Skip to main content

Advertisement

Log in

Differential Morphological and Biochemical Recovery from Chemotherapy-Induced Peripheral Neuropathy Following Paclitaxel, Ixabepilone, or Eribulin Treatment in Mouse Sciatic Nerves

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The reversibility of chemotherapy-induced peripheral neuropathy (CIPN), a disabling and potentially permanent side effect of microtubule-targeting agents (MTAs), is becoming an increasingly important issue as treatment outcomes improve. The molecular mechanisms regulating the variability in time to onset, severity, and time to recovery from CIPN between the common MTAs paclitaxel and eribulin are unknown. Previously (Benbow et al. in Neurotox Res 29:299–313, 2016), we found that after 2 weeks of a maximum tolerated dose (MTD) in mice, paclitaxel treatment resulted in severe reductions in axon area density, higher frequency of myelin abnormalities, and increased numbers of Schwann cell nuclei in sciatic nerves. Biochemically, eribulin induced greater microtubule-stabilizing effects than paclitaxel. Here, we extended these comparative MTD studies to assess the recovery from these short-term effects of paclitaxel, eribulin, and a third MTA, ixabepilone, over the course of 6 months. Paclitaxel induced a persistent reduction in axon area density over the entire 6-month recovery period, unlike ixabepilone- or eribulin-treated animals. The abundance of myelin abnormalities rapidly declined after cessation of all drugs but recovered most slowly after paclitaxel treatment. Paclitaxel- and ixabepilone- but not eribulin-treated animals exhibited increased Schwann cell numbers during the recovery period. Tubulin composition and biochemistry rapidly returned from MTD-induced levels of α-tubulin, acetylated α-tubulin, and end-binding protein 1 to control levels following cessation of drug treatment. Taken together, sciatic nerve axons recovered more rapidly from morphological effects in eribulin- and ixabepilone-treated animals than in paclitaxel-treated animals and drug-induced increases in protein expression levels following paclitaxel and eribulin treatment were relatively transient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9(4):309–322

    Article  CAS  PubMed  Google Scholar 

  • Argyriou AA, Koltzenburg M, Polychronopoulos P, Papapetropoulos S, Kalofonos HP (2008) Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol 66(3):218–228

    Article  PubMed  Google Scholar 

  • Argyriou AA, Bruna J, Marmiroli P, Cavaletti G (2012) Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol 82(1):51–77

    Article  PubMed  Google Scholar 

  • Benbow SJ, Cook BM, Reifert J, Wozniak KM, Slusher BS, Littlefield BA, Wilson L, Jordan MA, Feinstein SC (2016) Effects of paclitaxel and eribulin in mouse sciatic nerve: a microtubule-based rationale for the differential induction of chemotherapy-induced peripheral neuropathy. Neurotox Res 29(2):299–313

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar B, Gilmore S, Goloubeva O, Pelser C, Medeiros M, Chumsri S, Tkaczuk K, Edelman M, Bao T (2014) Chemotherapy dose reduction due to chemotherapy induced peripheral neuropathy in breast cancer patients receiving chemotherapy in the neoadjuvant or adjuvant settings: a single-center experience. Springer Plus 3:366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55(11):2325–2333

    CAS  PubMed  Google Scholar 

  • Boyette-Davis JA, Cata JP, Driver LC, Novy DM, Bruel BM, Mooring DL, Wendelschafer-Crabb G, Kennedy WR, Dougherty PM (2013) Persistent chemoneuropathy in patients receiving the plant alkaloids paclitaxel and vincristine. Cancer Chemother Pharmacol 71(3):619–626

    Article  CAS  PubMed  Google Scholar 

  • Bulinski JC (2007) Microtubule Modification: Acetylation Speeds Anterograde Traffic Flow. Curr Biol 17(1):R18–R20

