Skip to main content
Log in

An Insight into the Valorization of Hemicellulose Fraction of Biomass into Furfural: Catalytic Conversion and Product Separation

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The global impetus to produce alternatives for the petroleum-based fuels and value-added chemicals in order to reduce greenhouse gases is currently emphasizing stringent need on the industries to diversify and valorize byproducts. This further aims at the valorization of agroindustrial by-product into furfural. A thorough investigation of research advances particularly, the pretreatment of biomass, a pertinent reaction mechanism in furfural production, separation of furfural and the various used catalysts were explored in the current review. The biomass, which contains fiber, lignin, pentosans, and pith, can be converted into furfural by the application of suitable chemical, biochemical and microbial methods. Dilute acid, alkali and hydrothermal pretreatment methods for hemicellulose separation from the biomass matrix were discussed in detail. Studies on the development of an effective and stable catalyst to overcome the limitation of the existing commercial processes were also reviewed. The strategies including the steam stripping, nitrogen stripping, supercritical carbon dioxide extraction, mono- and biphasic solvent extractions were investigated in this study, as a way forward towards the removal of furfural from the reaction medium, thereby assisting in the avoidance of the product degradation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afreen, G., Patra, T., Upadhyayula, S.: Thermodynamic insights into valorization of biomass-derived oxygenates and reconciliation with experimental study. J. Chem. Eng. Data 63, 2197–2210 (2018). https://doi.org/10.1021/acs.jced.8b00171

    Article  Google Scholar 

  2. Moghaddam, L., Rencoret, J., Maliger, V.R., Rackemann, D.W., Harrison, M.D., Gutiérrez, A., Del Río, J.C., Doherty, W.O.S.: structural characteristics of bagasse furfural residue and its lignin component: an NMR, Py-GC/MS, and FTIR Study. ACS Sustain. Chem. Eng. 5, 4846–4855 (2017). https://doi.org/10.1021/acssuschemeng.7b00274

    Article  Google Scholar 

  3. Bamufleh, H.S., Alhamed, Y.A., Daous, M.A.: Furfural from midribs of date-palm trees by sulfuric acid hydrolysis. Ind. Crops Prod. 42, 421–428 (2013). https://doi.org/10.1016/j.indcrop.2012.06.008

    Article  Google Scholar 

  4. Li, X., Jia, P., Wang, T.: Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal. 6, 7621–7640 (2016). https://doi.org/10.1021/acscatal.6b01838

    Article  Google Scholar 

  5. Vekariya, R.H., Patel, H.D.: Cellulose sulfuric acid (CSA) and starch sulfuric acid (SSA) as solid and heterogeneous catalysts in green organic synthesis: recent advances. Arkivoc 1, 136–159 (2015). https://doi.org/10.3998/ark.5550190.p008.975

    Article  Google Scholar 

  6. Delbecq, F., Wang, Y., Len, C.: Conversion of xylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwave-assisted dehydration. J. Mol. Catal. A 423, 520–525 (2016). https://doi.org/10.1016/j.molcata.2016.07.003

    Article  Google Scholar 

  7. Corma, A., García, H.: Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 103, 4307–4365 (2003). https://doi.org/10.1021/cr030680z

    Article  Google Scholar 

  8. Zhang, T., Li, W., An, S., Huang, F., Li, X., Liu, J., Pei, G., Liu, Q.: Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid. Bioresour. Technol. 264, 261–267 (2018). https://doi.org/10.1016/j.biortech.2018.05.081

    Article  Google Scholar 

  9. Foston, M., Ragauskas, A.J.: Biomass characterization: recent progress in understanding biomass recalcitrance. Ind. Biotechnol. 8, 191–208 (2012). https://doi.org/10.1089/ind.2012.0015

    Article  Google Scholar 

  10. Uppal, S.K., Kaur, R.: Hemicellulosic furfural production from sugarcane bagasse using different acids. Sugar Tech. 13, 166–169 (2011). https://doi.org/10.1007/s12355-011-0081-5

    Article  Google Scholar 

  11. Jabasingh, S.A., Ki, Z.: Expanding sustenance in Ethiopia based on renewable energy resources: a comprehensive review. Renew. Sustain. Energy Rev. (2016). https://doi.org/10.1016/j.rser.2016.11.082

    Article  Google Scholar 

  12. Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Hayashi, S., Domen, K.: A carbon material as a strong protonic acid. Angew. Chemie Int. Ed. 43, 2955–2958 (2004). https://doi.org/10.1002/anie.200453947

    Article  Google Scholar 

  13. Zhang, Y., Xu, B., Zhou, W.: On a novel mechanistic model for simultaneous enzymatic hydrolysis of cellulose and hemicellulose considering morphology. Biotechnol. Bioeng. 111, 1767–1781 (2014). https://doi.org/10.1002/bit.25244

    Article  Google Scholar 

  14. Hu, L., Zhao, G., Tang, X., Wu, Z., Xu, J., Lin, L., Liu, S.: Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid. Bioresour. Technol. 148, 501–507 (2013). https://doi.org/10.1016/j.biortech.2013.09.016

    Article  Google Scholar 

  15. Bobleter, O.: Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19, 797–841 (1994). https://doi.org/10.1016/0079-6700(94)90033-7

    Article  Google Scholar 

  16. Ramos, L.P.: The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova. 26, 863–871 (2003). https://doi.org/10.1590/S0100-40422003000600015

