Skip to main content

Advertisement

Log in

Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The machine-learning approach was investigated to predict the mechanical properties of Cu-Al alloys manufactured using the powder metallurgy technique to increase the rate of fabrication and characterization of new materials and provide physical insights into their properties. Six algorithms were used to construct the prediction models, with chemical composition and porosity of the compacts chosen as the descriptors. The results show that the sequential minimal optimization algorithm for support vector regression with a puk kernel (SMOreg/puk) model demonstrated the best prediction ability. Specifically, its predictions exhibited the highest correlation coefficient and lowest error among the predictions of the six models. The SMOreg/puk model was subsequently applied to predict the tensile strength and hardness of Cu-Al alloys and provide guidance for composition design to achieve the expected values. With the guidance of the SMOreg/puk model, Cu-12Al-6Ni alloy with a tensile strength (390 MPa) and hardness (HB 139) that reached the expected values was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.L. Liu, H.Y. Huang, and J.X. Xie, Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1157.

    CAS  Google Scholar 

  2. M. Izadinia and K. Dehghani, Microstructural evolution and mechanical properties of nanostructured Cu-Al-Ni shape memory alloys, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 333.

    CAS  Google Scholar 

  3. A. Sata and B. Ravi, Comparison of some neural network and multivariate regression for predicting mechanical properties of investment casting, J. Mater. Eng. Perform., 23(2014), No. 8, p. 2953.

    CAS  Google Scholar 

  4. N. Altinkok and R. Koker, Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al—Si—Mg)—aluminium matrix composites, Mater. Des., 25(2004), No. 7, p. 595.

    CAS  Google Scholar 

  5. B. Zhao, T.Y. Yu, W.F. Ding, X.Y. Li, and H.H. Su, BP neural network based flexural strength prediction of open-porous Cu—Sn—Ti composites, Prog. Nat. Sci., 28(2018), No. 3, p. 315.

    CAS  Google Scholar 

  6. J.L. Tang, C.Z. Cai, S.J. Huang, and T.T. Xiao, Strength prediction for Al—Cu—Mg—Ag alloy based on support vector regression, J. Aeronaut. Mater., 32(2012), No. 5, p. 92.

    CAS  Google Scholar 

  7. G.X. Liu, L.N. Jia, B. Kong, S.B. Feng, H.R. Zhang, and H. Zhang, Artificial neural network application to microstructure design of Nb—Si alloy to improve ultimate tensile strength, Mater. Sci. Eng. A, 707(2017), p. 452.

    CAS  Google Scholar 

  8. X.W. Yang, J.C. Zhu, Z.S. Nong, D. He, Z.H. Lai, Y. Liu, and F.W. Liu, Prediction of mechanical properties of A357 alloy using artificial neural network, Trans. Nonferrous Met. Soc. China, 23(2013), No. 3, p. 788.

    CAS  Google Scholar 

  9. S.A. Razavi, F. Ashrafizadeh, and S. Fooladi, Prediction of age hardening parameters for 17-4PH stainless steel by artificial neural network and genetic algorithm, Mater. Sci. Eng. A, 675(2016), p. 147.

    CAS  Google Scholar 

  10. D. Wu, W.L. Wang, L.G. Zhang, Z.Y. Wang, K.C. Zhou, and L.B. Liu, New high-strength Ti—Al—V—Mo alloy: from high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1151.

    CAS  Google Scholar 

  11. Y.T. Lv, L.Q. Wang, J.W. Mao, and W.J. Lu, Recent advances of nickel—aluminum bronze (NAB), Rare Met. Mater. Eng., 45(2016), No. 3, p. 815.

    Google Scholar 

  12. Z.H. Deng, H.Q. Yin, X. Jiang, C. Zhang, K.Q. Zhang, T. Zhang, B. Xu, Q.J. Zheng, and X.H. Qu, Machine leaning aided study of sintered density in Cu-Al alloy, Comput. Mater. Sci., 155(2018), p. 48.

    CAS  Google Scholar 

  13. H. Wan, N.C. Si, G.L. Liu, M. Li, C. Xu, and L. Xu, Effect of rare earth on abrasion resistance of multi-aluminum bronze, Chin. Rare Earths, 36(2015), No. 4, p. 81.

    CAS  Google Scholar 

  14. Y.Y. Li, W. Xia, W. Zhang, and Z.Q. Luo, Strong and wear resistant aluminum bronze alloy and its tribological characteristics, Chin. J. Nonferrous Met., 6(1996), No. 3, p. 76.

    CAS  Google Scholar 

  15. B.B. Lahiri, A. Sarkar, S. Bagavathiappan, A. Nagesha, T. Saravanan, R. Sandhya, T. Jayakumar, and J. Philip, Studies on temperature evolution during fatigue cycling of Ni—Al bronze (NAB) alloy using infrared thermography, Insight: Non-Destr. Test. Cond. Monit., 58(2016), No. 2, p. 70.