    Article  CAS  PubMed  Google Scholar 

  • Bunker JM, Wilson L, Jordan MA, Feinstein SC (2004) Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration. Mol Biol Cell 15:2720–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavaletti G (2014) Chemotherapy-induced peripheral neurotoxicity (CIPN): what we need and what we know. J Peripher Nerv Syst 19(2):66–76

    Article  PubMed  Google Scholar 

  • Cavaletti G, Marmiroli P (2010) Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol 6(12):657–666

    Article  PubMed  Google Scholar 

  • Cavaletti G, Frigeni B, Lanzani F, Mattavelli L, Susani E, Alberti P, Cortinovis D, Bidoli P (2010) Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools. Eur J Cancer 46(3):479–494

    Article  CAS  PubMed  Google Scholar 

  • Ceci M, Mardones-Krsulovic C, Sánchez M, Valdivia LE, Allende ML (2014) Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev 9(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi Y-J, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, He X (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22(18):2485–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy H, Akerley W, Safran H, Clark J, Rege V, Papa A, Glantz M, Puthawala Y, Soderberg C, Leone L (1994) Phase I trial of outpatient weekly paclitaxel and concurrent radiation therapy for advanced non-small-cell lung cancer. J Clin Oncol 12(12):2682–2686

    Article  CAS  PubMed  Google Scholar 

  • Cortes J, O’Shaughnessy J, Loesch D, Blum JL, Vahdat LT, Petrakova K, Chollet P, Manikas A, Diéras V, Delozier T, Vladimirov V, Cardoso F, Koh H, Bougnoux P, Dutcus CE, Seegobin S, Mir D, Meneses N, Wanders J, Twelves C, EMBRACE (Eisai Metastatic Breast Cancer Study Assessing Physician’s Choice Versus E7389) investigators (2011) Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet 377(9769):914–923

    Article  CAS  PubMed  Google Scholar 

  • Cortes J, Montero AJ, Glück S (2012) Eribulin mesylate, a novel microtubule inhibitor in the treatment of breast cancer. Cancer Treat Rev 38(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Creppe C, Malinouskaya L, Volvert M-L, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle J-P, Siebenlist U, Moonen G, Chariot A, Nguyen L (2009) Elongator Controls the Migration and Differentiation of Cortical Neurons through Acetylation of α-Tubulin. Cell 136(3):551–564

    Article  CAS  PubMed  Google Scholar 

  • de la Morena Barrio P, Conesa MÁ, González-Billalabeitia E, Urrego E, García-Garre E, García-Martínez E, Poves MZ, Vicente V, de la Peña FA (2015) Delayed recovery and increased severity of paclitaxel-induced peripheral neuropathy in patients with diabetes. J Natl Compr Cancer Netw 13(4):417–423

    Article  Google Scholar 

  • Derry WB, Wilson L, Jordan MA (1995) Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34(7):2203–2211

    Article  CAS  PubMed  Google Scholar 

  • Dreicer R, Li S, Manola J, Haas NB, Roth BJ, Wilding G, Eastern Cooperative Oncology Group (2007) Phase 2 trial of epothilone B analog BMS-247550 (ixabepilone) in advanced carcinoma of the urothelium (E3800): a trial of the Eastern Cooperative Oncology Group. Cancer 110(4):759–763

    Article  CAS  PubMed  Google Scholar 

  • Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR (2004) Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 109(1-2):132–142

    Article  CAS  PubMed  Google Scholar 

  • Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field JJ, Kanakkanthara A, Miller JH (2014) Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorg Med Chem 22:5050–5059

    Article  CAS  PubMed  Google Scholar 

  • Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739(2–3):268–279

    Article  CAS  PubMed  Google Scholar 

  • Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14(1):25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsyth PA, Balmaceda C, Peterson K, Seidman AD, Brasher P, DeAngelis LM (1997) Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J Neuro-Oncol 35(1):47–53

    Article  CAS  Google Scholar 

  • Fu S, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14(1–2):67–116

    Article  CAS  PubMed  Google Scholar 

  • Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10(10):1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) A common pharmacophore for epothilone and taxanes: Molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci 97(6):2904–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gornstein E, Schwarz TL (2014) The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 76:175–183