    Article  Google Scholar 

  17. Carà, P.D., Pagliaro, M., Elmekawy, A., Brown, D.R., Verschuren, P., Shiju, N.R., Rothenberg, G.: Hemicellulose hydrolysis catalysed by solid acids. Catal. Sci. Technol. 3, 2057–2061 (2013). https://doi.org/10.1039/c3cy20838a

    Article  Google Scholar 

  18. Fan, L.T., Gharpuray, M.M., Lee, Y.H.: Cellulose Hydrolysis. Springer, Berlin (1987)

    Book  Google Scholar 

  19. Yang, T., Zhou, Y.H., Zhu, S.Z., Pan, H., Huang, Y.B.: insight into aluminum sulfate-catalyzed xylan conversion into furfural in a Γ-valerolactone/water biphasic solvent under microwave conditions. ChemSusChem 10, 4066–4079 (2017). https://doi.org/10.1002/cssc.201701290

    Article  Google Scholar 

  20. de Moraes Rocha, G.J., Nascimento, V.M., Gonçalves, A.R., Silva, V.F.N., Martín, C.: Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Ind. Crops Prod. 64, 52–58 (2015). https://doi.org/10.1016/j.indcrop.2014.11.003

    Article  Google Scholar 

  21. Chen, H.: Chemical composition and structure of natural lignocellulose. In: Chutani, P., Sharma, K.K. (eds.) Biotechnology of Lignocellulose, pp. 25–71. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-6898-7

    Chapter  Google Scholar 

  22. Luo, A.Y., Li, Z., Li, X., Liu, X., Fan, J., Clark, J.H., Hu, C.: The production of furfural directly from hemicellulose in lignocellulosic biomass. Catal. Today 319, 14–24 (2019). https://doi.org/10.1016/j.cattod.2018.06.042

    Article  Google Scholar 

  23. Girisuta, B., Janssen, L.P.B.M., Heeres, H.J.: Green chemicals: a kinetic study on the conversion of glucose to levulinic acid. Chem. Eng. Res. Des. 84, 339–349 (2006). https://doi.org/10.1205/cherd05038

    Article  Google Scholar 

  24. Lamminpää, K., Ahola, J., Tanskanen, J.: Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin. Bioresour. Technol. 177, 94–101 (2015). https://doi.org/10.1016/j.biortech.2014.11.074

    Article  Google Scholar 

  25. Daorattanachai, P., Viriya-empikul, N., Laosiripojana, N., Faungnawakij, K.: Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water. Bioresour. Technol. 144, 504–512 (2013). https://doi.org/10.1016/j.biortech.2013.06.124

    Article  Google Scholar 

  26. Bian, J., Peng, F., Peng, X., Xu, F., Sun, R., Kennedy, J.F.: Isolation of hemicelluloses from sugarcane bagasse at different temperatures : structure and properties. Carbohydr. Polym. 88, 638–645 (2012). https://doi.org/10.1016/j.carbpol.2012.01.010

    Article  Google Scholar 

  27. De Freitas, C., Carmona, E., Brienzo, M.: Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact. Carbohydr. Diet. Fibre. (2019). https://doi.org/10.1016/j.bcdf.2019.100184

    Article  Google Scholar 

  28. Al Arni, S.: Industrial Crops & Products Extraction and isolation methods for lignin separation from sugarcane bagasse : a review. Ind. Crop. Prod. 115, 330–339 (2018). https://doi.org/10.1016/j.indcrop.2018.02.012

    Article  Google Scholar 

  29. Moubarik, A., Grimi, N., Boussetta, N., Pizzi, A.: Isolation and characterization of lignin from Moroccan sugar cane bagasse : production of lignin–phenol-formaldehyde wood adhesive. Ind. Crop. Prod. 45, 296–302 (2013). https://doi.org/10.1016/j.indcrop.2012.12.040

    Article  Google Scholar 

  30. Farhat, W., Venditti, R.A., Hubbe, M., Taha, M., Becquart, F., Ayoub, A.: A review of water-resistant hemicellulose-based materials: processing and applications. ChemSusChem 10, 305–323 (2017). https://doi.org/10.1002/cssc.201601047

    Article  Google Scholar 

  31. Camargos, C.H.M., Silva, R.A.P., Csordas, Y., Silva, L.L., Rezende, C.A.: Industrial crops & products experimentally designed corn biomass fractionation to obtain lignin nanoparticles and fermentable sugars. Ind. Crop. Prod. 140, 111649 (2019). https://doi.org/10.1016/j.indcrop.2019.111649

    Article  Google Scholar 

  32. Luo, Y., Li, Z., Zuo, Y., Su, Z., Hu, C.: A simple two-step method for the selective conversion of hemicellulose in pubescens to furfural. ACS Sustain. Chem. Eng. 5, 8137–8147 (2017). https://doi.org/10.1021/acssuschemeng.7b01766

    Article  Google Scholar 

  33. Zeitsch, K.J.: The Chemistry and Technology of Furfural and Its Many By-Products. Elsevier, Amsterdam (2001)

    Google Scholar 

  34. Saydut, A., Tonbul, Y., Baysal, A., Duz, M.Z., Hamamci, C.: Froth flotation pretreatment for enhancing desulfurization of coal with sodium hydroxide. J. Sci. Ind. Res. (India) 66, 72–74 (2007). https://doi.org/10.1098/rsta.1987.0029

