Skip to main content

Advertisement

Log in

Enhanced Bioethanol Production from Waste Paper Through Separate Hydrolysis and Fermentation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The effect of various pretreatments for  efficient hydrolysis of waste office paper and newspaper into fermentable sugars and subsequent production of bioethanol through fermentation was investigated. Pretreatment with H2O2 (0.5% v/v) at 121 °C for 30 min was considered as the most effective method for this kind of soft biomass like waste paper due to the considerable increase in available cellulose and sugar yield in addition to efficient delignification. Under optimized conditions, enzymatic hydrolysis of pretreated office paper and newspaper resulted the sugar yield of 24.5 and 13.26 g/L with hydrolysis efficiency of 91.8 and 79.6%, respectively. Further, ethanol production using the hydrolysate by Saccharomyces cerevisiae was about 11.15 and 6.65 g/L with the productivity of 0.32 and 0.28 (g ethanol/L/h), respectively. The improved yields achieved through the pretreatment and subsequent ethanol production suggested that the waste paper could be a potential feedstock for the production of bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zabed, H., Sahu, J.N., Boyce, A.N., Faruq, G.: Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew. Sust. Energy Rev. 66, 751–774 (2016)

    Google Scholar 

  2. Lee, W.H., Jin, Y.S.: Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J. Biotechnol. 245, 1–8 (2017)

    Google Scholar 

  3. Asgher, M., Bashir, F., Iqbal, H.M.N.: A comprehensive ligninolytic pretreatment approach from lignocellulose green biotechnology to produce bioethanol. Chem. Eng. Res. Des. 92, 1571–1578 (2013)

    Google Scholar 

  4. Li, S.Z., Chan-Halbrendt, C.: Ethanol production in (the) People’s Republic of China: potentials and technologies. Appl. Energy 86, 162–169 (2009)

    Google Scholar 

  5. Behera, S., Kar, S., Mohanty, R.C., Ray, R.C.: Comparative study of bioethanol production from mahula (Madhuca latifoliaL.) flowers by Saccharomyces cerevisiae cells immobilized in agar and Ca-alginate matrices. Appl. Energy 87, 96–100 (2010)

    Google Scholar 

  6. Zhang, Y.H.P., Berson, E., Sarkanen, S., Dale, B.E.: Sessions 3 and 8: pretreatment and biomass recalcitrance: fundamentals and progress. Appl. Biochem. Biotechnol. 153, 80–83 (2009)

    Google Scholar 

  7. Goldemberg, J.: Ethanol for a sustainable energy future. Science 315, 808–810 (2007)

    Google Scholar 

  8. Service, R.F.: Biofuel researchers prepare to reap a new harvest. Science 315, 1488–1491 (2007)

    Google Scholar 

  9. Bilal, M., Asgher, M., Iqbal, H.M.N., Ramzan, M.: Enhanced bio-ethanol production from old newspapers waste through alkali and enzymatic delignification. Waste Biomass Valor. 8, 2271–2281 (2017)

    Google Scholar 

  10. Karim, M.N., Ryu, S.: A whole cell biocatalyst for cellulosic ethanol production from dilute acid pretreated corn stover hydrolyzates. Appl. Microbiol. Biotechnol. 91, 529–542 (2011)

    Google Scholar 

  11. Yucel, Y., Goycıncık, S.: Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste Biomass Valoriz. 6, 1077–1084 (2015)

    Google Scholar 

  12. Isikgor, F.H., Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6(25), 4497–4559 (2015)

    Google Scholar 

  13. Dubey, A.K., Gupta, P.K., Garg, N., Naithani, S.: Bioethanol production from waste paper acid pretreated hydrolyzate with xylose fermenting Pichia stipites. Carbohydr. Polym. 88, 825–829 (2012)

    Google Scholar 

  14. Jung, J.Y., Choi, M.S., Yang, J.K.: Optimization of concentrated acid hydrolysis of waste paper using response surface methodology. J. Korean Wood Sci. Technol. 41, 87–99 (2013)

    Google Scholar 

  15. Wang, L., Templer, R., Murphy, R.J.: High-solids loading enzymatic hydrolysis of waste papers for biofuel production. Appl. Energy 99, 23–31 (2012)

    Google Scholar 

  16. Wang, L., Sharifzadeh, M., Templer, R., Murphy, R.J.: Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl. Energy 111, 1172–1182 (2013)

    Google Scholar 

  17. Leu, S.Y., Zhu, J.Y.: Substrate related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenerg. Res. 6, 405–415 (2013)

    Google Scholar 

  18. Luo, X., Zhu, J.Y.: Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb.Technol. 48, 92–99 (2011)

    Google Scholar 

  19. Chandra, R., Ewanick, S., Hsieh, C., Saddler, J.N.: The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis. Part 1: a modified Simons’ staining technique. Biotechnol. Prog. 24, 1178–1185 (2008)

    Google Scholar 

  20. Kim, J.S., Lee, Y.Y., Park, S.C.: Pretreatment of wastepaper and pulp mill sludge by aqueous ammonia and hydrogen peroxide. Appl. Biochem. Biotechnol. 84–86, 129–139 (2000)

