Skip to main content

Advertisement

Log in

Low Molecular Weight Sulfated Chitosan: Neuroprotective Effect on Rotenone-Induced In Vitro Parkinson’s Disease

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The present investigation was an attempt to study the effect of low molecular weight sulfated chitosan (LMWSC) on in vitro rotenone model of Parkinson’s disease (PD) by evaluating cell viability, oxidative stress, mitochondrial membrane potential, DNA fragmentation, and apoptosis. Incubation of SH-SY5Y cells with 100 nm rotenone resulted in neuronal cell death, redox imbalanced mitochondrial dysfunction, DNA fragmentation, condensation, and apoptotic cellular morphology. Rotenone exposure enhanced the expression of preapoptotic (cytochrome C (cyto c), caspase-3, -8, -9, and Bax) and down-regulated the expression of anti-apoptotic (Bcl-2) markers. Reduction of the intracellular reactive oxygen species (ROS) levels ensued due to pretreatment of LMWSC along with consequent normalization of antioxidant enzymes, mitigation of rotenone induced mitochondrial dysfunction and apoptosis. Our current findings suggested that LMWSC exhibit the pronounced neuroprotective effects, which could be due to its antioxidant, mitochondrial protection, and anti-apoptotic properties. We thus conclude that LMWSC could be developed as a novel therapeutic molecule for the benefit of reducing the consequences of PD. However, further extensive preclinical and clinical studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alonso D, Castro A, Martinez A (2005) Marine compounds for the therapeutic treatment of neurological disorders. Expert Opin Ther Pat 15:1377–1386

    Article  CAS  Google Scholar 

  • Ben Mansour R, Ksouri WM, Cluzet S, Krisa S, Richard T, Ksouri R (2016) Assessment of antioxidant activity and neuroprotective capacity on PC12 cell line of Frankenia thymifolia and related phenolic LC-MS/MS identification. Evid Based Complement Alternat Med 2843463:1–8

  • Borner C (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39:615–647

    Article  CAS  PubMed  Google Scholar 

  • Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  CAS  PubMed  Google Scholar 

  • Desagher S, Martinou J (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  CAS  PubMed  Google Scholar 

  • Desai U (2004) New antithrombin-based anticoagulants. Med Res Rev 24:151–181

    Article  CAS  PubMed  Google Scholar 

  • Dhanalakshmi C, Manivasagam T, Nataraj J, Justin Thenmozhi A, Essa MM (2015) Neurosupportive role of vanillin, a natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells. Evid Based Complement Alternat Med 2015:1–11

    Article  Google Scholar 

  • Ding K, Wang Y, Wang H, Yuan L, Tan M, Shi X, Chen H (2014) 6-O-Sulfated chitosan promoting the neural differentiation of mouse embryonic stem cells. ACS Appl Mater Interfaces 6(22):20043–20050

    Article  CAS  PubMed  Google Scholar 

  • Drozd N, Sher A, Makarov V, Galbraikh L, Vikhoreva G, Gorbachiova I (2001) Comparison of antithrombin activity of the polysulphate chitosan derivatives in in vivo and in vitro system. Thromb Res 102:445–455

    Article  CAS  PubMed  Google Scholar 

  • Ellman G (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 8:70–77

    Article  Google Scholar 

  • Ganguly G, Chakrabarti S, Chatterjee U, Saso L (2017) Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther 11:797–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Dong C, Yin J, Shen J, Tian J, Li C (2012) Neuroprotective effect of fucoidan on H2O2-induced apoptosis in PC12 cells via activation of PI3K/Akt pathway. Cell Mol Neurobiol 32:523–529

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Cui X, Rausch W (2016) Ganoderma Lucidum polysaccharides protect against MPP+ and rotenone-induced apoptosis in primary dopaminergic cell cultures through inhibiting oxidative stress. Am J Neurodegener 5:131

    Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Si J, Ren H, Chen D, Wang H, Ying Z, Wang (2015) Parkin represses 6-hydroxydopamine-induced apoptosis via stabilizing scaffold protein p62 in PC12 cells. Acta Pharmacol Sin 36:1300–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Lu M, Wu Z, Wong PH, Bian J (2009) Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75:27–34

