Skip to main content
Log in

Thermodynamic study and methanothermal temperature-programmed reaction synthesis of molybdenum carbide

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Nanostructured molybdenum carbide (Mo2C) was successfully prepared from molybdenum trioxide (MoO3) using methanothermal temperature-programmed reaction. Thermodynamic analysis indicated that in presence of methane, the formation of Mo2C from MoO3 occurs through the path of MoO3 → MoO2 → Mo2C. The carburized MoO3 was characterized using X-ray diffraction (XRD), CHNS/O analysis, Brunauer–Emmett–Teller (BET) analysis, and field-emission scanning electron microscopy (FESEM). At final carburization temperatures of 700 and 800°C and at methane contents ranging from 5vol% to 20vol%, Mo2C was the only solid product observed in the XRD patterns. The results indicated that the effect of methane content on the formation of the carbide phase is substantial compared with the effect of carburization time. Elemental analysis showed that at a final temperature of 700°C, the carbon content of carburized MoO3 is very close to the theoretical carbon mass percentage in Mo2C. At higher carburization temperatures, excess carbon was deposited onto the surface of Mo2C. High-surface-area Mo2C was obtained at extremely low heating rates; this high-surface-area material is a potential electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications, William Andrew Publishing/Noyes, Westwood, New Jersey, 1996, p. 8.

    Book  Google Scholar 

  2. L. Elbaz, C.R. Kreller, N.J. Henson, and E.L. Brosha, Electrocatalysis of oxygen reduction with platinum supported on molybdenum carbide–carbon composite, J. Electroanal. Chem., 720-721(2014), p. 34.

    Article  Google Scholar 

  3. L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M.D. Scanlon, X. Hu, Y. Tang, B. Liu, and H.H. Girault, A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction, Energy Environ. Sci., 7(2014), No. 1, p. 387.

    Article  Google Scholar 

  4. Y. Wang, B. Li, D. Cui, X. Xiang, and W. Li, Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell, Biosens. Bioelectron., 51(2014), p. 349.

    Article  Google Scholar 

  5. M.L. Frauwallner, F. López-Linares, J. Lara-Romero, C.E. Scott, V. Ali, E. Hernández, and P. Pereira-Almao, Toluene hydrogenation at low temperature using a molybdenum carbide catalyst, Appl. Catal. A, 394(2011), No. 1–2, p. 62.

    Article  Google Scholar 

  6. M.D. Porosoff, X. Yang, J.A. Boscoboinik, and J.G. Chen, Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO, Angew. Chem., 126(2014), No. 26, p. 6823.

    Article  Google Scholar 

  7. W. Zheng, T.P. Cotter, P. Kaghazchi, T. Jacob, B. Frank, K. Schlichte, W. Zhang, D.S. Su, F. Schüth, and R. Schlögl, Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition, J. Am. Chem. Soc., 135(2013), No. 9, p. 3458.

    Article  Google Scholar 

  8. D.V.N. Vo and A.A. Adesina, Fischer–Tropsch synthesis over alumina-supported molybdenum carbide catalyst, Appl. Catal. A, 399(2011), No. 1–2, p. 221.

    Article  Google Scholar 

  9. J.A. Schaidle, N.M. Schweitzer, O.T. Ajenifujah, and L.T. Thompson, On the preparation of molybdenum carbide- supported metal catalysts, J. Catal., 289(2012), p. 210.

    Article  Google Scholar 

  10. Q. Wu, J.M. Christensen, G.L. Chiarello, L.D.L. Duchstein, J.B. Wagner, B. Temel, J.D. Grunwaldt, and A.D. Jensen, Supported molybdenum carbide for higher alcohol synthesis from syngas, Catal. Today, 215(2013), p. 162.

    Article  Google Scholar 

  11. E.F. Mai, M.A. Machado, T.E. Davies, J.A. Lopez-Sanchez, and V. Teixeira da Silva, Molybdenum carbide nanoparticles within carbon nanotubes as superior catalysts for valerolactone production via levulinic acid hydrogenation, Green Chem., 16(2014), No. 9, p. 4092.

    Article  Google Scholar 

  12. T. Hirose, Y. Ozawa, and M. Nagai, Preparation of a nickel molybdenum carbide catalyst and its activity in the dry reforming of methane, Chin. J. Catal., 32(2011), No. 5, p. 771.

    Article  Google Scholar 

  13. Y. Ma, G. Guan, C. Shi, A. Zhu, X. Hao, Z. Wang, K. Kusakabe, and A. Abudula, Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts, Int. J. Hydrogen Energy, 39(2014), No. 1, p. 258.

    Article  Google Scholar 

  14. C. Liu, M. Lin, D. Jiang, K. Fang, and Y. Sun, Preparation of promoted molybdenum carbides nanowire for CO hydrogenation, Catal. Lett., 144(2014), No. 4, p. 567.

    Article  Google Scholar 

  15. P.A. Aegerter, W.W.C. Quigley, G.J. Simpson, D.D. Ziegler, J.W. Logan, K.R. McCrea, S. Glazier, and M.E. Bussell, Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts: adsorption sites, catalytic activities, and nature of the active surface, J. Catal., 164(1996), No. 1, p. 109.

