Skip to main content
Log in

Effect of Probe Ultrasonication, Microwave and Sunlight on Biosynthesis, Bioactivity and Structural Morphology of Punica granatum Peel’s Polyphenols-Based Silver Nanoconjugates

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biosynthesis of silver nanoconjugates using agro-waste has drawn the attention of the researchers in recent years due to eco-friendly and low-cost methods. A comparative study on various techniques (sunlight, probe ultrasonication, and microwave irradiation) of silver-bio-nanoconjugate production was carried out using lyophilized pomegranate peel polyphenols. Polyphenols from pomegranate peel extract were identified by LC–MS. The reaction time of each technique for the synthesis of pomegranate peel’s polyphenols-based silver nanoconjugates was optimized by UV–visible spectroscopy, dynamic light scattering, and antioxidant activity. Further, they were characterized by FT-IR spectroscopy, XRD, FESEM–EDX, elemental mapping, TEM, and zeta potential. UV-spectroscopy and DLS results showed that the sunlight, probe ultrasonication, and microwave irradiation technique could reduce silver (Ag+) ions to silver nanoparticles (Ag0) at λ max ~ 420 nm with Z-average diameters 51.63–94.76, 40.51–61.47, and 43.40–66.52 nm, respectively. The antioxidant activity was maximum at 50 s of microwave irradiation treatment followed by 15 min of probe ultrasonication and 20 min of sunlight exposer. However, TEM analysis revealed that the probe ultrasonication treated nanoconjugates were spherical, smaller, and less aggregated. FT-IR spectra confirmed the involvement and conjugation of various functional groups from pomegranate peel polyphenols. Probe ultrasonic-assisted-silver nanoconjugates showed good antibacterial activity against S. aureus and E. coli as compared to microwave-assisted silver nanoconjugate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AA:

Antioxidant activity

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EDX:

Energy dispersive X-ray

FESEM:

Field emission scanning electron microscope

FTIR:

Fourier-transform infrared

HHDP:

Hexahydroxydiphenoyl

LCMS:

Liquid chromatography–mass spectroscopy

PPP:

Pomegranate peel polyphenol

PPP-SNC:

Pomegranate peel polyphenol-based silver nanoconjugate

TE:

Total ellagitannin

TEM:

Transmission electron microscope

TPC:

Total phenolic content

UV–vis:

Ultraviolet–visible

XRD:

X-ray diffractometer

ZOI:

Zone of inhibition

References

  1. Nowack, B., Krug, H.F., Height, M.: 120 years of nanosilver history: implications for policy makers (2011). https://doi.org/10.1021/es103316q

  2. Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials 2(3), 992–1057 (2009). https://doi.org/10.3390/ma2030992

    Article  Google Scholar 

  3. Huang, Y., Mei, L., Chen, X., Wang, Q.: Recent developments in food packaging based on nanomaterials. Nanomaterials 8(10), 830 (2018). https://doi.org/10.3390/nano8100830

    Article  Google Scholar 

  4. Sreeram, K.J., Nidhin, M., Nair, B.U.: Microwave assisted template synthesis of silver nanoparticles. Bull. Mater. Sci. 31(7), 937–942 (2008). https://doi.org/10.1007/s12034-008-0149-3

    Article  Google Scholar 

  5. Goharshadi, E.K., Azizi-Toupkanloo, H.: Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol. 237, 97–101 (2013). https://doi.org/10.1016/j.powtec.2012.12.059

    Article  Google Scholar 

  6. Lu, Z., Meng, M., Jiang, Y., Xie, J.: UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids Surf. A 447, 1–7 (2014). https://doi.org/10.1016/j.colsurfa.2014.01.064

    Article  Google Scholar 

  7. Guzmán, M.G., Dille, J., Godet, S.: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009)

    Google Scholar 

  8. Miao, W., Chan, T.H.: Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis. Acc. Chem. Res. 39(12), 897–908 (2006). https://doi.org/10.1021/ar030252f