    Article  CAS  PubMed  Google Scholar 

  • Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol 14(Suppl 4):iv45–iv54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Chen, Zhou W, Puthenveedu MA, Xu M, Jan YN, Jan LY (2006) The Microtubule Plus-End Tracking Protein EB1 Is Required for Kv1 Voltage-Gated K+ Channel Axonal Targeting. Neuron 52(5):803–816

    Article  CAS  PubMed  Google Scholar 

  • Heller BA, Ghidinelli M, Voelkl J, Einheber S, Smith R, Grund E, Morahan G, Chandler D, Kalaydjieva L, Giancotti F, King RH, Fejes-Toth AN, Fejes-Toth G, Feltri ML, Lang F, Salzer JL (2014) Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system. J Cell Biol 204(7):1219–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershman DL, Weimer LH, Wang A, Kranwinkel G, Brafman L, Fuentes D, Awad D, Crew KD (2011) Association between patient reported outcomes and quantitative sensory tests for measuring long-term neurotoxicity in breast cancer survivors treated with adjuvant paclitaxel chemotherapy. Breast Cancer Res Treat 125(3):767–774

    Article  CAS  PubMed  Google Scholar 

  • Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3–S6

    PubMed  Google Scholar 

  • Jain S, Vahdat LT (2011) Eribulin mesylate. Clin Cancer Res 17(21):6615–6622

    Article  CAS  PubMed  Google Scholar 

  • Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA, Di Stefano P, Demmers J, Krugers H, Defilippi P, Akhmanova A, Hoogenraad CC (2009) Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity. Neuron 61(1):85–100

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Akhmanova A (2011) Microtubule tip-interacting proteins: a view from both ends. Curr Opin Cell Biol 23(1):94–101

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Mateos EM, Paglini G, González-Billault C, Cáceres A, Avila J (2005) End binding protein-1 (EB1) complements microtubule-associated protein-1B during axonogenesis. J Neurosci Res 80(3):350–359

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Toso RJ, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci 90(20):9552–9556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman PA, Awada A, Twelves C, Yelle L, Perez EA, Velikova G, Olivo MS, He Y, Dutcus CE, Cortes J (2015) Phase III Open-Label Randomized Study of Eribulin Mesylate Versus Capecitabine in Patients With Locally Advanced or Metastatic Breast Cancer Previously Treated With an Anthracycline and a Taxane. J Clin Oncol 33(6):594–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann HC, Höke A (2010) Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets 9(6):801–806 Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miltenburg NC, Boogerd W (2014) Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev 40(7):872–882

    Article  CAS  PubMed  Google Scholar 

  • Moughamian AJ, Osborn GE, Lazarus JE, Maday S, Holzbaur ELF (2013) Ordered Recruitment of Dynactin to the Microtubule Plus-End is Required for Efficient Initiation of Retrograde Axonal Transport. J Neurosci 33(32):13190–13203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muguruma T, Sakura S, Kirihara Y, Saito Y (2006) Comparativesomatic and visceral antinociception and neurotoxicity of intrathecal bupivacaine, levobupivacaine, and dextrobupivacaine in rats. Anesthesiology 104:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Nogales E, Wolf SG, Khan IA, Luduena RF, Downing KH (1995) Structure of tubulin at 6.5 A and location of the taxol-binding site. Nature 375(6530):424–427

    Article  CAS  PubMed  Google Scholar 

  • Ojima I, Chakravarty S, Inoue T, Lin S, He L, Horwitz SB, Kuduk SD, Danishefsky SJ (1999) A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc Natl Acad Sci 96(8):4256–4261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace A, Nisticò C, Cuppone F, Bria E, Galiè E, Graziano G, Natoli G, Sperduti I, Jandolo B, Calabretta F, Tomao S, Terzoli E (2007) Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clin Breast Cancer 7(7):550–554

