Skip to main content
Log in

Bucladesine Attenuates Spatial Learning and Hippocampal Mitochondrial Impairments Induced by 3, 4-Methylenedioxymethamphetamine (MDMA)

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neurotoxic effects of systemic administration of 3, 4- methylenedioxymethamphetamine (MDMA) has been attributed to MDMA and its metabolites. However, the role of the parent compound in MDMA-induced mitochondrial and memory impairment has not yet been investigated. Moreover, it is not yet studied that analogs of 3′, 5′-cyclic adenosine monophosphate (cAMP) could decrease these neurotoxic effects of MDMA. We wished to investigate the effects of the central administration of MDMA on spatial memory and mitochondrial function as well as the effects of bucladesine, a membrane-permeable analog of cAMP, on these effects of MDMA. We assessed the effects of pre-training bilateral intrahippocampal infusion of MDMA (0.01, 0.1, 0.5, and 1 μg/side), bucladesine (10 and 100 μM) or combination of them on spatial memory, and different parameters of hippocampal mitochondrial function including the level of reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outer membrane damage, the amount of cytochrome c release as well as hippocampal ADP/ATP ratio. The results showed that MDMA caused spatial memory impairments as well as mitochondrial dysfunction as evidenced by the marked increase in hippocampal ADP/ATP ratio, ROS level, the collapse of MMP, mitochondrial swelling, and mitochondrial outer membrane damage leading to cytochrome c release from the mitochondria. The current study also found that bucladesine markedly reduced the destructive effects of MDMA. These results provide evidence of the role of the parent compound (MDMA) in MDMA-induced memory impairments through mitochondrial dysfunction. This study highlights the role of cAMP/PKA signaling in MDMA-induced memory and mitochondrial defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Able JA, Gudelsky GA, Vorhees CV, Williams MT (2006) 3, 4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biol Psychiatry 59:1219–1226

    CAS  PubMed  Google Scholar 

  • Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Affaitati A, Cardone L, De Cristofaro T, Carlucci A, Ginsberg MD et al (2003) Essential role of A-kinase anchor protein 121 for cAMP signaling to mitochondria. J Biol Chem 278:4286–4294

    CAS  PubMed  Google Scholar 

  • Alves E, Binienda Z, Carvalho F, Alves C, Fernandes E et al (2009) Acetyl-L-carnitine provides effective in vivo neuroprotection over 3, 4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158:514–523

    CAS  PubMed  Google Scholar 

  • Arias-Cavieres A, Rozas C, Reyes-Parada M, Barrera N, Pancetti F, Loyola S, Lorca RA, Zeise ML, Morales B (2010) MDMA (“ecstasy”) impairs learning in the Morris water maze and reduces hippocampal LTP in young rats. Neurosci Lett 469:375–379

    CAS  PubMed  Google Scholar 

  • Asl SS, Mousavizedeh K, Pourheydar B, Soleimani M, Rahbar E, Mehdizadeh M (2013) Protective effects of N-acetylcysteine on 3, 4-methylenedioxymethamphetamine-induced neurotoxicity in male Sprague–Dawley rats. Metab Brain Dis 28:677–686

    Google Scholar 

  • Azami K, Etminani M, Tabrizian K, Salar F, Belaran M et al (2010) The quantitative evaluation of cholinergic markers in spatial memory improvement induced by nicotine–bucladesine combination in rats. Eur J Pharmacol 636:102–107

    CAS  PubMed  Google Scholar 

  • Bai F, Lau SS, Monks TJ (1999) Glutathione and N-acetylcysteine conjugates of α-methyldopamine produce serotonergic neurotoxicity: possible role in methylenedioxyamphetamine-mediated neurotoxicity. Chem Res Toxicol 12:1150–1157

    CAS  PubMed  Google Scholar 

  • Barbosa DJ, Serrat R, Mirra S, Quevedo M, de Barreda EG et al (2014a) The mixture of “ecstasy” and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations. Toxicol Sci 139:407–420. https://doi.org/10.1093/toxsci/kfu042

    Article  CAS  PubMed  Google Scholar 

  • Barbosa DJ, Serrat R, Mirra S, Quevedo M, Gomez de Barreda E et al (2014b) MDMA impairs mitochondrial neuronal trafficking in a Tau- and Mitofusin2/Drp1-dependent manner. Arch Toxicol 88:1561–1572. https://doi.org/10.1007/s00204-014-1209-7