    CAS  Google Scholar 

  16. B. Zhang, X.J. Xu, S.D. Chen, and W. Jiang, Effects of zirconium and strontium on microstructure and properties of nickel aluminium bronze ingot, Trans. Mater. Heat Treat., 36(2015), No. 3, p. 62.

    Google Scholar 

  17. J.M. Ji, Y.Y. Lu, J. Wu, and G.C. Meng, Microstructure and wear resistance of new aluminum bronze with Ce, Spec. Cast. Nonferrous Alloys, 33(2013), No. 7, p. 672.

    CAS  Google Scholar 

  18. Z.L. Guo, W.X. Tang, H.L. Zhang, J. Xu, and G. He, Influences of alloying elements on the properties of nickel aluminum bronzes, Dev. Appl. Mater., 18(2003), No. 2, p. 39.

    CAS  Google Scholar 

  19. B. Thossatheppitak, S. Suranuntchai, V. Uthaisangsuk, A. Manonukul, and P. Mungsuntisuk, Mechanical properties at high temperatures and microstructures of a nickel aluminum bronze alloy, Adv. Mater. Res., 683(2013), p. 82.

    CAS  Google Scholar 

  20. J. Anantapong, V. Uthaisangsuk, S. Suranuntchai, and A. Manonukul, Effect of hot working on microstructure evolution of as-cast nickel aluminum bronze alloy, Mater. Des., 60(2014), p. 233.

    CAS  Google Scholar 

  21. A.L. Dai, G.C. Yan, Z.Y. Zhu, and J.S. Liu, Effect of aluminum content on microstructure and properties of casting CuAlxFe3, Nonferrous Met. Eng., 3(2013), No. 4, p. 22.

    CAS  Google Scholar 

  22. J.H. Wang, X.X. Jiang, and S.Z. Li, Microstructure and properties of boron—aluminum bronze, Acta Metall. Sin., 32(1996), No. 10, p. 1039.

    CAS  Google Scholar 

  23. B.W. Wang, T. Wang, and Z.T. Wang, Copper Alloy and Its Processing Technology, Chemical Industry Press, Beijing, 2007, p. 45.

    Google Scholar 

  24. Y.W. Li, L.R. Xiao, W. Zhang, X.J. Zhao, Y.F. Song, and L. Guo, Microstructure and mechanical properties of aluminum bronze with different Mn contents, Chin. J. Rare Met., 41(2017), No. 9, p. 985.

    Google Scholar 

  25. A.L. Dai, G.C. Yan, Z.Y. Zhu, K. Zhu, H. Chen, and W.M. Niu, Wear-friction behavior of novel high aluminum bronzes alloy Cu—12Al—X in high temperature condition, Chin. J. Nonferrous Met., 23(2013), No. 11, p. 3083.

    CAS  Google Scholar 

  26. W.S. Li, Z.P. Wang, Y. Lu, Y.H. Jin, L.H. Yuan, and F. Wang, Mechanical and tribological properties of a novel aluminum bronze material for drawing dies, Wear, 261(2006), No. 2, p. 155.

    CAS  Google Scholar 

  27. Y.H. Jin, Y. Lu, Z.P. Wang, W S Li, and J.L. Xu, Anti-frictional characteristic of new complex Al—bronze Cu—14Al, Spec. Cast. Nonferrous Alloys, 24(2004), No. 3, p. 32.

    Google Scholar 

  28. J.L. Xu, Z.P. Wang, C. Chen, and P.Q. La, Research into a new high-strength aluminium bronze alloy, Int. J. Mater. Prod. Technol., 21(2004), No. 5, p. 443.

    CAS  Google Scholar 

  29. Z. Li and C.G. Li, The preparation of abrasion-resistive, antifrietional complex aluminum bronze, Shanghai Nonferrous Met., 14(1993), No. 6, p. 13.

    Google Scholar 

  30. F. Liu, Research on Microstructure and Processability of High Aluminium Bronze Alloy [Dissertation], Jiangxi University of Science and Technology, Ganzhou, 2014, p. 24.

    Google Scholar 

  31. M. Sadayappan, M. Sahoo, and H.T. Michels, Optimization of composition and mechanical properties of aluminum bronze alloy C95400, Trans. Am. Foundry Soc., 112(2004), p. 509.

    CAS  Google Scholar 

  32. A.Q. Wang, R. Xu, and C.Z. Chi, The friction characteristic and tensile properties of casting Al—bronze, J. Liaoning Tech. Univ. (Nat. Sci. Ed.), 19(2000), No. 1, p. 87.

    Google Scholar 

  33. A.L. Dai, G.C. Yan, Z.Y. Zhu, and J.S. Liu, Effects of heating treatment on friction and wear properties of novel high aluminum bronze alloy, Mater. Mech. Eng., 13(2013), No. 12, p. 333.

    Google Scholar 

  34. C.X. Wang, C.H. Jiang, Z. Chai, M. Chen, L.B. Wang, and V. Ji, Estimation of microstructure and corrosion properties of peened nickel aluminum bronze, Surf. Coat. Technol., 313(2017), p. 136.