    Article  CAS  PubMed  Google Scholar 

  • Hui B, Li J, Geng M (2008) Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome drug candidate, decreased vulnerability of PC12 cells to human immunodeficiency virus tat protein through attenuating calcium overload. J Neurosci Res 86:1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj R, Tamilselvam K, Manivasagam T, Elangovan N (2013) Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-N-SH cellular model of Parkinson’s disease. J Mol Neurosci 51:863–870

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy A (2014) Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochim Biophys Acta Mol basis Dis 1842:1282–1294

    Article  CAS  Google Scholar 

  • Johnson M, Bobrovskaya L (2015) An update on the rotenone models of Parkinson's disease: their ability to reproduce the features of clinical disease and model gene–environment interaction. Neurotoxicology 46:101–116

    Article  CAS  PubMed  Google Scholar 

  • Kakkar P, Das B, Viswanathan P (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  • Kalia L, Lang A (2015) Parkinson disease. Lan 386:896–912

    Article  CAS  Google Scholar 

  • Kalia L, Lang A (2016) Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol 12:65–66

    Article  CAS  PubMed  Google Scholar 

  • Karthik R, Manigandan V, Saravanan R, Rajesh R, Chandrika B (2016) Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonis. Int J Biol Macromol 84:319–328

    Article  CAS  PubMed  Google Scholar 

  • Koppula S, Kumar H, More S, Kim B, Kim I, Choi D (2012) Recent advances on the neuroprotective potential of antioxidants in experimental models of Parkinson’s disease. Int J Mol Sci 13:10608–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koudelova J, Mourek J (1994) The lipid peroxidation in various parts of the rat brain: effect of age hypoxia and hyperoxia. Physiol Res 43:169–173

    CAS  PubMed  Google Scholar 

  • Li S, Dai S, Shah NP (2017) Sulfonation and antioxidative evaluation of polysaccharides from Pleurotus mushroom and Streptococcus thermophilus bacteria: a review. Compr Rev Food Sci Food Saf 16(2):282–294

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Zhang Y (2016) Strategies to optimize adult stem cell therapy for tissue regeneration. Int J Mol Sci 17(6):982

    Article  CAS  PubMed Central  Google Scholar 

  • Luan F, Wei L, Zhang J, Mi Y, Dong F, Li Q, Guo Z (2018) Antioxidant activity and antifungal activity of chitosan derivatives with propane sulfonate groups. Polymer 10(4):395

    Article  CAS  Google Scholar 

  • Miller GM, Hsieh-Wilson LC (2015) Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Exp Neurol 274:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Met 65:55–63

    Article  CAS  Google Scholar 

  • Narang S, Gibson D, Wasan A, Ross E, Michna E, Nedeljkovic S, Jamison R (2008) Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain 9:254–264

    Article  CAS  PubMed  Google Scholar 

  • Nataraj J, Manivasagam T, Justin Thenmozhi A, Essa MM (2017) Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr Neurosci 20:351–359

    Article  CAS  PubMed  Google Scholar 

  • Ngo DH, Kim SK (2013) Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 62:70–75

    Article  CAS  PubMed  Google Scholar 

  • Pangestuti R, Kim S (2010) Neuroprotective properties of chitosan and its derivatives. Mar Drugs 8:2117–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persin Z, Stana-Kleinschek K, Foster TJ, Van Dam JE, Boeriu CG, Navard P (2011) Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr Polym 84(1):22–32

    Article  CAS  Google Scholar 

  • Poewe W, Seppi K, Tanner C, Halliday G, Brundin P, Volkmann J, Lang A (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  • Rotruck J, Pope A, Ganther H, Swanson A, Hafeman D, Hoekstra W (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  • Sanders L, Greenamyre J (2013) Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 62:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao P, Chen M, Pei Y, Sun P (2013) In intro antioxidant activities of different sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata. Int J Biol Macromol 59:295–300

    Article  CAS  PubMed  Google Scholar 

  • Shulman J, De Jager P, Feany M (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol Mech 6:193–222