    Article  Google Scholar 

  35. Zhang, Y., Yu, G., Li, B., Mu, X., Peng, H., Wang, H.: Hemicellulose isolation, characterization, and the production of xylo-oligosaccharides from the wastewater of a viscose fiber mill. Carbohydr. Polym. 141, 238–243 (2016). https://doi.org/10.1016/j.carbpol.2016.01.022

    Article  Google Scholar 

  36. Rackemann, D.W.: Production of levulinic acid and other chemicals from sugarcane fibre, In: Ph.D. Thesis, Queensland University of Technology, Brisbane (2014)

  37. Senila, L., Miclean, M., Senila, M., Roman, M., Roman, C.: New analysis method of furfural obtained from wood applying an autohydrolysis pretreatment. Rom. Biotechnol. Lett. 18, 7947–7955 (2013)

    Google Scholar 

  38. Brienzo, M., Carvalho, A.F., Figueiredo, F.C.A., Oliva Neto, P.D.: Sugarcane bagasse hemicellulose properties, extraction technologies and xylooligosaccharides production. Food Waste 21, 155–188 (2016)

    Google Scholar 

  39. Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R.: Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800 (2010). https://doi.org/10.1016/j.biortech.2010.01.088

    Article  Google Scholar 

  40. Yajima, M., Yokotsuka, K.: Volatile compound formation in white wines fermented using immobilized and free yeast. Am. J. Enol. Vitic. 52, 210–218 (2001). https://doi.org/10.1002/jctb

    Article  Google Scholar 

  41. Weiqi, W., Shubin, W., Liguo, L.: Combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Bioresour. Technol. 128, 725–730 (2013). https://doi.org/10.1016/j.biortech.2012.08.130

    Article  Google Scholar 

  42. Carvalheiro, F., Duarte, L.C., Gírio, F., Moniz, P.: Hydrothermal/liquid hot water pretreatment (Autohydrolysis): a multipurpose process for biomass upgrading. Technol. Lignocellul. Feed. Based Biorefinery, Biomass Fract (2016). https://doi.org/10.1016/B978-0-12-802323-5.00014-1

    Book  Google Scholar 

  43. Rivas, S., Vila, C., Santos, V., Parajó, J.C.: Furfural production from birch hemicelluloses by two-step processing: a potential technology for biorefineries. Holzforschung 70, 901–910 (2016). https://doi.org/10.1515/hf-2015-0255

    Article  Google Scholar 

  44. Liu, L., Chang, H.M., Jameel, H., Park, S.: Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system. Bioresour. Technol. 252, 165–171 (2018). https://doi.org/10.1016/j.biortech.2018.01.006

    Article  Google Scholar 

  45. Axelsson, L., Franzén, M., Ostwald, M., Berndes, G., Lakshmi, G., Ravindranath, N.H.: Perspective: jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod. Biorefining 6, 246–256 (2012). https://doi.org/10.1002/bbb

    Article  Google Scholar 

  46. Steinbach, D., Kruse, A., Sauer, J.: Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production: a review. Biomass Convers. Biorefinery. 7, 247–274 (2017). https://doi.org/10.1007/s13399-017-0243-0

    Article  Google Scholar 

  47. Al Arni, S.: Extraction and isolation methods for lignin separation from sugarcane bagasse: a review. Ind. Crops Prod. 115, 330–339 (2018). https://doi.org/10.1016/j.indcrop.2018.02.012

    Article  Google Scholar 

  48. Wang, L.J., Liu, X.L., Weng, M.L., Wu, F.S., Li, Z.J., Wang, S.F.: Extraction of hemicellulose from sugarcane bagasse under microwave radiation. Adv. Mater. Res. 634–638, 975–980 (2013). https://doi.org/10.7326/P15-9029

    Article  Google Scholar 

  49. Shrotri, A., Kobayashi, H., Fukuoka, A.: Catalytic conversion of structural carbohydrates and lignin to chemicals. Adv. Catal. 60, 1–57 (2017). https://doi.org/10.1016/bs.acat.2017.09.002

    Article  Google Scholar 

  50. Tsubaki, S., Azuma, J.I., Yoshimura, T., Maitani, M.M., Suzuki, E., Fujii, S., Wada, Y.: Microwave-induced biomass fractionation. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, pp. 103–126. Elsevier (2016). https://doi.org/10.1016/B978-0-12-802323-5.00005-0.

  51. Zhang, L., Yu, H., Wang, P., Dong, H., Peng, X.: Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Bioresour. Technol. 130, 110–116 (2013). https://doi.org/10.1016/j.biortech.2012.12.018

    Article  Google Scholar 

  52. Chadni, M., Bals, O., Ziegler-Devin, I., Brosse, N., Grimi, N.: Microwave-assisted extraction of high-molecular-weight hemicelluloses from spruce wood. Comptes. Rendus. Chimie. 22(8), 574–584 (2019).

    Article  Google Scholar 

  53. Yuan, Y., Zou, P., Zhou, J., Geng, Y., Fan, J., Clark, J., Li, Y., Zhang, C.: Microwave-assisted hydrothermal extraction of non-structural carbohydrates and hemicelluloses from tobacco biomass. Carbohyd. Polym. 223, 1–8 (2019). https://doi.org/10.1016/j.carbpol.2019.115043.