    Article  Google Scholar 

  9. Wang, S., Zhang, Y., Ma, H.L., Zhang, Q., Xu, W., Peng, J., Zhai, M.: Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 55, 245–252 (2013). https://doi.org/10.1016/j.carbon.2012.12.033

    Article  Google Scholar 

  10. Aygün, A., Gülbağça, F., Nas, M.S., Alma, M.H., Çalımlı, M.H., Ustaoglu, B., Şen, F.: Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: a novel approach in phytonanotechnology. J. Pharm. Biomed. Anal. 179, 113012 (2020). https://doi.org/10.1016/j.jpba.2019.113012

    Article  Google Scholar 

  11. Gomathi, A.C., Rajarathinam, S.X., Sadiq, A.M., Rajeshkumar, S.: Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J. Drug Deliv. Sci. Technol. 55, 101376 (2020). https://doi.org/10.1016/j.jddst.2019.101376

    Article  Google Scholar 

  12. Madivoli, E.S., Kareru, P.G., Gachanja, A.N., Mugo, S.M., Makhanu, D.S., Wanakai, S.I., Gavamukulya, Y.: Facile synthesis of silver nanoparticles using Lantana trifolia aqueous extracts and their antibacterial activity. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-019-01432-5

    Article  Google Scholar 

  13. Ottoni, C.A., Lima Neto, M.C., Léo, P., Ortolan, B.D., Barbieri, E., De Souza, A.O.: Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. Chemosphere 239, 124698 (2020). https://doi.org/10.1016/j.chemosphere.2019.124698

    Article  Google Scholar 

  14. Hasnain, M.S., Javed, M.N., Alam, M.S., Rishishwar, P., Rishishwar, S., Ali, S., Beg, S.: Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box–Behnken design. Mater. Sci. Eng. C 99, 1105–1114 (2019). https://doi.org/10.1016/j.msec.2019.02.061

    Article  Google Scholar 

  15. Rautela, A., Rani, J., Das, M.D.: Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. 10(1), 1–10 (2019). https://doi.org/10.1186/s40543-018-0163-z

    Article  Google Scholar 

  16. Sowmiya, K., Prakash, J.T.J.: Green-synthesis of silver nanoparticles using Abies webbiana LEAVES and evaluation of its antibacterial activity. J. Pharmacogn. Phytochem. 7(5), 2033–2036 (2018)

    Google Scholar 

  17. Shu, M., He, F., Li, Z., Zhu, X., Ma, Y., Zhou, Z., Yang, Z., Gao, F., Zeng, M.: Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale Res. Lett. 15(1), 14 (2020). https://doi.org/10.1186/s11671-019-3244-z

    Article  Google Scholar 

  18. Foujdar, R., Bera, M.B., Chopra, H.K.: Phenolic nanoconjugates and its application in food. In: Biopolymer-Based Formulations, pp. 751–780. Elsevier (2020). https://doi.org/10.1016/B978-0-12-816897-4.00030-8

  19. Jahan, I., Erci, F., Isildak, I.: Microwave-assisted green synthesis of non-cytotoxic silver nanoparticles using the aqueous extract of Rosa santana (rose) petals and their antimicrobial activity. Anal. Lett. 52(12), 1860–1873 (2019). https://doi.org/10.1080/00032719.2019.1572179

    Article  Google Scholar 

  20. Al-Nuairi, A.G., Mosa, K.A., Mohammad, M.G., El-Keblawy, A., Soliman, S., Alawadhi, H.: Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from Cyperus conglomeratus root extracts on breast cancer cell line MCF-7. Biol. Trace Elem. Res. 194(2), 560–569 (2020). https://doi.org/10.1007/s12011-019-01791-7

    Article  Google Scholar 

  21. Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., Mozafari, M.R.: Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 13, 8013 (2018). https://doi.org/10.2147/IJN.S189295

    Article  Google Scholar 

  22. Senthil, B., Devasena, T., Prakash, B., Rajasekar, A.: Non-cytotoxic effect of green synthesized silver nanoparticles and its antibacterial activity. J. Photochem. Photobiol. B 177, 1–7 (2017). https://doi.org/10.1016/j.jphotobiol.2017.10.010

