Skip to main content
Log in

A novel approach to predict green density by high-velocity compaction based on the materials informatics method

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Jauffrès, O. Lame, G. Vigier, and F. Doré, Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction, Polymer, 48(2007), No. 21, p. 6374.

    Article  Google Scholar 

  2. P. Skoglund, High density PM parts by high velocity compaction, Powder Metall., 44(2001), No. 3, p. 199.

    Google Scholar 

  3. J.Z, Wang, H.Q Yin, and X.H. Qu, Analysis of density and mechanical properties of high velocity compacted iron powder, Acta Metall. Sin. Engl. Lett., 22(2009), No. 6, p. 447.

    Article  Google Scholar 

  4. G. Sethi, E. Hauck, and R.M. German, High velocity compaction compared with conventional compaction, Mater. Sci. Technol., 22(2006), No. 8, p. 955.

    Article  Google Scholar 

  5. Z.Q. Yan, F. Chen, Y.X. Cai, J. Yin, and Y.K. Zheng, Preparation and properties of Ti-4.5Al-6.8Mo-1.5Fe alloy by high-velocity compaction, Powder Technol., 246(2013), p. 345.

    Article  Google Scholar 

  6. P.Y. Huang, The Principle of Powder Metallurgy, Metallurgical Industry Press, Beijing, 1997.

    Google Scholar 

  7. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002.

    Google Scholar 

  8. J.P. Holdren, Materials Genome Initiative for Global Competitiveness, National Science and Technology Council OSTP Washington, Washington, 2011.

    Google Scholar 

  9. G.J. Schmitz and U. Prahl, Integrative Computational Materials Engineering: Concepts Applications of a Modular Simulation Platform, John Wiley & Sons, New Jersey, 2012.

    Book  Google Scholar 

  10. K. Rajan, Materials informatics: The materials “gene” and big data, Annu. Rev. Mater. Res., 45(2015), p. 153.

    Article  Google Scholar 

  11. X.Y. Yang, Z.G. Wang, X.S. Zhao, J.L. Song, M.M. Zhang, and H.D. Liu, MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources, Comput. Mater. Sci., 146(2018), p. 319.

    Article  Google Scholar 

  12. L.R. Zhao, K. Chen, Q. Yang, J.R. Rodgers, and S.H. Chiou, Materials informatics for the design of novel coatings, Surf. Coat. Technol., 200(2005), No. 5–6, p. 1595.

    Article  Google Scholar 

  13. J.K. Nørskov and T. Bligaard, The catalyst genome, Angew. Chem. Int. Ed., 52(2013), No. 3, p. 776.

    Article  Google Scholar 

  14. K. Takahashi and Y. Tanaka, Materials informatics: a journey towards material design and synthesis, Dalton Trans., 45(2016), No. 26, p. 10497.

    Article  Google Scholar 

  15. H. Ohno, Empirical studies of Gaussian process based Bayesian optimization using evolutionary computation for materials informatics, Expert Syst. Appl., 96(2018), p. 25.

    Article  Google Scholar 

  16. D.Z. Xue, D.Q. Xue, R.H. Yuan, Y.M. Zhou, P.V. Balachandran, X.D. Ding, J. Sun, and T. Lookman, An informatics approach to transformation temperatures of NiTi-based shape memory alloys, Acta Mater., 125(2017), p. 532.

    Article  Google Scholar 

  17. D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, and T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 7(2016), Art. No. 11241.

  18. P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, and A.J. Norquist, Machine-learning-assisted materials discovery using failed experiments, Nature, 533(2016), p. 73.

    Article  Google Scholar 

  19. B. Hu, K.L. Lu, Q. Zhang, X.B. Ji, and W.C. Lu, Data mining assisted materials design of layered double hydroxide with desired specific surface area, Comput. Mater. Sci., 136(2017), p. 29.

    Article  Google Scholar 

  20. A. Smola and S.V.N. Vishwanathan, Introduction to Machine Learning, Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  21. T. Marwala, Finite-element-model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics, Springer-Verlag, London, 2010.