    CAS  Google Scholar 

  35. D.L. Hu, J.C. Cao, Z. Zhou, and S.Q. Zhang, Organism and properties of high-strength and wear-resistant bronze, Non-ferrous Met., 50(1998), No. 3, p. 99.

    CAS  Google Scholar 

  36. Z.B. Qin, Q. Zhang, Q. Luo, Z. Wu, B. Shen, L. Liu, and W.B. Hu, Microstructure design to improve the corrosion and cavitation corrosion resistance of a nickel—aluminum bronze, Corros. Sci., 139(2018), p. 255.

    CAS  Google Scholar 

  37. M.E. Moussa, M.A. Waly, and M. Amin, Effect of high intensity ultrasonic treatment on microstructural modification and hardness of a nickel—aluminum bronze alloy, J. Alloys Compd., 741(2018), p. 804.

    CAS  Google Scholar 

  38. X.J. Xu, S.D. Chen, L. Pan, J. Wei, and G.F. Shi, Microstructure and properties of Zr microalloying nickel aluminum bronze ingot, Chin. J. Rare Met., 38(2014), No. 1, p. 158.

    CAS  Google Scholar 

  39. M. Yaşar and Y. Altunpak, The effect of aging heat treatment on the sliding wear behaviour of Cu-Al-Fe alloys, Mater. Des., 30(2009), No. 3, p. 878.

    Google Scholar 

  40. C.Z. Zhang, Q.X. Sun, and H.X. Zhang, Sintering mechanism of Cu-Al system powder billet, J. Northeast Univ. Technol, 10(1989), No. 5, p. 561.

    Google Scholar 

  41. R. Wang, Y.P. Bao, Y.H. Li, Z.J. Yan, D.Z. Li, and Y. Kang, Influence of metallurgical processing parameters on defects in cold-rolled steel sheet caused by inclusions, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 440.

    CAS  Google Scholar 

  42. L. Panda, P.K. Banerjee, S.K. Biswal, R. Venugopal, and N.R. Mandre, Artificial neural network approach to assess selective flocculation on hematite and kaolinite, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 637.

    CAS  Google Scholar 

  43. K. Xu, Y.H. Ai, and X.Y. Wu, Application of multi-scale feature extraction to surface defect classification of hot-rolled steels, Int. J. Miner. Metall. Mater., 20(2013), No. 1, p. 37.

    Google Scholar 

  44. K.Q. Zhang, H.Q. Yin, X. Jiang, X.Q. Liu, F. He, Z.H. Deng, D.F. Khan, Q.J. Zheng, and X.H. Qu, A novel approach to predict green density by high-velocity compaction based on the materials informatics method, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 194.

    Google Scholar 

  45. F.F. Yang, H.J. Kang, E.Y. Guo, R.G. Li, Z.N. Chen, Y.H. Zeng, and T.M. Wang, The role of nickel in mechanical performance and corrosion behaviour of nickel—aluminium bronze in 3.5wt% NaCl solution, Corros. Sci., 139(2018), p. 333.

    CAS  Google Scholar 

  46. Q.F. Kang, S.B. Hu, S.Q. Zeng, and G.K. Chen, Heat treatment strengthening of nickel—aluminum bronze alloy for marine propeller, Chin. J. Nonferrous Met., 28(2018), No. 1, p. 107.

    Google Scholar 

  47. G.Q. Tian, Y. Lu, K. Lu, and W.S. Li, Influence of Co on the wear behavior of high-aluminum bronze, Rare Met. Mater. Eng., 27(2008), No. 10, p. 1833.

    Google Scholar 

  48. S.S. Rathore and V.V. Dabhade, Dimensional change during sintering of Fe—Cu—C alloys: a comparative study, Trans. Indian Inst. Met., 69(2016), No. 5, p. 991.

    CAS  Google Scholar 

  49. J. Miettinen, Thermodynamic description of the Cu-Al-Ni system at the Cu-Ni side, Calphad, 29(2005), No. 1, p. 40.

    CAS  Google Scholar 

  50. Y.L. Lin, J.G. Hsieh, H.K. Wu, and J.H. Jeng, Three-parameter sequential minimal optimization for support vector machines, Neurocomputing, 74(2011), No. 17, p. 3467.

    Google Scholar 

  51. B. Üstün, W.J. Melssen, and L.M.C. Buydens, Facilitating the application of support vector regression by using a universal pearson VII function based kernel, Chemom. Intell. Lab. Syst., 81(2006), No. 1, p. 29.

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial support from the National Key Research and Development Program of China (No. 2016YFB0700503), the National High Technology Research and Development Program of China (No. 2015AA03420), Beijing Science and Technology Plan (No. D16110300240000), National Natural Science Foundation of China (No. 51172018), and the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN201801202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-qing Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Zh., Yin, Hq., Jiang, X. et al. Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy. Int J Miner Metall Mater 27, 362–373 (2020). https://doi.org/10.1007/s12613-019-1894-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1894-6

Keywords

Navigation