    Google Scholar 

  21. Brummer, V., Jurena, T., Hlavacek, V., Omelkova, J., Bebar, L., Gabriel, P., Stehlik, P.: Enzymatic hydrolysis of pretreated waste paper: source of raw material or production of liquid biofuels. Bioresour. Technol. 152, 543–547 (2014)

    Google Scholar 

  22. Rocha, J.M.T.S., Alencar, B.R.A., Mota, H.G., Gouveia, E.R.: Enzymatic hydrolysis of waste office paper for ethanol production by Spathaspora passalidarum. Cellulose Chem. Technol. 50, 243–246 (2016)

    Google Scholar 

  23. Ranjithkumar, M., Ravikumar, R., Sankar, M.K., Kumar, M.N., Thanabal, V.: An effective conversion of cotton waste biomass to ethanol: a critical review on pretreatment processes. Waste Biomass Valoriz. 8, 57–68 (2017)

    Google Scholar 

  24. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Google Scholar 

  25. Parry, N.J., Beever, D.E., Owen, E., Vandenberghe, I., Van Beeumen, J., Bhat, M.K.: Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem. J. 353, 117–127 (2001)

    Google Scholar 

  26. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29, 764–786 (1959)

    Google Scholar 

  27. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J.: Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. Technical Report-NREL/TP-510-42621, National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  28. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeto, D.: Determination of Ash in Biomass. Technical Report-NREL/TP-510-42622, National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  29. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. Technical Report -NREL/TP-510-42618, National Renewable Energy Laboratory, Golden (2012)

    Google Scholar 

  30. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999)

    Google Scholar 

  31. Chu, K.H., Feng, X.: Enzymatic conversion of newspaper and office paper to fermentable sugars. Process Safety Environ. Prot. 91, 123–130 (2013)

    Google Scholar 

  32. Byadgi, S.A., Kalburgi, P.B.: Production of bioethanol from waste newspaper. Procedia Environ. Sci. 35, 555–562 (2016)

    Google Scholar 

  33. Wu, F.C., Huang, S.S., Shih, I.L.: Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate. Bioresour. Technol. 167, 159–168 (2014)

    Google Scholar 

  34. Toquero, C., Bolado, S.: Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour. Technol. 157, 68–76 (2014)

    Google Scholar 

  35. Annamalai, N., Sivakumar, N.: Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation. J. Biotechnol. 237, 13–17 (2016)

    Google Scholar 

  36. Gellerstedt, G., Perrersson, I.: Chemical aspects of hydrogen peroxide bleaching. Part II. The bleaching of Kraft pulps. J. Wood Chem. Technol. 2(3), 231–250 (1982)

    Google Scholar 

  37. Zhang, J., Wang, Y., Zhang, L., Zhang, R., Liu, G., Cheng, G.: Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour. Technol. 151, 402–405 (2014)

    Google Scholar 

  38. Singh, S., Cheng, G., Sathitsuksanoh, N., Wu, D., Varanasi, P., George, A., Balan, V., Gao, X., Kumar, R., Dale, B.E., Wyman, C.E., Simmons, B.A.: Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front. Energy Res. 62, 1–12 (2015)

    Google Scholar 

  39. Christov, L., Biely, P., Kalogeris, E., Christakopoulos, P., Prior, B.A., Bhat, M.K.: Effects of purified endo-b-1, 4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J. Biotechnol. 83, 23–244 (2000)

    Google Scholar 

  40. Jeoh, T., Ishizawa, C., Davis, M.F., Himmel, M.E., Adney, W.S., Johnson, D.K.: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98, 112–122 (2007)

    Google Scholar 

  41. Taherzadeh, M., Karimi, K.: Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J. Biosci. Bioeng. 87, 169–178 (1999)

    Google Scholar 

  42. Franden, M.A., Pienkos, P.T., Zhang, M.: Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259–267 (2009)

    Google Scholar 

  43. Lenihan, P., Orozco, A., Onill, E., Ahmad, M.N.M., Rooney, D.W., Walker, G.M.: Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 56, 395–410 (2010)

    Google Scholar 

  44. Kristensen, J.B., Felby, C., Jorgensen, H.: Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuel 2, 1–11 (2009)

    Google Scholar 

  45. Modenbach, A.A., Nokes, S.E.: The use of high-solids loadings in biomass pretreatment-a review. Biotechnol. Bioeng. 109, 1–13 (2012)

    Google Scholar 

  46. Guerfali, M., Saidi, A., Gargouri, A., Belghith, H.: Enhanced enzymatic hydrolysis of waste paper for ethanol production using separate saccharification and fermentation. Appl. Biochem. Biotechnol. 175, 25–42 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to The Research Council (TRC), Oman for financial support (ORG/EBR/14/003) and also thankful to Central Analytical and Applied Research Unit (CAARU) for XRD and GC analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neelamegam Annamalai or Nallusamy Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annamalai, N., Al Battashi, H., Anu, S.N. et al. Enhanced Bioethanol Production from Waste Paper Through Separate Hydrolysis and Fermentation. Waste Biomass Valor 11, 121–131 (2020). https://doi.org/10.1007/s12649-018-0400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0400-0

Keywords

Navigation