    Article  Google Scholar 

  54. Mihiretu, G.T., Brodin, M., Chimphango, A.F., Øyaas, K., Hoff, B.H., Görgens, J.F.:  Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials – A biorefinery approach. Bioresour. Technol. 241, 669–680 (2017). https://doi.org/10.1016/j.biortech.2017.05.159.

    Article  Google Scholar 

  55. Gulbrandsen, T.A., Johnsen, I.A., Opedal, M.T., Toven, K., Øyaas, K., Pranovich, A., Mikkola, J.P., Hoff, B.H.: Extracting hemicelluloses from softwood and bagasse as oligosaccharides using pure water and microwave heating. Cellulose Chem. Technol. 49(2), 117–126 (2014)

    Google Scholar 

  56. Sing, S., Solomon, S.: Sugarcane diversification. Recent developments and future prospects in sugarcane. In: Singh, G.B., Solomon, S. (eds.) Agro-industrial alternatives. Oxford IBH, New Delhi (1995)

    Google Scholar 

  57. Shafeeq, A., Muhammad, A., Sarfaraz, S., Akram, Z., Saeed, H.M.U., Farooq, U.: Effect of acid concentration on the extraction of furfural from corn cobs. Int. J. Chem. Eng. Appl. 6, 381–384 (2015). https://doi.org/10.7763/IJCEA.2015.V6.514

    Article  Google Scholar 

  58. Werpy, T.A., Holladay, J.E., White, J.F., Peterson, G., Aden, A., Bozell, J., Holladay, J.E., White, J.F., Manheim, A., Elliot, D., Lasure, L., Jones, S.: Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas, in university of pennsylvania law review. Tech. Inf, Sci (2004). https://doi.org/10.2172/926125

    Book  Google Scholar 

  59. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., López Granados, M.: Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9, 1144–1189 (2016). https://doi.org/10.1039/c5ee02666k

    Article  Google Scholar 

  60. Ruiz, H.A., Rodríguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A.: Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew. Sustain. Energy Rev. 21, 35–51 (2013). https://doi.org/10.1016/j.rser.2012.11.069

    Article  Google Scholar 

  61. Shittu, A.A.: Catalytic conversion of hemicellulosic sugars into furfural in ionic liquid media, Diss. Univ. Toledo. 75 (2010)

  62. Choudhary, V., Pinar, A.B., Sandler, S.I., Vlachos, D.G., Lobo, R.F.: Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal. 1, 1724–1728 (2011). https://doi.org/10.1021/cs200461t

    Article  Google Scholar 

  63. Binder, J.B., Blank, J.J., Cefali, A.V., Raines, R.T.: Synthesis of furfural from xylose and xylan. ChemSusChem 3, 1268–1272 (2010). https://doi.org/10.1002/cssc.201000181

    Article  Google Scholar 

  64. Yazdizadeh, M., Jafari Nasr, M.R., Safekordi, A.: A new catalyst for the production of furfural from bagasse. RSC Adv. 6, 55778–55785 (2016)

    Article  Google Scholar 

  65. Vazquez, M.J.: Acid-catalyzed conversion of xylose, xylan and straw into furfural. Bioresour. Technol. 102, 7371 (2011)

    Article  Google Scholar 

  66. Yang, W., Li, P., Bo, D., Chang, H., Wang, X. and Zhu, T.: Optimization of furfural production from d-xylose with formic acid as catalyst in a reactive extraction system. Bioresour. Technol. 133, 361–369 (2013)

  67. Branca, C., Di Blasi, C., Galgano, A.: Pyrolysis of corncobs catalyzed by zinc chloride for furfural production. Ind. Eng. Chem. Res. 49, 9743–9752 (2010). https://doi.org/10.1021/ie101067v

    Article  Google Scholar 

  68. Yan, K., Wu, G., Lafleur, T., Jarvis, C.: Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy Rev. 38, 663–676 (2014)

    Article  Google Scholar 

  69. Cai, C.M., Zhang, T., Kumar, R., Wyman, C.E.: Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J. Chem. Technol. Biotechnol. 89, 2–10 (2014). https://doi.org/10.1002/jctb.4168

    Article  Google Scholar 

  70. Lin, Q., Li, H., Wang, X., Jian, L., Ren, J., Liu, C., Sun, R.: SO42−/Sn-MMT solid acid catalyst for xylose and xylan conversion into furfural in the biphasic system. Catalysts. 7, 118 (2017). https://doi.org/10.3390/catal7040118

    Article  Google Scholar 

  71. Danon, B., Marcotullio, G., De Jong, W.: Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem. 16, 39–54 (2014). https://doi.org/10.1039/c3gc41351a

    Article  Google Scholar 

  72. Xiouras, C., Radacsi, N., Sturm, G., Stefanidis, G.D.: Furfural synthesis from d-xylose in the presence of sodium chloride: microwave versus conventional heating. ChemSusChem 9, 2159–2166 (2016). https://doi.org/10.1002/cssc.201600446

    Article  Google Scholar 

  73. Agirrezabal-Telleria, I., Gandarias, I., Arias, P.L.: Production of furfural from pentosan-rich biomass: analysis of process parameters during simultaneous furfural stripping. Bioresour. Technol. 143, 258–264 (2013). https://doi.org/10.1016/j.biortech.2013.05.082

    Article  Google Scholar 

  74. Zhang, T., Li, W., Xu, Z., Liu, Q., Ma, Q., Jameel, H., Chang, H.M., Ma, L.: Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone. Bioresour. Technol. 209, 108–114 (2016). https://doi.org/10.1016/j.biortech.2016.02.108