    Article  CAS  Google Scholar 

  • Si X, Zhou Z, Bu D, Li J, Strappe P, Blanchard C (2016) Effect of sulfation on the antioxidant properties and in vitro cell proliferation characteristics of polysaccharides isolated from corn bran. CyTA-J Food 14(4):555–564

    Article  CAS  Google Scholar 

  • Soares da Costa D, Reis RL, Pashkuleva I (2017) Sulfation of glycosaminoglycans and its implications in human health and disorders. Annu Rev Biomed Eng 19:1–26

    Article  CAS  PubMed  Google Scholar 

  • Subhapradha N, Suman S, Ramasamy P, Saravanan R, Shanmugam V, Srinivasan A, Shanmugam A (2013) Anticoagulant and antioxidant activity of sulfated chitosan from the shell of donacid clam Donax scortum (Linnaeus, 1758). Int J Nutr Pharmacol Neurol Dis 3:39–45

    Article  CAS  Google Scholar 

  • Tamilselvam K, Braidy N, Manivasagam T, Essa MM, Prasad NR, Karthikeyan S, Guillemin G (2013) Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxidative Med Cell Longev 2013:1–12

    Article  CAS  Google Scholar 

  • Testa C, Sherer T, Greenamyre J (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Mol Brain Res 134:109–118

    Article  CAS  PubMed  Google Scholar 

  • Tufekci K, Civi Bayin E, Genc S, Genc K (2011) The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinson’s Dis 314082:1–14

  • Wang J, Liu H, Jin W, Zhang H, Zhang Q (2016a) Structure–activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron. Int J Biol Macromol 82:878–883

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhu M, He ZZ (2016b) Low-molecular-weight fucoidan attenuates mitochondrial dysfunction and improves neurological outcome after traumatic brain injury in aged mice: involvement of Sirt3. Cell Mol Neurobiol 36(8):1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu H, Zhang X, Li X, Geng L, Zhang H, Zhang Q (2017) Sulfated hetero-polysaccharides protect SH-SY5Y cells from H2O2-induced apoptosis by affecting the PI3K/Akt signaling pathway. Mar Drugs 15:110

    Article  CAS  PubMed Central  Google Scholar 

  • Watabe M, Nakaki T (2004) Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 311:948–953

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zheng C, Ning ZX, Yang B (2007) Modification of low molecular weight polysaccharides from Tremella fuciformis and their antioxidant activity in vitro. Int J Mol Sci 8(7):670–679

    Article  CAS  PubMed Central  Google Scholar 

  • Xie Z, Ding S, Shen Y (2014) Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation. Biochem Biophys Res Commun 454:313–319

    Article  CAS  PubMed  Google Scholar 

  • Yan JK, Wang WQ, Ma HL, Wu JY (2012) Sulfation and enhanced antioxidant capacity of an exopolysaccharide produced by the medicinal fungus Cordyceps sinensis. Molecules 18(1):167–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youdim M, Weinreb O, Mandel S, Amit T (2009) Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 4:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Li P, Li Y, Liu X, Chen Y, Weng X, Zhu X (2011) Fucoidan by inhibiting cathepsin D activities alleviates PC12 apoptosis induced by hydrogen peroxide. J Chin Mater Med 36:1083–1086

    CAS  Google Scholar 

  • Zhang L, Hao J, Zheng Y, Su R, Liao Y, Gong X, Liu L, Wang X (2018) Fucoidan protects dopaminergic neurons by enhancing the mitochondrial function in a rotenone-induced rat model of Parkinson’s disease. Aging Dis 9(4):590–604

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Senior Research Fellowship was funded and supported by the Council of Scientific & Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran Saravanan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing conflict of interest.

Electronic supplementary material

ESM 1

(DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manigandan, V., Nataraj, J., Karthik, R. et al. Low Molecular Weight Sulfated Chitosan: Neuroprotective Effect on Rotenone-Induced In Vitro Parkinson’s Disease. Neurotox Res 35, 505–515 (2019). https://doi.org/10.1007/s12640-018-9978-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9978-z

Keywords

Navigation