    Article  Google Scholar 

  23. Nasr, H.A., Nassar, O.M., El-Sayed, M.H., Kobisi, A.A.: Characterization and antimicrobial activity of lemon peel mediated green synthesis of silver nanoparticles. Int. J. Biol. Chem. 12(2), 56–63 (2020). https://doi.org/10.26577/ijbch-2019-i2-7

    Article  Google Scholar 

  24. Soto, K.M., Quezada-Cervantes, C.T., Hernández-Iturriaga, M., Luna-Bárcenas, G., Vazquez-Duhalt, R., Mendoza, S.: Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens. LWT 103, 293–300 (2019). https://doi.org/10.1016/j.lwt.2019.01.023

    Article  Google Scholar 

  25. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., Srinivasan, K.: Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79(3), 594–598 (2011). https://doi.org/10.1016/j.saa.2011.03.040

    Article  Google Scholar 

  26. Tanase, C., Berta, L., Coman, N.A., Roşca, I., Man, A., Toma, F., Mare, A.: Investigation of in vitro antioxidant and antibacterial potential of silver nanoparticles obtained by biosynthesis using beech bark extract. Antioxidants 8(10), 459 (2019). https://doi.org/10.3390/antiox8100459

    Article  Google Scholar 

  27. Burlacu, E., Tanase, C., Coman, N.A., Berta, L.: A review of bark-extract-mediated green synthesis of metallic nanoparticles and their applications. Molecules 24(23), 4354 (2019). https://doi.org/10.3390/molecules24234354

    Article  Google Scholar 

  28. Foujdar, R., Bera, M.B., Chopra, H.K.: Optimization of process variables of probe ultrasonic‐assisted extraction of phenolic compounds from the peel of Punica granatum Var. Bhagwa and it’s chemical and bioactivity characterization. J. Food Process. Preserv. 44(1), 14317 (2020). https://doi.org/10.1111/jfpp.14317

    Article  Google Scholar 

  29. Ben-Ali, S., Akermi, A., Mabrouk, M., Ouederni, A.: Optimization of extraction process and chemical characterization of pomegranate peel extract. Chem. Pap. 72(8), 2087–2100 (2018)

    Article  Google Scholar 

  30. Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S.A.A., Harish, R.: Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett. 180, 264–267 (2016). https://doi.org/10.1016/j.matlet.2016.05.172

    Article  Google Scholar 

  31. Nasiriboroumand, M., Montazer, M., Barani, H.: Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. J. Photochem. Photobiol. B 179, 98–104 (2018). https://doi.org/10.1016/j.jphotobiol.2018.01.006

    Article  Google Scholar 

  32. Shanmugavadivu, M., Kuppusamy, S., Ranjithkumar, R.: Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug Deliv. 2(2), 174–182 (2014)

    Google Scholar 

  33. Deshmukh, A.R., Gupta, A., Kim, B.S.: Ultrasound assisted green synthesis of silver and iron oxide nanoparticles using fenugreek seed extract and their enhanced antibacterial and antioxidant activities. Biomed. Res. Int. (2019). https://doi.org/10.1155/2019/171435

    Article  Google Scholar 

  34. Jayapriya, M., Dhanasekaran, D., Arulmozhi, M., Nandhakumar, E., Senthilkumar, N., Sureshkumar, K.: Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: antibacterial and catalytic activity. Res. Chem. Intermed. 45(6), 3617–3631 (2019). https://doi.org/10.1007/s11164-019-03812-5

    Article  Google Scholar 

  35. Seku, K., Gangapuram, B.R., Pejjai, B., Kadimpati, K.K., Golla, N.: Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities. J. Nanostruct. Chem. 8(2), 179–188 (2018). https://doi.org/10.1007/s40097-018-0264-7

    Article  Google Scholar 

  36. De Matteis, V., Rizzello, L., Ingrosso, C., Liatsi-Douvitsa, E., De Giorgi, M.L., De Matteis, G., Rinaldi, R.: Cultivar-dependent anticancer and antibacterial properties of silver nanoparticles synthesized using leaves of different olea europaea trees. Nanomaterials 9(11), 1544 (2019). https://doi.org/10.3390/nano9111544