    Article  Google Scholar 

  75. Shi, X., Wu, Y., Li, P., Yi, H., Yang, M., Wang, G.: Catalytic conversion of xylose to furfural over the solid acid SO 42-/ZrO2-Al2O3/SBA-15 catalysts. Carbohydr. Res. 346, 480–487 (2011). https://doi.org/10.1016/j.carres.2011.01.001

    Article  Google Scholar 

  76. Zou, J., Cao, D., Tao, W., Zhang, S., Cui, L., Zeng, F., Cai, W.: Sorbitol dehydration into isosorbide over a cellulose-derived solid acid catalyst. RSC Adv. 6, 49528–49536 (2016). https://doi.org/10.1039/c6ra05214b

    Article  Google Scholar 

  77. Agirrezabal-Telleria, I., Requies, J., Güemez, M.B., Arias, P.L.: Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts. Appl. Catal. B 145, 34–42 (2014). https://doi.org/10.1016/j.apcatb.2012.11.010

    Article  Google Scholar 

  78. Sahu, R., Dhepe, P.L.: A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem 5, 751–761 (2012). https://doi.org/10.1002/cssc.201100448

    Article  Google Scholar 

  79. Zhang, J., Zhuang, J., Lin, L., Liu, S., Zhang, Z.: Conversion of d-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass Bioenerg. 39, 73–77 (2012). https://doi.org/10.1016/j.biombioe.2010.07.028

    Article  Google Scholar 

  80. Agirrezabal-Telleria, I., Larreategui, A., Requies, J., Güemez, M.B., Arias, P.L.: Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour. Technol. 102, 7478–7485 (2011). https://doi.org/10.1016/j.biortech.2011.05.015

    Article  Google Scholar 

  81. Dias, A.S., Pillinger, M., Valente, A.A.: Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J. Catal. 229, 414–423 (2005). https://doi.org/10.1016/j.jcat.2004.11.016

    Article  Google Scholar 

  82. Lima, S., Fernandes, A., Antunes, M.M., Pillinger, M., Ribeiro, F., Valente, A.A.: Dehydration of xylose into furfural in the presence of crystalline microporous silicoaluminophosphates. Catal. Letters. 135, 41–47 (2010). https://doi.org/10.1007/s10562-010-0259-6

    Article  Google Scholar 

  83. Zhang, L., He, Y., Zhu, Y., Liu, Y., Wang, X.: Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst. Bioresour. Technol. 249, 536–541 (2018). https://doi.org/10.1016/j.biortech.2017.10.061

    Article  Google Scholar 

  84. Bhaumik, P., Dhepe, P.L.: Exceptionally high yields of furfural from assorted raw biomass over solid acids. RSC Adv. 4, 26215–26221 (2014). https://doi.org/10.1039/c4ra04119d

    Article  Google Scholar 

  85. Bhaumik, P., Dhepe, P.L.A.: A novel one-pot method for furfural synthesis from crop wastes using stable SAPO-44, 1–4 (2015). https://doi.org/10.13140/RG.2.1.3800.4561

  86. Suzuki, T., Yokoi, T., Otomo, R., Kondo, J.N., Tatsumi, T.: Dehydration of xylose over sulfated tin oxide catalyst: influences of the preparation conditions on the structural properties and catalytic performance. Appl. Catal. A 408, 117–124 (2011). https://doi.org/10.1016/j.apcata.2011.09.009

    Article  Google Scholar 

  87. Zhang, J., Lin, L., Liu, S.: Efficient production of furan derivatives from a sugar mixture by catalytic process. Energy Fuels 26, 4560–4567 (2012). https://doi.org/10.1021/ef300606v

    Article  Google Scholar 

  88. Jabasingh, S.A., Lalith, D., Prabhu, M.A., Yimam, A., Zewdu, T.: Catalytic conversion of sugarcane bagasse to cellulosic ethanol : TiO2 coupled nanocellulose as an effective hydrolysis enhancer. Carbohydr. Polym. 136, 700–709 (2016). https://doi.org/10.1016/j.carbpol.2015.09.098

    Article  Google Scholar 

  89. O’Neil, R., Ahmad, M.N., Vanoye, L., Aiouache, F.: Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite. Ind. Eng. Chem. Res. 48, 4300–4306 (2009). https://doi.org/10.1021/ie801599k

    Article  Google Scholar 

  90. Trogadas, P., Fuller, T.F., Strasser, P.: Carbon as catalyst and support for electrochemical energy conversion. Carbon N. Y. 75, 5–42 (2014). https://doi.org/10.1016/j.carbon.2014.04.005

    Article  Google Scholar 

  91. Lam, E., Luong, J.H.T.: Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal. 4, 3393–3410 (2014). https://doi.org/10.1037/a0037499

    Article  Google Scholar 

  92. Anthonysamy, S.B.I., Afandi, S.B., Khavarian, M., Bin Mohamed, A.R.: A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide. Beilstein J. Nanotechnol. 9, 740–761 (2018). https://doi.org/10.3762/bjnano.9.68

    Article  Google Scholar 

  93. Zhang, H., Luo, X., Li, X.: Preparation and characterization of a sulfonated carbon- based solid acid microspheric material (SCSAM) and its use for the esterification of oleic acid with methanol. Austin Chem. Eng. 3, 1024–1029 (2016)

