Skip to main content
Log in

Ultra-Wideband Photonic Hybrid Plasmonic Horn Nanoantenna with SOI Configuration

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The current study proposes a hybrid plasmonic horn-like nanoantenna with a silicon-on-insulator (SOI) configuration. This nanoantenna can be utilized for broadband nanophotonic applications and can operate in a wide optical frequency range of 160–400 THz. It includes optical communication wavelengths of 850, 1310 and 1550 nm. This nanoantenna can directionally radiate and receive signals with about 74% bandwidth within the operational wavelength spectrum. The proposed nanoantenna is simulated using the finite element method and produced nanoantenna gains of 4.7, 7.3 and 4.8 dB and a reflection coefficient (S11) of −15.7, −12.8 and −15.6 dB at optical wavelengths of 1550, 1310 and 850 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elsayed HA, Aly AH (2017) Terahertz frequency superconductor-nanocomposite photonic band gap. Int J Mod Phys B 32(05):1850056

    Article  Google Scholar 

  2. Aly AH, Sayed H (2017) Enhancement of the solar cell based on nanophotonic crystals. J Nanophotonics 11(4):046020

    Article  Google Scholar 

  3. Aly AH, Sabra W, Elsayed HA (2017) Cutoff frequency in metamaterials photonic crystals within Terahertz frequencies. Int J Mod Phys B 31(15):1750123

    Article  Google Scholar 

  4. Aly AH (2008) Metallic and superconducting photonic crystal. J Supercond Nov Magn 21(7):421–425

    Article  CAS  Google Scholar 

  5. Aly AH, Mehaney A, El-Naggar SA (2017) Evolution of phononic band gaps in one-dimensional phononic crystals that incorporate high-Tc superconductor and magnetostrictive materials. J Supercond Nov Magn 30(10):2711–2716

    Article  CAS  Google Scholar 

  6. Aly AH, Sabra W (2016) Superconductor-semiconductor metamaterial photonic crystals. J Supercond Nov Magn 29(8):1981–1986

    Article  CAS  Google Scholar 

  7. Vivien L, Osmond J, Fédéli JM, Marris-Morini D, Crozat P, Damlencourt JF, Cassan E, Lecunff Y, Laval S (2009) 42 GHz pin Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express 17(8):6252–6257

    Article  CAS  Google Scholar 

  8. Aalto T, Solehmainen K, Harjanne M, Kapulainen M, Pi H (2006) Low-loss converters between optical silicon waveguides of different sizes and types. IEEE Photon Technol Lett 18(5):709–711

    Article  CAS  Google Scholar 

  9. Dai D, He S (2009) A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17(19):16646–16653

    Article  CAS  Google Scholar 

  10. Yousefi L, Foster AC (2012) Waveguide-fed optical plasmonic patch nano-Antenna. Frontiers in optics, optical society of America, p FTh3A. 4

    Google Scholar 

  11. Balanis CA (1992) Antenna theory: a review. Proc IEEE 80(1):7–23

    Article  Google Scholar 

  12. Alù A, Engheta N (2008) Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Phys Rev B 78:195111

    Article  Google Scholar 

  13. Sederberg S, Elezzabi AY (2011) Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna. Opt Express 19:10456–10461

    Article  Google Scholar 

  14. Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M, Giessen H (2014) Imaging and steering an optical wireless nanoantenna link. Nat Commun 5:4354

    Article  CAS  Google Scholar 

  15. Pan Z, Guo J (2013) Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas. Opt Express 21:32491–32500

    Article  Google Scholar 

  16. Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K, Giessen H (2011) 3D optical Yagi–Uda nanoantenna array. Nat Commun 2:267

    Article  Google Scholar 

  17. Singh R, Rockstuhl C, Menzel C, Meyrath TP, He M, Giessen H, Lederer F, Zhang W (2009) Spiral-type terahertz antennas and the manifestation of the Mushiake principle. Opt Express 17:9971–9980

    Article  Google Scholar 

  18. Grosjean T, Mivelle M, Burr GW, Baida FI (2013) Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber. Opt Express 21:1762–1772

    Article  CAS  Google Scholar 

  19. Ramaccia D, Bilotti F, Toscano A, Massaro A (2011) Efficient and wideband horn nanoantenna. Opt Lett 36:1743–1745

    Article  CAS  Google Scholar 

  20. Ramaccia D, Bilotti F, Toscano A, Massaro A, Cingolani R (2011) Electrical and radiation properties of a horn nano-antenna at near infrared frequencies. Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on. IEEE, pp 2407–2410

    Chapter  Google Scholar 

  21. James TD, Davis TJ, Roberts A (2014) Optical investigation of the J-pole and Vee antenna families. Opt Express 22:1336–1341

    Article  CAS  Google Scholar 

  22. Guo H, Meyrath TP, Zentgraf T, Liu N, Fu L, Schweizer H, Giessen H (2008) Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt Express 16:7756–7766

    Article  Google Scholar 

  23. Malheiros-Silveira GN, Wiederhecker GS, Hernández-Figueroa HE (2013) Dielectric resonator antenna for applications in nanophotonics. Opt Express 21:1234–1239

    Article  CAS  Google Scholar 

  24. Nikoufard M, Nourmohammadi A, Esmaeili S (2018) Hybrid plasmonic nanoantenna with the capability of monolithic integration with laser and photodetector on InP-substrate. IEEE Trans Antennas Propag 66:3–8

    Article  Google Scholar 

  25. Saad-Bin-Alam M, Khalil MI, Rahman A, Chowdhury AM (2015) Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications. IEEE Photon Technol Lett 27:1092–1095

    Article  Google Scholar 

  26. Solati E, Dorranian D (2015) Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J Clust Sci 26:727–742

    Article  CAS  Google Scholar 

  27. Palik ED (1998) Handbook of optical constants of solids. Academic Press

  28. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  29. Kreibig U, Vollmer M (2013) Optical properties of metal clusters, vol 25. Springer Science & Business Media

  30. Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Nikoufard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourmohammadi, A., Nikoufard, M. Ultra-Wideband Photonic Hybrid Plasmonic Horn Nanoantenna with SOI Configuration. Silicon 12, 193–198 (2020). https://doi.org/10.1007/s12633-019-00113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00113-9

Keywords

Navigation