    Article  Google Scholar 

  37. El-Batal, A.I., Gharib, F.A.E.L., Ghazi, S.M., Hegazi, A.Z., Hafz, A.G.M.A.E.: Physiological responses of two varieties of common bean (Phaseolus vulgaris L.) to foliar application of silver nanoparticles. Nanomater. Nanotechnol. 6, 13 (2016). https://doi.org/10.5772/62202

    Article  Google Scholar 

  38. Seeram, N., Lee, R., Hardy, M., Heber, D.: Rapid large-scale purification of ellagitannins from pomegranate husk, a by-product of the commercial juice industry. Sep. Purif. Technol. 41(1), 49–55 (2005). https://doi.org/10.1016/j.seppur.2004.04.003

    Article  Google Scholar 

  39. Yisimayili, Z., Abdulla, R., Tian, Q., Wang, Y., Chen, M., Sun, Z., Huang, C.: A comprehensive study of pomegranate flowers polyphenols and metabolites in rat biological samples by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1604, 460472 (2019). https://doi.org/10.1016/j.chroma.2019.460472

    Article  Google Scholar 

  40. Fischer, U.A., Carle, R., Kammerer, D.R.: Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 127(2), 807–821 (2011). https://doi.org/10.1016/j.foodchem.2010.12.156

    Article  Google Scholar 

  41. Mena, P., Calani, L., Dall’Asta, C., Galaverna, G., García-Viguera, C., Bruni, R., Del Rio, D.: Rapid and comprehensive evaluation of (poly) phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 17(12), 14821–14840 (2012). https://doi.org/10.3390/molecules171214821

    Article  Google Scholar 

  42. Preethi, P., Padma, P.R.: Biocompatibility of biosynthesized silver nano bio conjugates derived from a methanolic extract of Piper betle leaves. Indo Am. J. Pharm. Res. 6, 5661–5670 (2016)

    Google Scholar 

  43. Kazemi, M., Karim, R., Mirhosseini, H., Hamid, A.A.: Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: punicalagin and hydroxybenzoic acids. Food Chem. 206, 156–166 (2016). https://doi.org/10.1016/j.foodchem.2016.03.017

    Article  Google Scholar 

  44. Mahajan, P., Sharma, A., Kaur, B., Goyal, N., Gautam, S.: Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum 161, 389–397 (2019)

    Article  Google Scholar 

  45. Pawar, J.S., Patil, R.H.: Green synthesis of silver nanoparticles using Eulophia herbacea (Lindl.) tuber extract and evaluation of its biological and catalytic activity. SN Appl. Sci. 2(1), 52 (2020). https://doi.org/10.1007/s42452-019-1846-9

    Article  Google Scholar 

  46. Baidukova, O., Skorb, E.V.: Ultrasound-assisted synthesis of magnesium hydroxide nanoparticles from magnesium. Ultrason. Sonochem. 31, 423–428 (2016). https://doi.org/10.1016/j.ultsonch.2016.01.034

    Article  Google Scholar 

  47. Khan, M.J., Kumari, S., Shameli, K., Selamat, J., Sazili, A.Q.: Green synthesis and characterization of pullulan mediated silver nanoparticles through ultraviolet irradiation. Materials 12(15), 2382 (2019). https://doi.org/10.3390/ma12152382

    Article  Google Scholar 

  48. Khan, M.J., Shameli, K., Sazili, A.Q., Selamat, J., Kumari, S.: Rapid green synthesis and characterization of silver nanoparticles arbitrated by curcumin in an alkaline medium. Molecules 24(4), 719 (2019). https://doi.org/10.3390/molecules24040719

    Article  Google Scholar 

  49. Sana, S.S., Dogiparthi, L.K.: Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Mater. Lett. 226, 47–51 (2018). https://doi.org/10.1016/j.matlet.2018.05.009

    Article  Google Scholar 

  50. Fatimah, I.: Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res. 7(6), 961–969 (2016). https://doi.org/10.1016/j.jare.2016.10.002

