Skip to main content

Advertisement

Log in

Study on the impact force and green properties of high-velocity compacted aluminum alloy powder

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

High-velocity compaction (HVC) provides an effective means in the field of powder metallurgy (P/M) to reduce the porosity as well as to ameliorate the mechanical properties of products. In this study, the green density of an aluminum alloy is found to be 2.783 g·cm−3. The ejection force for the aluminum alloy is in the range of 23 to 80 kN and the spring back is found to be less than 0.40%. The hardness of the green body is in the range of HRB 30 to 70. The bending strength of the green body is in the range of 6 to 26 MPa, which are higher than that of other aluminum alloys prepared by the traditional compaction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gökçe, F. Findik, and A.O. Kurt, Microstructural exami nation and properties of premixed Al-Cu-Mg powder metallurgy alloy, Mater. Charact., 62(2011), No.7, p.730.

    Article  Google Scholar 

  2. A.D.P. LaDelpha, M.P. Mosher, W.F. Caley, G.J. Kipouros, and D.P. Bishop, On the simulation of wrought AA4032 via P/M processing, Mater. Sci. Eng. A, 479(2008), No.1–2, p.1.

    Google Scholar 

  3. V.K. Vasudevan and H.L. Fraser, The microstructures of rapidly solidified and heat-treated Al-8Fe-2Mo-Si alloys, Mater. Sci. Eng., 98(1988), p.131.

    Article  CAS  Google Scholar 

  4. W.G.E. Mosher, G.J. Kippouros, W.F. Caley, I.W. Donaldson, and D.P. Bishop, On hot deformation of aluminium-silicon powder metallurgy alloys, Powder Metall., 54(2011), No.3, p.366.

    Article  Google Scholar 

  5. I.A. MacAskill, D.W. Heard, and D.P. Bishop, Effects of silicon on the metallurgy and sintering response of Al-Ni-Mg PM alloys, Mater. Sci. Eng. A, 452–453(2007), p.688.

    Google Scholar 

  6. A.D.P. LaDelpha, H. Neubing, and D.P. Bishop, Metallurgical assessment of an emerging Al-Zn-Mg-Cu P/M alloy, Mater. Sci. Eng. A, 520(2009), No.1–2, p.105.

    Google Scholar 

  7. R.E.D. Mann, R.L Hexemer, I.W. Donaldson, and D.P. Bishop, Hot deformation of an Al-Cu-Mg powder metallurgy alloy, Mater. Sci. Eng. A, 528(2011), No.16–17, p.5476.

    CAS  Google Scholar 

  8. K.S. Dunnett, R.M. Mueller, and D.P. Bishop, Development of Al-Ni-Mg-(Cu) aluminum P/M alloys, J. Mater. Process. Technol., 198(2008), No.1–3, p.31.

    Article  CAS  Google Scholar 

  9. T. Ericsson and P. Luukkonen, Residual stresses in green bodies of steel powder after conventional and high speed compaction, Mater. Sci. Forum, 404–407(2002), p.77.

    Article  Google Scholar 

  10. J.Z. Wang, X.H. Qu, H.Q. Yin, M.J. Yi, and X.J. Yuan, High velocity compaction of ferrous powder, Powder Technol., 192(2009), p.131.

    Article  CAS  Google Scholar 

  11. Z.Q. Yan, F. Chen, and Y.X. Cai, High-velocity compaction of titanium powder and process characterization, Powder Technol., 208(2011), p.596.

    Article  CAS  Google Scholar 

  12. D. Vojtěch, A. Michalcová, J. Pilch, P. Šittner, J. Šerák, and P. Novák, Structural characteristics and thermal stability of Al-5.7Cr-2.5Fe-1.3Ti alloy produced by powder metallurgy, J. Alloys Compd., 475(2009), No.1–2, p.151.

    Article  Google Scholar 

  13. J.Z. Wang, H.Q. Yin, X.H. Qu, and J.L. Johnson, Effect of multiple impacts on high velocity pressed iron powder, Powder Technol., 195(2009), No.3, p.184.

    Article  CAS  Google Scholar 

  14. I. Arribas, J.M. Martín, and F. Castro, The initial stage of liquid phase sintering for an Al-14Si-2.5Cu-0.5Mg (wt%) P/M alloy, Mater. Sci. Eng. A, 527(2010), No.16–17, p.3949.

    Google Scholar 

  15. J.Z. Wang, X.H. Qu, H.Q. Yin, S.Y. Zhou, and M.J. Yi, High velocity compaction of electrolytic copper powder, Chin. J. Nonferrous Met., 18(2008), No.8, p.1498.

    CAS  Google Scholar 

  16. F. Dore, L. Lazzarotto, and S. Bourdin, High velocity compaction: overview of materials, applications and potential, Mater. Sci. Forum, 534–536(2007), p.293.

    Article  Google Scholar 

  17. P. Skoglund, High density PM parts by high velocity compaction, Powder Metall., 44(2001), No.3, p.199.

    CAS  Google Scholar 

  18. D.W. Heard, I.W. Donaldson, and D.P. Bishop, Metallurgical assessment of a hypereutectic aluminum-silicon P/M alloy, J. Mater. Process. Technol., 209(2009), No.18–19, p.5902.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-hui Qu.

Additional information

This work was financially supported by the Major State Basic Research and Development Program of China (No.2006CB605207) and the MOE Program for Cheung Kong Scholars and Innovative Research Teams in Universities of China (No.I2P407).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Xj., Yin, Hq., Din, Ru. et al. Study on the impact force and green properties of high-velocity compacted aluminum alloy powder. Int J Miner Metall Mater 19, 1107–1113 (2012). https://doi.org/10.1007/s12613-012-0678-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0678-z

Keywords

Navigation