Skip to main content
Log in

Crystallinity Change and Reduced Warpages on Thin Walled Parts-the Effect of Nano Fumed Silica on Polyacetal

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Polyacetal is widely used in thin walled injection moulding due to its high mechanical properties. But, its widespread application is limited due to volumetric shrinkage and warpage. The investigations on reducing warpage on Polyacetal is attempted by incorporating nano fumed silica of 1 wt% to 5 wt% as a nucleating agent. The crystallinity study shows that the crystallization rate is increased with the addition of fumed silica up to 4 wt%, beyond which it is reduced. The increased warpage and tensile strength are observed with increase in crystallinity. The tensile strength of PA/5 wt% FS nanocomposite is 1.79% lesser than PA/4 wt% FS nanocomposite, but still 2.5% higher than neat PA. The effect of the filler on surface roughness and optical properties such as haze and gloss are also studied. The micro voids are steadily increased as filler loading increases. Hence, the surface roughness increases uniformly upon increase of filler and it does not depend on crystallinity but depends on growth of micro voids. Furthermore, the microscopic analysis is carried out through FTIR, XRD and SEM and discussed. It is concluded from the above analysis that 5 wt% of FS loading into PA reduces warpage of the thin walled parts with a gain of mechanical strength than neat PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng H-C, Huang C-F, Lee J-L, Lin Y, Shen Y-K (2011) Warpage phenomenon of thin-wall injection molding. J Adv Manuf Techno 55:517–526. https://doi.org/10.1007/s00170-010-3106-4

    Article  Google Scholar 

  2. Luftl S, Visakh PM, Chandran S (2014) Polyoxymethylene handbook: structure, properties, applications and their nanocomposites. John Wiley & Sons, Hoboken, pp 1–13

    Book  Google Scholar 

  3. Davide M, Marco S, Maksims B, Ben W, Lucchetta Giovanni S (2017) Thin-wall injection molding of polystyrene parts with coated and uncoated cavities. J Mater Des 0264-1275(17):31163–31162. https://doi.org/10.1016/j.matdes.2017.12.048

    Article  CAS  Google Scholar 

  4. Chiang Y-C (2011) Warpage phenomenon of thin-wall injection molding. Int J Adv Manuf Technol 55:517–526. https://doi.org/10.1007/s00170-010-3106-4

    Article  Google Scholar 

  5. Nian SC, Wu CY, Huang MS (2015) Warpage control of thin walled injection molding using local mold temperatures. Int Commun Heat Mass Transf 61:102–110. https://doi.org/10.1016/j.icheatmasstransfer.2014.12.008

    Article  Google Scholar 

  6. Mohan M, Ansari MNM, Shanks RA (2016) Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component. Polym-Plast Technol Eng 56(1):1–12. https://doi.org/10.1080/03602559.2015.1132466

    Article  CAS  Google Scholar 

  7. Liao SJ, Chang DY, Chen HJ, Tsou LS, Ho JR, Yau HT, Hsieh WH, Wang JT, Su YC (2004) Optimal process conditions of shrinkage and warpage of thin-wall parts. Polym Eng Sci 44(5):917–928. https://doi.org/10.1002/pen.20083

    Article  CAS  Google Scholar 

  8. Prince Jeya Lal L, Ramesh S (2019) Numerical investigation of the behaviour of thin-walled metal tubes under axial impact. In: Chandrasekhar U, Yang LJ, Gowthaman S (eds) Innovative design, analysis and development practices in aerospace and automotive engineering (I-DAD 2018). Lecture notes in mechanical engineering. Springer, Singapore, pp. 55–64. https://doi.org/10.1007/978-981-13-2718-6_7

  9. Archodoulaki VM, Lüftl S, Koch T, Seidler S (2007) Property changes in polyoxymethylene (POM) resulting from processing, ageing and recycling. Polym Degrad Stab 92:2181–2189. https://doi.org/10.1016/j.polymdegradstab.2007.02.024