    Article  Google Scholar 

  51. Fatimah, I., Indriani, N.: Silver nanoparticles synthesized using Lantana camara flower extract by reflux, microwave and ultrasound methods. Chem. J. Moldova 13(1), 95–102 (2018). https://doi.org/10.19261/cjm.2017.461

    Article  Google Scholar 

  52. Park, M., Sohn, Y., Shin, W.G., Lee, J., Ko, S.H.: Ultrasonication assisted production of silver nanowires with low aspect ratio and their optical properties. Ultrason. Sonochem. 22, 35–40 (2015). https://doi.org/10.1016/j.ultsonch.2014.05.007

    Article  Google Scholar 

  53. Yin, H., Yamamoto, T., Wada, Y., Yanagida, S.: Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater. Chem. Phys. 83(1), 66–70 (2004). https://doi.org/10.1016/j.matchemphys.2003.09.006

    Article  Google Scholar 

  54. Kazemzadeh, S.M., Hassanjani-Roshan, A., Vaezi, M.R., Shokuhfar, A.: The effect of microwave irradiation time on appearance properties of silver nanoparticles. Trans. Indian Inst. Met. 64(3), 261–264 (2011). https://doi.org/10.1007/s12666-011-0053-1

    Article  Google Scholar 

  55. Kumar, B., Smita, K., Cumbal, L., Debut, A.: Ficus carica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and probe ultrasonication approach. BioNanoScience 6(1), 15–21 (2016). https://doi.org/10.1007/s12668-016-0193-1

    Article  Google Scholar 

  56. Ma, G.Z., Wang, C.M., Li, L., Ding, N., Gao, X.L.: Effect of pomegranate peel polyphenols on human prostate cancer PC-3 cells in vivo. Food Sci. Biotechnol. 24(5), 1887–1892 (2015). https://doi.org/10.1007/s10068-015-0247-0

    Article  Google Scholar 

  57. Mahendran, G., Kumari, B.R.: Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts. Food Sci. Hum. Wellness 5(4), 207–218 (2016). https://doi.org/10.1016/j.fshw.2016.10.001

    Article  Google Scholar 

  58. Dipankar, C., Murugan, S.: The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B 98, 112–119 (2012). https://doi.org/10.1016/j.colsurfb.2012.04.006

    Article  Google Scholar 

  59. Mittal, A.K., Bhaumik, J., Kumar, S., Banerjee, U.C.: Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J. Colloid Interface Sci. 415, 39–47 (2014). https://doi.org/10.1016/j.jcis.2013.10.018

    Article  Google Scholar 

  60. Reddy, N.J., Vali, D.N., Rani, M., Rani, S.S.: Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C 34, 115–122 (2014). https://doi.org/10.1016/j.msec.2013.08.039

    Article  Google Scholar 

  61. Alsamhary, K., Al-Enazi, N., Alshehri, W.A., Ameen, F.: Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb. Pathog. 139, 103928 (2020). https://doi.org/10.1016/j.micpath.2019.103928

    Article  Google Scholar 

  62. Bakhshandeh, R., Shafiekhani, A.: Ultrasonic waves and temperature effects on graphene structure fabricated by electrochemical exfoliation method. Mater. Chem. Phys. 212, 95–102 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.004

    Article  Google Scholar 

  63. Klinkaewnarong, J., Utara, S.: Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles. Ultrason. Sonochem. 46, 18–25 (2018). https://doi.org/10.1016/j.ultsonch.2018.04.002

    Article  Google Scholar 

  64. Nikolaev, A.L., Gopin, A.V., Severin, A.V., Rudin, V.N., Mironov, M.A., Dezhkunov, N.V.: Ultrasonic synthesis of hydroxyapatite in non-cavitation and cavitation modes. Ultrason. Sonochem. 44, 390–397 (2018). https://doi.org/10.1016/j.ultsonch.2018.02.047

    Article  Google Scholar 

  65. Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N.M., Thajuddin, N., Velusamy, P.: Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf. B 96, 69–74 (2012). https://doi.org/10.1016/j.colsurfb.2012.03.023