    Article  CAS  PubMed  Google Scholar 

  • Perez EA, Lerzo G, Pivot X, Thomas E, Vahdat L, Bosserman L, Viens P, Cai C, Mullaney B, Peck R, Hortobagyi GN (2007) Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J Clin Oncol 25(23):3407–3414

    Article  CAS  PubMed  Google Scholar 

  • Poruchynsky MS, Komlodi-Pasztor E, Trostel S, Wilkerson J, Regairaz M, Pommier Y, Xu Z, Maity TK, Robey R, Burotto M, Sackett D, Guha U, Fojo AT (2015) Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc Natl Acad Sci 112(5):1571–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puhalla S, Brufsky A (2008) Ixabepilone: a new chemotherapeutic option for refractory metastatic breast cancer. Biologics 2(3):505–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172

    Article  CAS  PubMed  Google Scholar 

  • Roché H, Yelle L, Cognetti F, Mauriac L, Bunnell C, Sparano J, Kerbrat P, Delord JP, Vahdat L, Peck R, Lebwohl D, Ezzeddine R, Curé H (2007) Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, as first-line therapy in patients with metastatic breast cancer previously treated with anthracycline chemotherapy. J Clin Oncol 25(23):3415–3420

    Article  CAS  PubMed  Google Scholar 

  • Rovini A, Carré M, Bordet T, Pruss RM, Braguer D (2010) Olesoxime prevents microtubule-targeting drug neurotoxicity: Selective preservation of EB comets in differentiated neuronal cells. Biochem Pharmacol 80(6):884–894

    Article  CAS  PubMed  Google Scholar 

  • Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC (1993) Clinical toxicities encountered by paclitaxel (Taxol). Semin Oncol 20(4 Suppl 3):1–15

    CAS  PubMed  Google Scholar 

  • Scherer S, Salzer J. (1997) Axon–Schwann cell interactions during peripheral nerve degeneration and regeneration. In Glial Cell Development: basic principles and clinical relevance. Oxford University Press. Retrieved 30 Jun. 2018, from http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9781872748542.001.0001/acprof-9781872748542-chapter-9

  • Schmalbruch H (1986) Fiber composition of the rat sciatic nerve. Anat Rec 215(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Shimozuma K, Ohashi Y, Takeuchi A, Aranishi T, Morita S, Kuroi K, Ohsumi S, Makino H, Mukai H, Katsumata N, Sunada Y, Watanabe T, Hausheer FH (2009) Feasibility and validity of the Patient Neurotoxicity Questionnaire during taxane chemotherapy in a phase III randomized trial in patients with breast cancer: N-SAS BC 02. Support Care Cancer 17(12):1483–1491

    Article  PubMed  Google Scholar 

  • Smith JA, Wilson L, Azarenko O, Zhu X, Lewis BM, Littlefield BA, Jordan MA (2010) Eribulin Binds at Microtubule Ends to a Single Site on Tubulin To Suppress Dynamic Instability. Biochemistry 49(6):1331–1337

    Article  CAS  PubMed  Google Scholar 

  • Steinberg M (2008) Ixabepilone: a novel microtubule inhibitor for the treatment of locally advanced or metastatic breast cancer. Clin Ther 30:1590–1617

    Article  CAS  PubMed  Google Scholar 

  • Swami U, Chaudhary I, Ghalib MH, Goel S (2012) Eribulin—a review of preclinical and clinical studies. Crit Rev Oncol Hematol 81(2):163–184

    Article  PubMed  Google Scholar 

  • Thomas E, Tabernero J, Fornier M, Conté P, Fumoleau P, Lluch A, Vahdat LT, Bunnell CA, Burris HA, Viens P, Baselga J, Rivera E, Guarneri V, Poulart V, Klimovsky J, Lebwohl D, Martin M (2007) Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, in patients with taxane-resistant metastatic breast cancer. J Clin Oncol 25(23):3399–3406