    Google Scholar 

  94. Duyckaerts, N., Trotuş, I.T., Nese, V., Swertz, A.C., Auris, S., Wiggers, H., Schüth, F.: Mesoporous sulfonated carbon materials prepared by spray pyrolysis. ChemCatChem. 7, 2891–2896 (2015). https://doi.org/10.1002/cctc.201500483

    Article  Google Scholar 

  95. Falcao, E.H.L.: Carbon allotropes: beyond graphite and diamond. J. Chem. Technol. Biotechnol 82, 524–531 (2007)

    Article  Google Scholar 

  96. Zhao, H., Kwak, J.H., Wang, Y., Franz, J.A., White, J.M., Holladay, J.E.: Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuels (ACS Publications) 20, 807–811 (2006)

    Article  Google Scholar 

  97. Liang, X., Zeng, M., Qi, C.: One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization. Carbon N. Y. 48, 1844–1848 (2010). https://doi.org/10.1016/j.carbon.2010.01.030

    Article  Google Scholar 

  98. Lam, E., Chong, J.H., Majid, E., Liu, Y., Hrapovic, S., Leung, A.C.W., Luong, J.H.T.: Carbocatalytic dehydration of xylose to furfural in water. Carbon N. Y. 50, 1033–1043 (2012). https://doi.org/10.1016/j.carbon.2011.10.007

    Article  Google Scholar 

  99. Termvidchakorn, C., Itthibenchapong, V., Songtawee, S., Chamnankid, B., Namuangruk, S., Faungnawakij, K., Charinpanitkul, T., Khunchit, R., Hansupaluk, N., Sano, N., Hinode, H.: Dehydration of d-xylose to furfural using acid-functionalized MWCNTs catalysts. Nat. Sci. Nanosci. Nanotechnol, Adv (2017). https://doi.org/10.1088/2043-6254/aa7234

    Book  Google Scholar 

  100. Agirrezabal-Telleria, I., Guo, Y., Hemmann, F., Arias, P.L., Kemnitz, E.: Dehydration of xylose and glucose to furan derivatives using bifunctional partially hydroxylated MgF2 catalysts and N2-stripping. Catal. Sci. Technol. 4, 1357–1368 (2014). https://doi.org/10.1039/c4cy00129j

    Article  Google Scholar 

  101. Choudhary, V., Sandler, S.I., Vlachos, D.G.: Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media. ACS Catal. 2, 2022–2028 (2012). https://doi.org/10.1021/cs300265d

    Article  Google Scholar 

  102. Kang, S., Ye, J., Chang, J.: Recent advances in carbon-based sulfonated catalyst: preparation and application. Int. Rev. Chem. Eng. 5, 133–144 (2013). https://doi.org/10.15866/ireche.v5i2.6912

    Article  Google Scholar 

  103. Iglesias, J., Melero, J.A., Morales, G., Paniagua, M., Hernández, B.: Dehydration of xylose to furfural in alcohol media in the presence of solid acid catalysts. ChemCatChem 8, 2089–2099 (2016). https://doi.org/10.1002/cctc.201600292

    Article  Google Scholar 

  104. Lima, S., Pillinger, M., Valente, A.A.: Dehydration of d-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1). Catal. Commun. 9, 2144–2148 (2008). https://doi.org/10.1016/j.catcom.2008.04.016

    Article  Google Scholar 

  105. Jin, F., Enomoto, H.: Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions : chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4, 382–397 (2011). https://doi.org/10.1039/c004268d

    Article  Google Scholar 

  106. Gürbüz, E.I., Gallo, J.M.R., Alonso, D.M., Wettstein, S.G., Lim, W.Y., Dumesic, J.A.: Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angew. Chemie Int. Ed. 52, 1270–1274 (2013). https://doi.org/10.1002/anie.201207334

    Article  Google Scholar 

  107. Aida, M.T., Sato, Y., Watanabe, M., Tajima, K., Nonaka, T., Hattori, H., Arai, K.: Dehydration of d -glucose in high temperature water at pressures up to 80 MPa. J. Supercrit Fluids 40, 381–388 (2007)

    Article  Google Scholar 

  108. Zhang, L., Xi, G., Yu, K., Yu, H., Wang, X.: Furfural production from biomass; derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Ind. Crop. Prod. 98, 68–75 (2017). https://doi.org/10.1016/j.indcrop.2017.01.014

    Article  Google Scholar 

  109. Xu, Z., Li, W., Du, Z., Wu, H., Jameel, H., MinChang, H., Ma, L.: Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone. Bioresour. Technol. 198, 764–771 (2015). https://doi.org/10.1016/j.biortech.2015.09.104

    Article  Google Scholar 

  110. Rackemann, D.W., Doherty, W.O.: A review on the production of levulinic acid and furanics from sugars. Int. Sugar J. 115, 28–34 (2013)

    Google Scholar 

  111. Agirrezabal-Telleria, I., Requies, J., Güemez, M.B., Arias, P.L.: Furfural production from xylose + glucose feedings and simultaneous N2-stripping. Green Chem. 14, 3132–3140 (2012). https://doi.org/10.1039/c2gc36092f

    Article  Google Scholar 

  112. Gorrindo, T., Goldfarb, E., Birnbaum, R.J., Chevalier, L., Meller, B., Alpert, J., Herman, J., Weiss, A.: Simulation-based ongoing professional practice evaluation in psychiatry: a novel tool for performance assessment. Jt. Comm. J. Qual. Patient Saf. 39, 319–323 (2013)