    Article  Google Scholar 

  66. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D.: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22), 225103 (2007). https://doi.org/10.1088/0957-4484/18/22/225103

    Article  Google Scholar 

  67. Girón-Vázquez, N.G., Gómez-Gutiérrez, C.M., Soto-Robles, C.A., Nava, O., Lugo-Medina, E., Castrejón-Sánchez, V.H., Luque, P.A.: Study of the effect of Persea americana seed in the green synthesis of silver nanoparticles and their antimicrobial properties. Results Phys. 13, 102142 (2019). https://doi.org/10.1016/j.rinp.2019.02.078

    Article  Google Scholar 

  68. López-Esparza, J., Espinosa-Cristóbal, L.F., Donohue-Cornejo, A., Reyes-López, S.Y.: Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Ind. Eng. Chem. Res. 55(49), 12532–12538 (2016). https://doi.org/10.1021/acs.iecr.6b02300

    Article  Google Scholar 

  69. Arokiyaraj, S., Saravanan, M., Prakash, N.U., Arasu, M.V., Vijayakumar, B., Vincent, S.: Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater. Res. Bull. 48(9), 3323–3327 (2013). https://doi.org/10.1016/j.materresbull.2013.05.059

    Article  Google Scholar 

  70. Madubuonu, N., Aisida, S.O., Ahmad, I., Botha, S., Zhao, T.K., Maaza, M., Ezema, F.I.: Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Appl. Phys. A 126(1), 1–8 (2020). https://doi.org/10.1007/s00339-019-3249-6

    Article  Google Scholar 

  71. Zafar, S., Ashraf, A., Ijaz, M.U., Muzammil, S., Siddique, M.H., Afzal, S., Mahboob, S.: Eco-friendly synthesis of antibacterial zinc nanoparticles using Sesamum indicum L. extract. J. King Saud Univ. Sci. 32(1), 1116–1122 (2020). https://doi.org/10.1016/j.jksus.2019.10.017

    Article  Google Scholar 

  72. Chandra, H., Patel, D., Kumari, P., Jangwan, J.S., Yadav, S.: Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C 102, 212–220 (2019). https://doi.org/10.1016/j.msec.2019.04.035

    Article  Google Scholar 

  73. Sriramulu, M., Shanmugam, S., Ponnusamy, V.K.: Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: an in-vitro study. Colloid Interface Sci. Commun. 35, 100254 (2020). https://doi.org/10.1016/j.colcom.2020.100254

    Article  Google Scholar 

  74. Chaudhary, J., Tailor, G., Yadav, B.L., Michael, O.: Synthesis and biological function of Nickel and Copper nanoparticles. Heliyon 5(6), e01878 (2019). https://doi.org/10.1016/j.heliyon.2019.e01878

    Article  Google Scholar 

  75. Salari, S., Bahabadi, S.E., Samzadeh-Kermani, A., Yosefzaei, F.: In-vitro evaluation of antioxidant and antibacterial potential of greensynthesized silver nanoparticles using Prosopis farcta fruit extract. Iran. J. Pharm. Res. IJPR 18(1), 430 (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6487442/

Download references

Acknowledgements

Financial support in the form of Institute fellowship from MHRD, New Delhi, India, technical assistance provided by the laboratory of sophisticated analytical instrumentation facility, Panjab University, Chandigarh and central laboratory of Punjab Agriculture University, Ludhiana for providing the facility of FESEM, LC-MS and TEM image analysis is gratefully acknowledged.

Funding

Funding

Funding was provided by Ministry of Human Resource Development (Grant No. Dean(A)/Ph. D/8047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manav Bandhu Bera.

Ethics declarations

Conflict of interest

The authors have no conflict of interest for this research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foujdar, R., Chopra, H.K., Bera, M.B. et al. Effect of Probe Ultrasonication, Microwave and Sunlight on Biosynthesis, Bioactivity and Structural Morphology of Punica granatum Peel’s Polyphenols-Based Silver Nanoconjugates. Waste Biomass Valor 12, 2283–2302 (2021). https://doi.org/10.1007/s12649-020-01175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01175-2

Keywords

Navigation