    Article  CAS  PubMed  Google Scholar 

  • Barbosa DJ, Capela JP, Feio-Azevedo R, Teixeira-Gomes A, de Lourdes BM, Carvalho F (2015) Mitochondria: key players in the neurotoxic effects of amphetamines. Arch Toxicol 89:1695–1725

    CAS  PubMed  Google Scholar 

  • Becker B, Wagner D, Koester P, Bender K, Kabbasch C, Gouzoulis-Mayfrank E, Daumann J (2013) Memory-related hippocampal functioning in ecstasy and amphetamine users. Psychopharmacology 225:923–934

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Broening HW, Morford LL, Inman-Wood SL, Fukumura M, Vorhees CV (2001) 3, 4-methylenedioxymethamphetamine (ecstasy)-induced learning and memory impairments depend on the age of exposure during early development. J Neurosci 21:3228–3235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford CA, Williams MT, Kohutek JL, Choi FY, Yoshida ST, McDougall SA, Vorhees CV (2006) Neonatal 3, 4-methylenedioxymethamphetamine (MDMA) exposure alters neuronal protein kinase a activity, serotonin and dopamine content, and [35S] GTPγS binding in adult rats. Brain Res 1077:178–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90

    PubMed  Google Scholar 

  • Da Silva DD, Carmo H, Lynch A, Silva E (2013) An insight into the hepatocellular death induced by amphetamines, individually and in combination: the involvement of necrosis and apoptosis. Arch Toxicol 87:2165–2185

    PubMed  Google Scholar 

  • Dagda RK, Gusdon AM, Pien I, Strack S, Green S et al (2011) Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease. Cell Death Differ 18:1914

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Rasmo D, Panelli D, Sardanelli AM, Papa S (2008) cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell Signal 20:989–997

    PubMed  Google Scholar 

  • Eftekharzadeh B, Ramin M, Khodagholi F, Moradi S, Tabrizian K et al (2012) Inhibition of PKA attenuates memory deficits induced by β-amyloid (1–42), and decreases oxidative stress and NF-κB transcription factors. Behav Brain Res 226:301–308

    CAS  PubMed  Google Scholar 

  • Eskandari MR, Fard JK, Hosseini M-J, Pourahmad J (2012) Glutathione mediated reductive activation and mitochondrial dysfunction play key roles in lithium induced oxidative stress and cytotoxicity in liver. Biometals 25:863–873

    CAS  PubMed  Google Scholar 

  • Fato R, Bergamini C, Leoni S, Strocchi P, Lenaz G (2008) Generation of reactive oxygen species by mitochondrial complex I: implications in neurodegeneration. Neurochem Res 33:2487–2501

    CAS  PubMed  Google Scholar 

  • Ghazi-Khansari M, Mohammadi-Bardbori A, Hosseini MJ (2006) Using Janus green B to study paraquat toxicity in rat liver mitochondria: role of ACE inhibitors (thiol and nonthiol ACEi). Ann N Y Acad Sci 1090:98–107

    CAS  PubMed  Google Scholar 

  • Grivennikova VG, Vinogradov AD (2006) Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta 1757:553–561

    CAS  PubMed  Google Scholar 

  • Heffernan TM, Jarvis H, Rodgers J, Scholey A, Ling J (2001) Prospective memory, everyday cognitive failure and central executive function in recreational users of ecstasy. Hum Psychopharmacol Clin Exp 16:607–612

    Google Scholar 

  • Henninger N, Feldmann R Jr, Fütterer C, Schrempp C, Maurer M et al (2007) Spatial learning induces predominant downregulation of cytosolic proteins in the rat hippocampus. Genes Brain Behav 6:128–140

    CAS  PubMed  Google Scholar 

  • Horbinski C, Chu CT (2005) Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 38:2–11

    CAS  PubMed  Google Scholar 

  • Hosseini A, Sharifi AM, Abdollahi M, Najafi R, Baeeri M et al (2015) Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus. Biol Trace Elem Res 164:80–89