    Google Scholar 

  113. Kim, S.B., You, S.J., Kim, Y.T., Lee, S.M., Lee, H., Park, K., Park, E.D.: Dehydration of d-xylose into furfural over H-zeolites. Korean J. Chem. Eng. 28, 710–716 (2011). https://doi.org/10.1007/s11814-010-0417-y

    Article  Google Scholar 

  114. Antunes, M.M., Lima, S., Fernandes, A., Pillinger, M., Ribeiro, M.F., Valente, A.A.: Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts. Appl. Catal. A  417–418, 243–252 (2012). https://doi.org/10.1016/j.apcata.2011.12.046

    Article  Google Scholar 

  115. Deng, A., Lin, Q., Yan, Y., Li, H., Ren, J., Liu, C., Sun, R.: Bioresource Technology A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system 216, 754–760 (2016). https://doi.org/10.1016/j.biortech.2016.06.002

    Article  Google Scholar 

  116. Hua, D.R., Wu, Y.L., Liu, Y.F., Chen, Y., De Yang, M., Lu, X.N., Li, J.: Preparation of furfural and reaction kinetics of xylose dehydration to furfural in high-temperature water. Pet. Sci. 13, 167–172 (2016)

    Article  Google Scholar 

  117. Shi, X., Wu, Y., Yi, H., Rui, G., Li, P., Yang, M., Wang, G.: Selective preparation of furfural from xylose over sulfonic acid functionalized mesoporous Sba-15 materials. Energies. 4, 669–684 (2011). https://doi.org/10.3390/en4040669

    Article  Google Scholar 

  118. Dashtban, M., Technologies, A., Dashtban, M.: Production of furfural : overview and production of furfural : overview and challenges. J. Sci. Technol. For. Prod. Process. 2, 44–53 (2012)

    Google Scholar 

  119. Bhaumik, P., Dhepe, P.L.: Solid acid catalyzed synthesis of furans from carbohydrates. Catal. Rev. Sci. Eng. 58, 36–112 (2016). https://doi.org/10.1080/01614940.2015.1099894

    Article  Google Scholar 

  120. Smallwood, I.M.: Solvent Recovery Handbook, 2nd edn. Blackwell Science, Oxford (2002)

    Google Scholar 

  121. Gairola, K., Smirnova, I.: Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2: kinetics and application to biomass hydrolysates. Bioresour. Technol. 123, 592–598 (2012). https://doi.org/10.1016/j.biortech.2012.07.031

    Article  Google Scholar 

  122. Sako, T., Sugeta, T., Nakazawa, N., Okubo, T., Sato, M., Hiaki, T., Taguchi, T.: Kinetic study of furfural formation accompanying supercritical carbon dioxide extraction. J. Chem. Eng. Japan. 25, 372–377 (1992). https://doi.org/10.1252/jcej.25.372

    Article  Google Scholar 

  123. Sangarunlert, W., Piumsomboon, P., Ngamprasertsith, S.: Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Korean J. Chem. Eng. 24, 936–941 (2007). https://doi.org/10.1007/s11814-007-0101-z

    Article  Google Scholar 

  124. Khosravi-Darani, K., Vasheghani-Farahani, E.: Application of supercritical fluid extraction in biotechnology. Crit. Rev. Biotechnol. 25, 231–242 (2005). https://doi.org/10.1080/07388550500354841

    Article  Google Scholar 

  125. Han, X., Poliakof, M.: Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward. Chem. Soc. Rev. 41, 1428–1436 (2012). https://doi.org/10.1039/c2cs15314a

    Article  Google Scholar 

  126. Montastruc, L., Ajao, O., Marinova, M., Barreto, C., Carmo, D.O., Domenech, S.: Hemicellulose biorefinery for furfural production : energy requirement analysis and minimization 1, 48–53 (2011)

    Google Scholar 

  127. Xin, K., Song, Y., Dai, F., Yu, Y., Li, Q.: Liquid–liquid equilibria for the extraction of furfural from aqueous solution using different solvents. Fluid Phase Equilib. (2016). https://doi.org/10.1016/j.fluid.2016.06.040

    Article  Google Scholar 

  128. De, S., Dutta, S., Saha, B.: Catalysis Science & Technology biomass valorization : current thrust and emerging. Catal. Sci. Technol. 6, 7364–7385 (2016). https://doi.org/10.1039/c6cy01370h

    Article  Google Scholar 

  129. Li, X., Yang, J., Xu, R., Lu, L., Kong, F., Liang, M., Jiang, L.: Industrial Crops & Products Kinetic study of furfural production from Eucalyptus sawdust using H-SAPO- 34 as solid Brønsted acid and Lewis acid catalysts in biomass-derived solvents. Ind. Crop. Prod. 135, 196–205 (2019). https://doi.org/10.1016/j.indcrop.2019.04.047

    Article  Google Scholar 

  130. Chen, Z., Bai, X., Lusi, A., Jacoby, W.A., Wan, C.: One-pot selective conversion of lignocellulosic biomass into furfural and co-products using aqueous choline chloride/methyl isobutyl ketone biphasic solvent system. Bioresour. Technol. 289, 121708 (2019)

    Article  Google Scholar 

  131. Hoydonckx, H.E., Van Rhijn, W.M., Van Rhijn, W., De Vos, D.E., Jacobs, P.A.: Furfural and derivatives. Ullmann's Encycl. Ind. Chem. 16, 285–313 (2000). https://doi.org/10.1002/14356007.a12_119.pub2