    Article  CAS  Google Scholar 

  10. Slouf M, Krejcikova S, Vackova T, Kratochvil J, Novak L (2015) In situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites. Front Mater 2:23. https://doi.org/10.3389/fmats.2015.00023

  11. Yang W, Wang X, Yan X, Guo Z (2017) Toughened polyoxymethylene by polyolefin elastomer and glycidyl methacrylate grafted high-density polyethylene. Polym Eng Sci 57:1119–1126. https://doi.org/10.1002/pen.24489

    Article  CAS  Google Scholar 

  12. Yang S, Chen Y, Yang C, Ding W (2017) The morphology evolution and crystallization behavior of microinjection molded polyoxymethylene/molybdenum disulfide nano composite. Appl Polym Sci 134:44625. https://doi.org/10.1002/app.44625

    Article  CAS  Google Scholar 

  13. Zhao X, Ye L (2011) Structure and mechanical properties of polyoxymethylene/multi-walled carbon nano tube composites. Compos Part B: Eng 42:926. https://doi.org/10.1016/j.compositesb.2011.01.002

    Article  CAS  Google Scholar 

  14. Bernland K, Smith P (2009) Nucleating polymer crystallization with poly (tetra fluoro ethylene) nanofibrils. J Appl Polym Sci 114:281. https://doi.org/10.1002/app.30425

    Article  CAS  Google Scholar 

  15. De Santis F, Gnerre C, Nobile MR, Lamberti G (2017) The rheological and crystallization behavior of polyoxymethylene. Polym Test 57:203–208. https://doi.org/10.1016/j.polymertesting.2016.11.033

    Article  CAS  Google Scholar 

  16. Xue M, Lv K, Gao S, Lu X, Liu Y, Yan S (2020) Synergistic effect of thermoplastic phenolic resin and multiwalled carbon nanotubes on the crystallization of polyoxymethylene. J Polym Sci 58(7):997–1010

  17. Cheng Z, Wang Q (2010) Morphology control of polyoxy-methylene /thermoplastic polyurethane blends by adjusting their viscosity ratio. Polym Int 55:1075–1080. https://doi.org/10.1002/pi.2057

    Article  CAS  Google Scholar 

  18. Mehrabzadeh M, Rezaie D (2002) Impact modification of polyacetal by thermoplastic elastomer polyurethane. J Appl Polym Sci 84:2573–2582. https://doi.org/10.1002/app.10203

    Article  CAS  Google Scholar 

  19. Tang G, ShaoC HX (2014) The mechanical properties of carbon fiber-reinforced polyoxymethylene composites filled with silaned nano- SiO2. J Thermoplast Compos Mater 29:1020–1029. https://doi.org/10.1177/0892705714556828

    Article  CAS  Google Scholar 

  20. Zhao X, Zhen L, Jian LF (2012) The effect of CF and nano-SiO2 modification on the flexural and tribological properties of POM composites. J Thermoplast Compos Mater 27:287–296. https://doi.org/10.1177/0892705712443251

    Article  CAS  Google Scholar 

  21. Hu Y, Ye L (2010) Nucleation effect of polyamide on polyoxymethylene. Polym Eng Sci 45:1174–1179. https://doi.org/10.1002/pen.20377

    Article  CAS  Google Scholar 

  22. Singh SK, Singh D, Kumar A, Jain A (2019) An analysis of mechanical and viscoelastic behaviour of nano-SiO2 dispersed epoxy composites. Silicon 12:2465–2477. https://doi.org/10.1007/s12633-019-00335-x

  23. Fambri L, Dabrowska I, Ceccato R, Pegoretti A (2017) Effects of Fumed silica and draw ratio on Nano composite polypropylene fibers. Polymers 9:41. https://doi.org/10.3390/polym9020041

    Article  CAS  PubMed Central  Google Scholar 

  24. Saha C, Bahera PK, Raut SK, Singha NK (2020) A thermoplastic polyurethane /nanosilica composite via melt mixing process and its properties. Silicon. https://doi.org/10.1007/s12633-020-00487-1