    CAS  PubMed  Google Scholar 

  • Hüttemann M, Lee I, Samavati L, Yu H, Doan JW (2007) Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta 1773:1701–1720

    PubMed  Google Scholar 

  • Jiménez A, Jorda EG, Verdaguer E, Pubill D, Sureda FX et al (2004) Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells. Toxicol Appl Pharmacol 196:223–234

    PubMed  Google Scholar 

  • Jones DC, Duvauchelle C, Ikegami A, Olsen CM, Lau SS, De La Torre R, Monks TJ (2005) Serotonergic neurotoxic metabolites of ecstasy identified in rat brain. J Pharmacol Exp Ther 313:422–431

    CAS  PubMed  Google Scholar 

  • Klitzman RL, Greenberg JD, Pollack LM, Dolezal C (2002) MDMA ('ecstasy') use, and its association with high risk behaviors, mental health, and other factors among gay/bisexual men in New York City. Drug Alcohol Depend 66:115–125. https://doi.org/10.1016/s0376-8716(01)00189-2

    Article  PubMed  Google Scholar 

  • Kuypers KP, Ramaekers JG (2007) Acute dose of MDMA (75 mg) impairs spatial memory for location but leaves contextual processing of visuospatial information unaffected. Psychopharmacology 189:557–563

    CAS  PubMed  Google Scholar 

  • Lambert AJ, Brand MD (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH: ubiquinone oxidoreductase (complex I). J Biol Chem 279:39414–39420

    CAS  PubMed  Google Scholar 

  • Li X, Tao H, Xie K, Ni Z, Yan Y et al (2014) cAMP signaling prevents podocyte apoptosis via activation of protein kinase a and mitochondrial fusion. PLoS One 9:e92003

    PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2007) Mitochondrial regulation of neuronal plasticity. Neurochem Res 32:707–715

    CAS  PubMed  Google Scholar 

  • Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RT, Lau SS, Monks TJ (1997) 2, 5-Bis-(glutathion-S-yl)-α-methyldopamine, a putative metabolite of (±)-3, 4-methylenedioxyamphetamine, decreases brain serotonin concentrations. Eur J Pharmacol 323:173–180

    CAS  PubMed  Google Scholar 

  • Mueller M, Yuan J, Felim A, Neudörffer A, Peters FT et al (2009) Further studies on the role of metabolites in (±)-3, 4-methylenedioxymethamphetamine-induced serotonergic neurotoxicity. Drug Metab Dispos 37:2079–2086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller M, Yuan J, Maldonado Adrian C, Mccann UD, Ricaurte GA (2011) Inhibition of 3, 4-methylenedioxymethamphetamine metabolism leads to marked decrease in 3, 4-dihydroxymethamphetamine formation but no change in serotonin neurotoxicity: implications for mechanisms of neurotoxicity. Synapse 65:983–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen P, Woo N (2003) Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 71:401–437

    CAS  PubMed  Google Scholar 

  • Nogueira-Machado J, Silva FLE, Medina L, Costa D, Chaves M (2003) Modulation of the reactive oxygen species (ROS) generation mediated by cyclic AMP-elevating agents or interleukin 10 in granulocytes from type 2 diabetic patients (NIDDM): a PKA-independent phenomenon. Diabetes Metab 29:533–537

    CAS  PubMed  Google Scholar 

  • Papa S, Petruzzella V, Scacco S, Sardanelli AM, Iuso A et al (2009) Pathogenetic mechanisms in hereditary dysfunctions of complex I of the respiratory chain in neurological diseases. Biochim Biophys Acta 1787:502–517

    CAS  PubMed  Google Scholar 

  • Papa S, De Rasmo D, Technikova-Dobrova Z, Panelli D, Signorile A et al (2012) Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases. FEBS Lett 586:568–577

    CAS  PubMed  Google Scholar 

  • Pediaditakis P, Kim J-S, He L, Zhang X, Graves LM, Lemasters JJ (2010) Inhibition of the mitochondrial permeability transition by protein kinase A in rat liver mitochondria and hepatocytes. Biochem J 431:411–421

    CAS  PubMed  Google Scholar 

  • Piccoli C, Scacco S, Bellomo F, Signorile A, Iuso A et al (2006) cAMP controls oxygen metabolism in mammalian cells. FEBS Lett 580:4539–4543