    Article  CAS  PubMed  Google Scholar 

  • Vahdat LT, Pruitt B, Fabian CJ, Rivera RR, Smith DA, Tan-Chiu E, Wright J, Tan AR, Dacosta NA, Chuang E, Smith J, O’Shaughnessy J, Shuster DE, Meneses NL, Chandrawansa K, Fang F, Cole PE, Ashworth S, Blum JL (2009) Phase II study of eribulin mesylate, a halichondrin B analog, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 27(18):2954–2961

    Article  CAS  PubMed  Google Scholar 

  • Vahdat LT, Garcia AA, Vogel C, Pellegrino C, Lindquist DL, Iannotti N, Gopalakrishna P, Sparano JA (2013) Eribulin mesylate versus ixabepilone in patients with metastatic breast cancer: a randomized phase II study comparing the incidence of peripheral neuropathy. Breast Cancer Res Treat 140(2):341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitre B, Coquelle FM, Heichette C, Garnier C, Chrétien D, Arnal I (2008) EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 10(4):415–421

    Article  CAS  PubMed  Google Scholar 

  • Waters JC, Chen R-H, Murray AW, Salmon ED (1998) Localization of Mad2 to Kinetochores Depends on Microtubule Attachment, Not Tension. J Cell Biol 141(5):1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak KM, Nomoto K, Lapidus RG, Wu Y, Carozzi V, Cavaletti G, Hayakawa K, Hosokawa S, Towle MJ, Littlefield BA, Slusher BS (2011) Comparison of neuropathy-inducing effects of eribulin mesylate, paclitaxel, and ixabepilone in mice. Cancer Res 71(11):3952–3962

    Article  CAS  PubMed  Google Scholar 

  • Wozniak KM, Ying W, Farah MH, Littlefield BA, Nomoto K, Slusher BS (2013) Neuropathy-inducing effects of eribulin mesylate versus paclitaxel in mice with preexisting neuropathy. Neurotox Res 24(3):338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak KM, Vornov JJ, Wu Y, Nomoto K, Littlefield BA, DesJardins C, Yu Y, Lai G, Reyderman L, Wong N, Slusher BS (2016) Sustained accumulation of microtubule-binding chemotherapy drugs in the peripheral nervous system: correlations with time course and neurotoxic severity. Cancer Res 76(11):3332–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Yao S, Wang P, Yin C, Xiao C, Qian M, Liu D, Zheng L, Meng W, Zhu H, Liu J, Xu H, Mo X (2011) ApoA-II Directs Morphogenetic Movements of Zebrafish Embryo by Preventing Chromosome Fusion during Nuclear Division in Yolk Syncytial Layer. J Biol Chem 286(11):9514–9525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A (2009) Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 122(19):3531–3541

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Ben Lopez, Mary Raven, Nichole LaPointe, Jennifer Smith, Sarah Benbow, and Rebecca Best for their valuable discussions. We also acknowledge the use of the NRI-MCDB Microscopy Facility and the Spectral Laser Scanning Confocal supported by the Office of the Director, National Institutes of Health of the NIH under award no. S10OD010610.

Funding

These studies were supported by grants from EISAI (to SCF, BSS, MAJ, and LW) and NIH grant no. R01CA161056 (to B.S. Slusher).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart C. Feinstein.

Ethics declarations

Experimental protocols were approved by the Institutional Animal Care and Use Committee of John Hopkins University and adhered to all applicable institutional and governmental guidelines for humane treatment set forth in the Guide for the Care and Use of Laboratory Animals (Office of Laboratory Animal Welfare, NIH).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, B.M., Wozniak, K.M., Proctor, D.A. et al. Differential Morphological and Biochemical Recovery from Chemotherapy-Induced Peripheral Neuropathy Following Paclitaxel, Ixabepilone, or Eribulin Treatment in Mouse Sciatic Nerves. Neurotox Res 34, 677–692 (2018). https://doi.org/10.1007/s12640-018-9929-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9929-8

Keywords

Navigation