impact of climate change on the Aral Sea and its Basin. In: The Aral Sea: the devastation and partial Rehabilitation of a Great Lake: anatomy of an environmental disaster. In: Micklin P, Aladin N, Plotnokov I (eds) Chapter 17, (Springer Earth System Sciences), Springer, Praxis

  • Lioubimtseva E, Adams JM (2004) Possible implications of increased carbon dioxide levels and climate change for desert ecosystems. Environ Manag 33(S1):S388–S404

    Article  Google Scholar 

  • Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73:963–977

    Article  Google Scholar 

  • Lioubimtseva E, Cole R, Adams JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62(2):285–308

    Article  Google Scholar 

  • Lioubimtseva E, Kariyeva J, Henebry GM (2013) Climate change in Turkmenistan. In: Zonn IS, Kostyanov AG (eds) The Turkmen Lake Altyn Asyr and water resources in Turkmenistan, handbook on environmental chemistry. Springer, Heidelberg. doi:10.1007/698-2012-175

    Google Scholar 

  • Malsy M, Aus der Beek T, Flörke M (2014) Uncertainties in hydrological modelling and its consequences for sustainable water management in Central Asia. Environ Earth Sci (this issue). doi:10.1007/s12665-014-3107-y

  • Micklin P (1988) Desiccation of the Aral Sea: a water management disaster in the Soviet Union. Science 241:1170–1176

    Article  Google Scholar 

  • Micklin P (2007) The Aral Sea disaster. Annu Rev Earth Planet Sci 35:47–72. doi:10.1146/annurev.earth.35.031306.140120

    Article  Google Scholar 

  • Micklin P (2010) The past, present, and future Aral Sea. Lakes Reserv Res Manag 15:193–213

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H–H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios, IPCC special reports. Cambridge University Press, Cambridge

    Google Scholar 

  • Newingham BA, Vanier CH, Charlet TN, Ogle K, Smith SD, Nowak RS (2013) No cumulative effect of 10 years of elevated [CO2] on perennial plant biomass components in the Mojave Desert. Glob Change Biol 19(7):2168–2181. doi:10.1111/gcb.12177

    Article  Google Scholar 

  • O’Hara S, Wiggs GFS, Mamedov B, Davidson G, Hubbard RB (2000) Exposure to airborne dust contaminated with pesticide in the Aral Sea region. Lancet Res Lett 355:627–628

    Article  Google Scholar 

  • Polsky C, Neff R, Yarnal B (2007) Building comparable global change assessments: the vulnerability scoping diagram. Glob Environ Change 17(3–4):472–485

    Article  Google Scholar 

  • Rakhmatullaev S, Huneau F, Kazbekov J, Le Coustumer P, Jumanov J, El Oifi B, Motelica-Heino M, Hrkal Z (2010) Groundwater resources use and management in the Amu Darya River Basin (Central Asia). Environ Earth Sci 59(6):1183–1193. doi:10.1007/s12665-009-0107-4

    Article  Google Scholar 

  • Sayko TS (1998) Geographical and socio-economic dimensions of the Aral Sea crisis and their impact on the potential for community action. J Arid Environ 39:225–238

    Article  Google Scholar 

  • Schröter D, Polsky C, Patt AG (2005) Assessing vulnerability to the effects of global climate change: an eight step approach. Mitig Adapt Strat Glob Change 10:573–596

    Article  Google Scholar 

  • Shibuo Y, Jarsjo J, Destouni G (2007) Hydrological responses to climate change and irrigation in the Aral Sea drainage basin. Geophys Res Lett 34:L21406. doi:10.1029/2007GL031465

    Article  Google Scholar 

  • Shiklomanov IA, Rodda JC (2001) World water resources at the beginning of the twenty-first century. Cambridge University Press, Cambridge

    Google Scholar 

  • Small EE, Sloan LC, Hostetler S, Giorgi F (1999) Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J Geophys Res 104(D6):6583–6602

    Article  Google Scholar 

  • Small EE, Giorgi F, Sloan LC, Hostetler S (2000) The effects of desiccation and climatic change on the hydrology of the Aral Sea. J Clim 14:300–322

    Article  Google Scholar 

  • Smit B, Skinner MW (2002) Adaptation options to climate change: a typology. Mitig Adapt Strat Glob Change 7:85–114

    Article  Google Scholar 

  • Smith SD, Huxman TF, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  Google Scholar 

  • Syed FS, Giorgi F, Pal JS, King MP (2006) Effect of remote forcings on the winter precipitation of Central Southwest Asia, Part 1: observations. Theoret Appl Climatol 86(1–4):147–160

    Article  Google Scholar 

  • Wiggs GFS, O’Hara SL, Wegerdt J, Van der Meer J, Small I, Hubbard R (2003) The dynamics and characteristics of aeolian dust in dryland Central Asia: possible impacts on human exposure and respiratory health in the Aral Sea basin. Geogr J 169(2):142–157

    Article  Google Scholar 

  • Wigley TML (2008) MAGICC/SCENGEN 5.3: USER MANUAL (version 2) NCAR, Boulder, CO, September 2008, http://ncar.ucar.edu/

Download references

Acknowledgments

I am grateful to the four anonymous reviewers and the EES Editorial Team for very helpful comments and suggestions that have allowed me to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lioubimtseva.

Additional information

Submitted for the EES Special Issue Sustainable Water Resources Management in Central Asia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lioubimtseva, E. A multi-scale assessment of human vulnerability to climate change in the Aral Sea basin. Environ Earth Sci 73, 719–729 (2015). https://doi.org/10.1007/s12665-014-3104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3104-1

Keywords

Navigation