    CAS  PubMed  Google Scholar 

  • Pourahmad J, Eskandari MR, Nosrati M, Kobarfard F, Khajeamiri AR (2010) Involvement of mitochondrial/lysosomal toxic cross-talk in ecstasy induced liver toxicity under hyperthermic condition. Eur J Pharmacol 643:162–169

    CAS  PubMed  Google Scholar 

  • Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34:895–903

    CAS  PubMed  Google Scholar 

  • Reneman L, Booij J, de Bruin K, Reitsma JB, de Wolff FA et al (2001) Effects of dose, sex, and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons. Lancet 358:1864–1869. https://doi.org/10.1016/s0140-6736(01)06888-x

    Article  CAS  PubMed  Google Scholar 

  • Ros-Simó C, Moscoso-Castro M, Ruiz-Medina J, Ros J, Valverde O (2013) Memory impairment and hippocampus specific protein oxidation induced by ethanol intake and 3, 4-Methylenedioxymethamphetamine (MDMA) in mice. J Neurochem 125:736–746

    PubMed  Google Scholar 

  • Sanadgol N, Golab F, Mostafaie A, Mehdizadeh M, Khalseh R et al (2018) Low, but not high, dose triptolide controls neuroinflammation and improves behavioral deficits in toxic model of multiple sclerosis by dampening of NF-κB activation and acceleration of intrinsic myelin repair. Toxicol Appl Pharmacol 342:86–98

    CAS  PubMed  Google Scholar 

  • Sardanelli AM, Signorile A, Nuzzi R, Rasmo DD, Technikova-Dobrova Z et al (2006) Occurrence of A-kinase anchor protein and associated cAMP-dependent protein kinase in the inner compartment of mammalian mitochondria. FEBS Lett 580:5690–5696

    CAS  PubMed  Google Scholar 

  • Shaki F, Hosseini M-J, Ghazi-Khansari M, Pourahmad J (2012) Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta Gen Subj 1820:1940–1950

    CAS  Google Scholar 

  • Sharifzadeh M, Zamanian A-R, Gholizadeh S, Tabrizian K, Etminani M et al (2007) Post-training intrahippocampal infusion of nicotine–bucladesine combination causes a synergistic enhancement effect on spatial memory retention in rats. Eur J Pharmacol 562:212–220

    CAS  PubMed  Google Scholar 

  • Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    CAS  PubMed  Google Scholar 

  • Shokry IM, Callanan JJ, Sousa J, Tao R (2016) New Insights on Different Response of MDMA-Elicited Serotonin Syndrome to Systemic and Intracranial Administrations in the Rat Brain. PLoS One 11:e0155551

    PubMed  PubMed Central  Google Scholar 

  • Sprague JE, Preston AS, Leifheit M, Woodside B (2003) Hippocampal serotonergic damage induced by MDMA (ecstasy): effects on spatial learning. Physiol Behav 79:281–287

    CAS  PubMed  Google Scholar 

  • Taghizadeh G, Pourahmad J, Mehdizadeh H, Foroumadi A, Torkaman-Boutorabi A et al (2016) Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment. Free Radic Biol Med 99:11–19

    CAS  PubMed  Google Scholar 

  • Valenti D, Manente GA, Moro L, Marra E, Vacca RA (2011) Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem J 435:679–688

    CAS  PubMed  Google Scholar 

  • Ventura B, Genova ML, Bovina C, Formiggini G, Lenaz G (2002) Control of oxidative phosphorylation by Complex I in rat liver mitochondria: implications for aging. Biochim Biophys Acta 1553:249–260

    CAS  PubMed  Google Scholar 

  • Watson C, Paxinos G (n.d.) The rat brain in stereotaxic coordinates. Academic Press, Sydney

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802

    CAS  PubMed  Google Scholar 

  • Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K (2010) Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem 104:371–378

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sharifzadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, G., Mehdizadeh, H., Pourahmad, J. et al. Bucladesine Attenuates Spatial Learning and Hippocampal Mitochondrial Impairments Induced by 3, 4-Methylenedioxymethamphetamine (MDMA). Neurotox Res 38, 38–49 (2020). https://doi.org/10.1007/s12640-020-00183-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00183-3

Keywords

Navigation