  132. Malinowski, A., Wardzińska, D.: The catalytic conversion of furfural towards fuel biocomponents science technique. Angew. Chemie Int. Ed. 66, 982–990 (2012)

    Google Scholar 

  133. Girisuta, B.: Levulinic acid from lignocellulosic biomass. Doctoral dissertation, University of Groningen (2007)

  134. Mariscal, R., Ojeda, M.: Environmental science molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9, 1144–1189 (2016). https://doi.org/10.1039/C5EE02666K

    Article  Google Scholar 

  135. Daengprasert, W., Boonnoun, P., Laosiripojana, N., Goto, M., Shotipruk, A.: Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural. Ind. Eng. Chem. Res. 50, 7903–7910 (2011). https://doi.org/10.1021/ie102487w

    Article  Google Scholar 

  136. Li, W., Zhu, Y., Lu, Y., Liu, Q., Guan, S., Min Chang, H., Jameel, H., Ma, L.: Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst. Bioresour. Technol. 245, 258–265 (2017). https://doi.org/10.1016/j.biortech.2017.08.077

    Article  Google Scholar 

  137. Qing, Q., Guo, Q., Zhou, L., Wan, Y., Xu, Y., Ji, H., Gao, X., Zhang, Y.: Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride. Bioresour. Technol. 226, 247–254 (2017). https://doi.org/10.1016/j.biortech.2016.11.118

    Article  Google Scholar 

  138. Li, H., Deng, A., Ren, J., Liu, C., Lu, Q., Zhong, L., Peng, F., Sun, R.: Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresour. Technol. 158, 313–320 (2014). https://doi.org/10.1016/j.biortech.2014.02.059

    Article  Google Scholar 

  139. Li, H., Ren, J., Zhong, L., Sun, R., Liang, L.: Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst. Bioresour. Technol. 176, 242–248 (2015). https://doi.org/10.1016/j.biortech.2014.11.044

    Article  Google Scholar 

  140. Bhaumik, P., Dhepe, P.L.: Efficient, stable, and reusable silicoaluminophosphate for the one-pot production of furfural from hemicellulose. ACS Catal. 3, 2299–2303 (2013). https://doi.org/10.1021/cs400495j

    Article  Google Scholar 

  141. Dias, A.S., Lima, S., Brandão, P., Pillinger, M., Rocha, J., Valente, A.A.: Liquid-phase dehydration of D-xylose over microporous and mesoporous niobium silicates. Catal. Letters. 108, 179–186 (2006). https://doi.org/10.1007/s10562-006-0046-6

    Article  Google Scholar 

  142. Lessard, J., Morin, J.F., Wehrung, J.F., Magnin, D., Chornet, E.: High yield conversion of residual pentoses into furfural via zeolite catalysis and catalytic hydrogenation of furfural to 2-methylfuran. Top. Catal. 53, 1231–1234 (2010). https://doi.org/10.1007/s11244-010-9568-7

    Article  Google Scholar 

  143. Moreau, C., Durand, R., Peyron, D., Duhamet, J., Rivalier, P.: Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind. Crops Prod. 7, 95–99 (1998). https://doi.org/10.1016/S0926-6690(97)00037-X

    Article  Google Scholar 

  144. Antunes, M.M., Lima, S., Fernandes, A., Pillinger, M., Ribeiro, M.F., Valente, A.A.: Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts. Appl. Catal. A 417–418, 243–252 (2012). https://doi.org/10.1016/j.apcata.2011.12.046

    Article  Google Scholar 

  145. Takagaki, A., Ohara, M., Nishimura, S., Ebitani, K.: One-pot Formation of Furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts. Chem. Lett. 39, 838–840 (2010). https://doi.org/10.1246/cl.2010.838

    Article  Google Scholar 

  146. Mazzotta, M.G., Gupta, D., Saha, B., Patra, A.K., Bhaumik, A., Abu-Omar, M.M.: Efficient solid acid catalyst containing lewis and brønsted acid sites for the production of furfurals. ChemSusChem 7, 2342–2350 (2014). https://doi.org/10.1002/cssc.201402007

    Article  Google Scholar 

  147. Laohapornchaiphan, J., Smith, C.B., Smith, S.M.: One-step preparation of carbon-based solid acid catalyst from water hyacinth leaves for esterification of oleic acid and dehydration of xylose. Chem. Asian J. 12, 3178–3186 (2017). https://doi.org/10.1002/asia.201701369

    Article  Google Scholar 

  148. Lima, S., Antunes, M.M., Fernandes, A., Pillinger, M., Ribeiro, M.F., Valente, A.A.: Acid-catalysed conversion of saccharides into furanic aldehydes in the presence of three-dimensional mesoporous Al-TUD-1. Molecules 15, 3863–3877 (2010). https://doi.org/10.3390/molecules15063863

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the School of Chemical and Bioengineering, Addis Ababa Institute of Technology, Addis Ababa University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negesso Wakushie Dulie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dulie, N.W., Woldeyes, B., Demsash, H.D. et al. An Insight into the Valorization of Hemicellulose Fraction of Biomass into Furfural: Catalytic Conversion and Product Separation. Waste Biomass Valor 12, 531–552 (2021). https://doi.org/10.1007/s12649-020-00946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-00946-1

Keywords

Navigation