Skip to main content
Log in

Microstructure, Hardness and Tensile Properties of Friction Stir Welded Aluminum Matrix Composite Reinforced with SiC and Fly Ash

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present work, aluminum alloy 6061/SiC/fly ash aluminum matrix composites were welded successfully using friction stir welding process. Microstructure of weld joints was examined using optical microscope and scanning electron microscope. Mechanical properties namely, microhardness and ultimate tensile strength of the joints were studied. The results were correlated to microstructural changes caused by friction stir welding process. Microstructure in the stirred zone exhibits the uniform distribution of SiC and fly ash particles. Especially fine grains were formed on the advancing side than on the retreating side, due to the different variation between tool direction and welding direction. Higher hardness value is observed on the advancing side (132 Hv) than on the retreating side (124 Hv). Transverse tensile test of weld sample exhibits higher joint efficiency of 85.06% with respect to ultimate tensile strength. Fracture study reveals ductile mode of failure. Weld joints got fractured in heat affected zone on the retreating side, which indicates the weakest part of the weld joint. Based on thermodynamic analysis, the optimum heat input was found to be 756 J mm−1, resulting in higher strength of weld joints due to uniform distribution of reinforcement particles in the nugget zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Murugan N, Ashok Kumar B (2013) Prediction of tensile strength of friction stir welded stir cast AA6061-T6/AlNp composite. Mater Des 51:998–1007

    Article  CAS  Google Scholar 

  2. Gopalakrishnan S, Murugan N (2012) Production and wear characterization of AA6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method. Composites Part B 43(2):302–308

    Article  CAS  Google Scholar 

  3. Kalaiselvan K, Dinaharan I, Murugan N (2014) Characterization of friction stir welded boron carbide particulate reinforced AA6061 aluminum alloy stir cast composite. Mater Des 55:176–182

    Article  CAS  Google Scholar 

  4. Dinaharan I, Murugan N (2012) Automation of friction stir welding process to join aluminum matrix composites by optimization. Procedia Eng 38:105–110

    Article  CAS  Google Scholar 

  5. Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J (2014) Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater Des 56:185–192

    Article  CAS  Google Scholar 

  6. Salih OS, Ou H, Sun W, McCartney DG (2015) A review of friction stir welding of aluminum matrix composites. Mater Des 86:61–71

    Article  CAS  Google Scholar 

  7. Somasekaran AC, Murr LE (2004) Microstructures in friction stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy. Mater Charact 52:49–64

    Article  Google Scholar 

  8. Scialpi A, De Filippis LAC, Cavaliere P (2007) Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminum alloy. Mater Des 28(4):1124–1129

    Article  CAS  Google Scholar 

  9. Ni DR, Chen DL, Wang D, Xiao BL, Ma ZY (2013) Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet. Mater Des 51:199–205

    Article  CAS  Google Scholar 

  10. Amirizad M, Kokabi AH, Gharacheh MA, Sarrafi R, Shalchi B, Azizieh M (2006) Evaluation of microstructure and mechanical properties in friction stir welded A356 + 15%SiCp cast composite. Mater Lett 60(4):565–568

    Article  CAS  Google Scholar 

  11. Periyasamy P, Mohan B, Balasubramanian V, Rajakumar S, Venugopal S (2013) Multi-objective optimization of friction stir welding parameters using desirability approach to join Al/SiCp metal matrix composites. The Trans Nonferrous Met Soc China 23(4):942–955

    Article  CAS  Google Scholar 

  12. Uzun H (2007) Friction stir welding of SiC particulate reinforced AA2124 aluminum alloy matrix composite. Mater Des 28(5):1440–1446

    Article  CAS  Google Scholar 

  13. Guo J, Amira S, Gougeon P, Chen XG (2011) Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite. Mater Charact 62(9):865–877

    Article  CAS  Google Scholar 

  14. Feng AH, Xiao BL, Ma ZY (2008) Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Compos Sci Technol 68(9):2141–2148

    Article  CAS  Google Scholar 

  15. Sachinkumar, Narendranath S, Chakradhar D (2018) Process parameter optimization for FSW of AA6061 / SiC / fl y ash AMCs using Taguchi technique. Emerg Mater Res 7(3):192–199

  16. Choi DH, Ahn BW, Quesnel DJ, Jung SB (2013) Behavior of β phase (Al3Mg2) in AA 5083 during friction stir welding. Intermetallics 35:120–127

    Article  CAS  Google Scholar 

  17. Sachinkumar, Narendranath S, Chakradhar D (2018) Study on microstructure and tensile properties of fly ash AMCs welded by FSW. AIP Conference Proceedings, vol. 1943, no. 1, p. 020118. AIP Publishing, 201

  18. Zhang Z, Li W, Shen J, Chao YJ, Li J, Ma YE (2013) Effect of back plate diffusivity on microstructure and mechanical properties of friction stir welded joints. Mater Des 50:551–557

    Article  Google Scholar 

  19. Hatamleh O, Mishra RS, Oliveras O (2009) Peening effects on mechanical properties in friction stir welded AA 2195 at elevated and cryogenic temperatures. Mater Des 30(8):3165–3173

    Article  CAS  Google Scholar 

  20. Nandan R, DebRoy T, Bhadeshia HK (2008) Recent advances in friction-stir welding - process, weldment structure and properties. Prog Mater Sci 53(6):980–1023

    Article  CAS  Google Scholar 

  21. Kalaiselvan K, Murugan N (2013) Role of friction stir welding parameters on tensile strength of AA6061–B4C composite joints. Trans Nonferrous Met Soc China 23(3):616–624

    Article  CAS  Google Scholar 

  22. Nagaraj A, Palanisamy S (2017) Effect of particles size on the mechanical properties of sic-reinforced aluminium 8011 composites. Mater and Tech 51(4):667–672

    Google Scholar 

  23. Chaubey AK, Konda Gokuldoss P, Wang Z, Scudino S, Mukhopadhyay NK, Eckert J (2016) Effect of particle size on microstructure and mechanical properties of Al-based composite reinforced with 10 Vol.% mechanically alloyed mg-7.4% Al particles. Technologies 4(4):37

    Article  Google Scholar 

  24. Colligan K (1999) Material flow behavior during friction stir welding of aluminum. Weld J 75(7):229–237

    Google Scholar 

  25. Dawood HI, Mohammed KS, Rahmat A, Uday MB (2015) Effect of small tool pin profiles on microstructures and mechanical properties of 6061 aluminum alloy by friction stir welding. The Trans Nonferrous Met Soc China 25(9):2856–2865

    Article  CAS  Google Scholar 

  26. Xu W, Liu J, Luan G, Dong C (2009) Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints. Mater Des 30(6):1886–1893

    Article  CAS  Google Scholar 

  27. Salem HG (2003) Friction stir weld evolution of dynamically recrystallized AA 2095 weldments. Scripta Mater 49(11):1103–1110

    Article  CAS  Google Scholar 

  28. Periyasamy P, Mohan B, Balasubramanian V (2012) Effect of heat input on mechanical and metallurgical properties of friction stir welded AA6061-10% SiCp MMCs. J of Mater Engg and Perf 21(11):2417–2428

    Article  CAS  Google Scholar 

  29. Chen Y, Liu H, Feng J (2006) Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Mater Sci Eng A 420(1–2):21–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachinkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachinkumar, Narendranath, S. & Chakradhar, D. Microstructure, Hardness and Tensile Properties of Friction Stir Welded Aluminum Matrix Composite Reinforced with SiC and Fly Ash. Silicon 11, 2557–2565 (2019). https://doi.org/10.1007/s12633-018-0044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-0044-5

Keywords

Navigation