  25. Yilgor E, Eynur T, Kosak C, Bilgin S, Yilgor I, Malay O, Menceloglu Y, Wilkes GL (2011) Fumed silica filled poly (dimethylsiloxane-urea) segmented copolymers: Preparation and properties. Polymer 52:4189–4198. https://doi.org/10.1016/j.polymer.2011.07.041

    Article  CAS  Google Scholar 

  26. Ma PM, Wang RY, Wang SF, Zhang Y, Zhang YX, Hristova D (2008) Effects of Fumed Silica on the Crystallization Behavior and Thermal Properties of Poly (hydroxyl butyrate -co-hydroxyvalerate). J Appl Polym Sci 108:1770–1777. https://doi.org/10.1002/app.27577

    Article  CAS  Google Scholar 

  27. Golshahri A, Elango N, Santhosh MS, Sasikumar R, Ramesh S, Durairaj R (2018) Multiwall carbon Nano tube reinforced silicone for aerospace applications. Int J Mech Prod Eng Res Dev 8:775–784

    Google Scholar 

  28. Elango N, Gupta NS, Jiun YL, and Golshahr A (2017) The effect of high loaded multiwall carbon nanotubes in natural rubber and their nonlinear material constants. J Nanomater 2017(6193961):15. https://doi.org/10.1155/2017/6193961

  29. Sun A, Luo F, Chen R, Guo J, Zhang SGS (2020) Effects of sepiolite on crystallization behaviors and properties of sepiolite /polyoxymethylene composites. J Polym Res 27:67. https://doi.org/10.1007/s10965-020-2012-1

    Article  CAS  Google Scholar 

  30. Rajen Patel, Varun Ratta, Pepe Saavedra, Jing Li (2005) Surface haze and surface morphology of blown film compositions. J Plast Film Sheeting 21(3):217–231

  31. Carazzolo GA (1963) Structure of the normal crystal form of polyoxymethylene. J Polym Sci Part A Gen Pap 1:1573–1583. https://doi.org/10.1002/pol.1963.100010510

    Article  Google Scholar 

  32. Tadokoro H, Yasumoto T, Murashashi S, Nitta J (1960) Molecular configuration of polyoxymethylene. Polymer Science J44:266–269. https://doi.org/10.1002/pol.1960.1204414325

    Article  Google Scholar 

  33. Bershtein VA, Egorova LM, Egorov VM, Peschanskaya NN, Yakushev PN, Keating MY, Flexman EA, Kassal RJ, Schodt KP (2002) Segmental dynamics in poly(oxy methylene) as studied via combined differential scanning calorimetry/creep rate spectroscopy approach. Thermo Chim Acta 391:227–243. https://doi.org/10.1016/S0040-6031(02)00186-7

    Article  CAS  Google Scholar 

  34. Xu WB, He PS (2001) Crystallization characteristics of polyoxymethylene with attapulgite as nucleating agent. Polym Eng Sci 41:1903–1912. https://doi.org/10.1002/pen.10887

    Article  CAS  Google Scholar 

  35. Shimomura M, Iguchi M (1982) Infra red study on the conformational regularity in needle-like and other Polyoxymethylene. Polymer 23:509–513. https://doi.org/10.1016/0032-3861(82)90090-8

    Article  CAS  Google Scholar 

  36. Shimomura M, Iguchi M, Kobayashi M (1988) Vibrational spectroscopic study on Trigonal Polyoxymethylene and polyoxymethylene-d2 crystals. Polymer 29:351. https://doi.org/10.1016/0032-3861(88)90346-1

    Article  CAS  Google Scholar 

  37. Lazzeri A, Marchetti A, Levita G (1997) Fatigue fracture engineering. Mater Struct 20:1207–1216

    Article  CAS  Google Scholar 

  38. Kinga Pielichowska J (2012) The influence of molecular weight on the properties of polyacetal / hydroxyapatite nanocomposites- micro structural analysis and phase transition studies. Polym Res 19:9775. https://doi.org/10.1007/s10965-011-9775-3