    Book  Google Scholar 

  22. J.J. Möller, W. Körner, G. Krugel, D.F. Urban, and C. Elsässer, Compositional optimization of hard-magnetic phases with machine-learning models, Acta Mater., 153(2018), p. 53.

    Article  Google Scholar 

  23. J. Cai, J.W. Luo, S.L. Wang, and S. Yang, Feature selection in machine learning: A new perspective, Neurocomputing, 300(2018), p. 70.

    Article  Google Scholar 

  24. H.F. Fischmeister, E. Arzt, and L.R. Olsson, Particle deformation and sliding during compaction of spherical powders: A study by quantitative metallography, Powder Metall., 21(1978), No. 4, p. 179.

    Article  Google Scholar 

  25. D. Bortzmeyer, G. Langguth, and G. Orange, Fracture mechanics of green products, J. Eur. Ceram. Soc., 11(1993), No. 1, p. 9.

    Article  Google Scholar 

  26. Z.Y. Liu, T.B. Sercombe, and G.B. Schaffer, The effect of particle shape on the sintering of aluminum, Metall. Mater. Trans. A, 38(2007), No. 6, p. 1351.

    Article  Google Scholar 

  27. A.D. Rosato, T. Vreeland, and F.B. Prinz, Manufacture of powder compacts, Int. Mater. Rev., 36(1991), No. 2, p. 45.

    Article  Google Scholar 

  28. D.W. Yang and L. Miao, Probability Theory and Mathematical Statistics, Science Press, Beijing, 2014.

    Google Scholar 

  29. R.M. German, Powder Metallurgy and Particulate Materials Processing, Metal Powder Industry, New Jersey, 2005.

    Google Scholar 

  30. S. Maldonado, J. López, and M. Carrasco, A second-order cone programming formulation for twin support vector machines, Appl. Intell., 45(2016), No. 2, p. 265.

    Article  Google Scholar 

  31. J. Luts, F. Ojeda, R.V. de Van, B. De Moor, S. Van Huffel, and J.A.K. Suykens, A tutorial on support vector machine-based methods for classification problems in chemometrics, Anal. Chim. Acta, 665(2010), No. 2, p. 129.

    Article  Google Scholar 

  32. B. Richhariya and M. Tanveer, EEG signal classification using universum support vector machine, Expert Syst. Appl., 106(2018), p. 169.

    Article  Google Scholar 

  33. M.W. Gardner and S.R. Dorling, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences, Atmos. Environ., 32(1998) No. 14–15, p. 2627.

    Article  Google Scholar 

  34. T. Varol, A. Canakci, and S. Ozsahin, Modeling of the prediction of densification behavior of powder metallurgy Al-Cu-Mg/B4C composites using artificial neural networks, Acta Metall. Sin. Engl. Lett., 28(2015), No. 2, p. 182.

    Article  Google Scholar 

  35. B. Shunag, Growing random forest on deep convolutional neural networks for scene categorization, Expert Syst. Appl., 71(2017), p. 279.

    Article  Google Scholar 

  36. X. Jiang, H.Q. Yin, C. Zhang, R.J. Zhang, K.Q. Zhang, Z.H. Deng, G.Q. Liu, and X.H. Qu, A materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction, Comput. Mater. Sci., 143(2018), p. 295.

    Article  Google Scholar 

  37. T. Chai and R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7(2014), p. 1247.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0700503), the National High Technology Research and Development Program of China (No. 2015AA034201), the Beijing Science and Technology Plan (No. D161100002416001), the National Natural Science Foundation of China (No. 51172018), and Kennametal Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-qing Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Kq., Yin, Hq., Jiang, X. et al. A novel approach to predict green density by high-velocity compaction based on the materials informatics method. Int J Miner Metall Mater 26, 194–201 (2019). https://doi.org/10.1007/s12613-019-1724-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1724-x

Keywords

Navigation