    Article  Google Scholar 

  16. D.J. Sajkowski and S.T. Oyama, Catalytic hydrotreating by molybdenum carbide and nitride: unsupported MO2N and MO2CAl2O3, Appl. Catal. A, 134(1996), No. 2, p. 339.

    Article  Google Scholar 

  17. S. Ramanathan and S.T. Oyama, New catalysts for hydroprocessing: transition metal carbides and nitrides, J. Phys. Chem., 99(1995), No. 44, p. 16365.

    Article  Google Scholar 

  18. S. Boullosa-Eiras, R. Lødeng, H. Bergem, M. Stöcker, L. Hannevold, and E.A. Blekkan, Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts, Catal. Today, 223(2014), p. 44.

    Article  Google Scholar 

  19. J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, and H. Hong, Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chem., 13(2011), No. 9, p. 2561.

    Article  Google Scholar 

  20. J. Patt, D.J. Moon, C. Phillips, and L. Thompson, Molybdenum carbide catalysts for water–gas shift, Catal. Lett., 65(2000), No. 4, p. 193.

    Article  Google Scholar 

  21. N.M. Schweitzer, J.A. Schaidle, O.K. Ezekoye, X. Pan, S. Linic, and L.T. Thompson, High activity carbide supported catalysts for water gas shift, J. Am. Chem. Soc., 133(2011), No. 8, p. 2378.

    Article  Google Scholar 

  22. S.T. Oyama, The Chemistry of the Transition Metal Carbides and Nitrides, Edited by S.T. Oyama, Blackie Academic & Professional, Bishopbriggs, Glasgow, 1996, p. 17.

  23. R. Alizadeh, E. Jamshidi, and H. Ale-Ebrahim, Kinetic study of nickel oxide reduction by methane, Chem. Eng. Technol., 30(2007), No. 8, p. 1123.

  24. B. Khoshandam, E. Jamshidi, and R.V. Kumar, Reduction of cobalt oxide with methane, Metall. Mater. Trans. B, 35(2004), No. 5, p. 825.

    Article  Google Scholar 

  25. H. Ale Ebrahim and E. Jamshidi, Kinetic study of zinc oxide reduction by methane, Chem. Eng. Res. Des., 79(2001), No. 1, p. 62.

    Article  Google Scholar 

  26. B. Khoshandam, R.V. Kumar, and E. Jamshidi, Producing chromium carbide using reduction of chromium oxide with methane, AIChE J., 52(2006), No. 3, p. 1094.

    Article  Google Scholar 

  27. R. Alizadeh and O. Ostrovski, Kinetic study of synthesis of titanium carbide by methanothermal reduction of titanium dioxide, Iran. J. Mater. Sci. Eng., 8(2011), No. 1, p. 1.

    Google Scholar 

  28. G. Zhang and O. Ostrovski, Reduction of titania by methane-hydrogen-argon gas mixture, Metall. Mater. Trans. B, 31(2000), No. 1, p. 129.

    Article  Google Scholar 

  29. G.S. Ranhotra, G.W. Haddix, A.T. Bell, and J.A. Reimer, Catalysis over molybdenum carbides and nitrides: I. Catalyst characterization, J. Catal., 108(1987), No. 1, p. 24.

    Article  Google Scholar 

  30. A. Hanif, T. Xiao, A.P.E. York, J. Sloan, and M.L.H. Green, Study on the structure and formation mechanism of molybdenum carbides, Chem. Mater., 14(2002), No. 3, p. 1009.

    Article  Google Scholar 

  31. T. Xiao, A.P.E. York, K.S. Coleman, J.B. Claridge, J. Sloan, J. Charnock, and M.L.H. Green, Effect of carburising agent on the structure of molybdenum carbides, J. Mater. Chem., 11(2001), No. 12, p. 3094.

    Article  Google Scholar 

  32. P. Roohi, R. Alizadeh, and E. Fatehifar, Thermodynamic study of transformation of methane to synthesis gas over metal oxides, Int. J. Thermophys., 36(2015), No. 1, p. 88.

    Article  Google Scholar 

  33. M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, and A.N. Syverud, JANAF thermochemical tables, 3rd ed. J. Phys. Chem. Ref. Data, 14(1985), Suppl. 1, p. 1.

    Article  Google Scholar 

  34. J.S. Lee, L. Volpe, F.H. Ribeiro, and M. Boudart, Molybdenum carbide catalysts: II. Topotactic synthesis of unsupported powders, J. Catal., 112(1988), No. 1, p. 44.

    Article  Google Scholar 

  35. R. Alizadeh, E. Jamshidi, and G. Zhang, Transformation of methane to synthesis gas over metal oxides without using catalyst, J. Nat. Gas Chem., 18(2009), No. 2, p. 124.

    Article  Google Scholar 

  36. S.T. Oyama, Preparation and catalytic properties of transition metal carbides and nitrides, Catal. Today, 15(1992), No. 2, p. 179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, P., Alizadeh, R. & Fatehifar, E. Thermodynamic study and methanothermal temperature-programmed reaction synthesis of molybdenum carbide. Int J Miner Metall Mater 23, 339–347 (2016). https://doi.org/10.1007/s12613-016-1243-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1243-y

Keywords

Navigation