    Article  CAS  Google Scholar 

  39. Glomsaker T, Hinrichsen EL, Larsen P, Doshev EO (2009) Warpage–Crystallinity relations in rotational molding of polypropylene. Polym Eng Sci 49:523–530. https://doi.org/10.1002/pen.21322

    Article  CAS  Google Scholar 

  40. Chang RY, Tsaur BD (1995) Experimental and theoretical studies of shrinkage, warpage, and sink marks of crystalline polymer injection molded parts. Polym Eng Sci 35:1222–1230

    Article  CAS  Google Scholar 

  41. Derakhshandeh M, Hatzikiriakos SG (2012) Flow-induced crystallization of high-density polyethylene: the effects of shear and uniaxial extension. Rheol Acta 51:315–327

    Article  CAS  Google Scholar 

  42. Li X, Wei Q, Li J, Yang J, Guan J, Qiu B, Xu J, Wang X (2019) Numerical simulation on crystallization-induced warpage of injection-molded PP/EPDM part. J Polym Res 26:228. https://doi.org/10.1007/s10965-019-1869-3

    Article  CAS  Google Scholar 

  43. Kaviarasan V, Venkatesan R, Natarajan E (2019) Prediction of surface quality and optimization of process parameters in drilling of Delrin using neural network. Prog Rubber Plast Recycl Technol 35(3):149–169. https://doi.org/10.1177/1477760619855078

    Article  Google Scholar 

  44. Natarajan E, Kaviarasan V, Lim WH, Tiang SS, Tan TH (2018) Enhanced multi-objective teaching-learning-based optimization for machining of Delrin. IEEE Access 6:51528–51546. https://doi.org/10.1109/ACCESS.2018.2869040

    Article  Google Scholar 

  45. Kanniah V, Grulke EA, Druffel T (2013) The effects of surface roughness on low haze ultrathin nano composite films. Thin Solid Films 539:170–180. https://doi.org/10.1016/j.tsf.2013.04.126

    Article  CAS  Google Scholar 

  46. Milan J, Tanja P (2015) High-gloss coatings - the effect of surface roughness on gloss. Mater Protect 56:457–462. https://doi.org/10.5937/ZasMat1504457J

    Article  Google Scholar 

  47. Yonehara M, Matsui T, KoichiroKihara HI, Kijima A, Sugibayashi T (2004) Experimental relationships between surface roughness, glossiness and color of chromatic colored metals. Mater Trans 45:1027–1032 special issue on Frontiers of smart biomaterials, The Japan Institute of Metals

    Article  CAS  Google Scholar 

  48. Girish Chandran V, Waigaonkar SD (2016) Rheological and dynamic mechanical characteristics of rotationally moldable linear low-density polyethylene Fumed silica Nanocomposites. Polym Compos 37:2995–3002. https://doi.org/10.1002/pc.23496

    Article  CAS  Google Scholar 

  49. Sun S, Li C, Zhang L, Du HL, Burnell-Gray JS (2006) Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly (vinyl chloride) composites. Eur Polym J 42:1643–1652. https://doi.org/10.1016/j.eurpolymj.2006.01.012

    Article  CAS  Google Scholar 

  50. Babu KM, Mettilda M (2014) Studies on mechanical, thermal, and morphological properties of glass fibre reinforced polyoxymethylene nanocomposite. J Appl Chem, Article ID 782618, 8 pages. https://doi.org/10.1155/2014/782618

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Saravanan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, S.T., Kailasanathan, C., Natarajan, E. et al. Crystallinity Change and Reduced Warpages on Thin Walled Parts-the Effect of Nano Fumed Silica on Polyacetal. Silicon 13, 4611–4622 (2021). https://doi.org/10.1007/s12633-020-00796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00796-5

Keywords

Navigation