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Abstract
Purpose of Review Immunotherapy is emerging as an effective treatment option for metastatic triple-negative breast cancer. In this
review, we summarize clinical data of immunotherapy in triple-negative breast cancer and comment on future directions in the field.
Recent Findings IMpassion130 was a phase III trial that demonstrated progression-free survival benefit, and potentially overall
survival benefit, of first-line chemotherapy (nab-paclitaxel) plus anti-programmed death ligand 1 (PD-L1) atezolizumab, among
PD-L1-positive metastatic triple-negative breast cancers. Studies are ongoing to evaluate other combination therapies with
immune checkpoint blockade in TNBC, and to evaluate efficacy in PD-L1-negative tumors and in later lines of therapy.
Summary Immunotherapy is now a standard option in the treatment of triple-negative breast cancer. Ongoing trials may expand
the degree of clinical benefit. Further work is ongoing to identify novel predictive biomarkers, which in the future may enable a
personalized approach of combination immunotherapy.
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Introduction

Biologically, TNBCs are highly heterogeneous and until recently
had no informative biomarkers for targeted therapy [1], leaving
cytotoxic chemotherapy as the only available systemic approach.

However, among breast cancer subtypes, TNBC has char-
acteristics that may make it more responsive to treatment with
immunotherapy. These characteristics include a higher muta-
tional burden, where despite a high range of variance within
each tumor type, TNBC was found to have more median
mutations than HER2-positive or luminal-type hormone re-
ceptor positive tumors [2]. Higher tumor mutational burden
can lead to a higher frequency of immunogenic mutations [3,
4], and has been described as a marker of improved survival
following immunotherapy across multiple tumor types [5, 6].
TNBC also exhibits higher mean quantities of tumor infiltrat-
ing lymphocytes (TILs) relative to other breast cancer sub-
types. In early-stage TNBC, TIL count is associated with

improved survival, reduced recurrence risk, and increased
likelihood of response to neoadjuvant chemotherapy [7–9].
TIL count has also been described as a potential biomarker
of immunotherapy response [10].

TNBC also has a higher rate of programmed death ligand 1
(PD-L1) expression relative to other breast cancer subtypes,
providing a potential therapeutic target with antibody inhibi-
tors of programmed death 1 (PD-1) or PD-L1 [11, 12].
Recently, the Food and Drug Administration (FDA) approved
atezolizumab (anti-PD-L1) for use in combination with nab-
paclitaxel for PD-L1-positive advanced TNBC. While im-
mune checkpoint blockade is the most studied form of immu-
notherapy for TNBC, other modalities are also being evaluat-
ed. In this review, we aim to examine the current role of im-
munotherapy in TNBC, present the modalities of immuno-
therapy currently being evaluated, and discuss the future of
immunotherapy in the clinical management of TNBC.

Immune Checkpoint Blockade

A number of anti-PD-1/L1 antibodies have been evaluated in
metastatic TNBC as monotherapy (Table 1). These agents are
generally well tolerated and may induce durable responses;
however, responses appear restricted to a minority of patients.
For example, KEYNOTE-012 was a phase Ib study of
pembrolizumab monotherapy in PD-L1-positive patients
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(PD-L1 ≥ 1% by IHC), which demonstrated an objective re-
sponse rate (ORR) = 18.5%, with 3 responders with ongoing
response ≥ 1 year. Notably, the population was heavily pre-
treated with a median number of prior lines of systemic ther-
apy in the metastatic setting of 2, with 25% of patients having
received ≥ 5 lines [18]. A follow-up phase II study evaluated
pembrolizumab according to PD-L1 status and line of therapy,
with cohort A including pre-treated patients (n = 170, 62%
PD-L1-positive), and cohort B including first-line PD-L1-
positive patients (n = 84). Cohort A reported a 5.3% ORR
(5.7% among PD-L1-positive), whereas cohort B reported a
21.4% ORR. Responses were durable, with a median duration
of response of 10.4 months in cohort B (not reached in cohort
A) [16•, 20]. Of note, a phase III comparison of 2nd/3rd-line
pembrolizumab monotherapy versus investigator’s choice
chemotherapy (capecitabine, eribulin, gemcitabine, or vino-
relbine) failed to meet its primary endpoint of overall survival
[21]. The pembrolizumab data suggest that anti-PD-1/L1 is
more effective in earlier lines of therapy. This finding was
confirmed in the phase Ib evaluation of atezolizumab mono-
therapy, whereby first-line ORR was 24% (n = 21), versus 6%
in later lines (n = 94) [13]. In this trial, response also appeared
dependent on PD-L1 status, with PD-L1-positive tumors hav-
ing an ORR of 12%, versus 0% for PD-L1-negative tumors.
This trial also confirmed the durability of response, with me-
dian response in the first-line setting lasting 21 months.

Immune Checkpoint Blockade with Chemotherapy

Chemotherapy is known to have various immunomodulatory
effects, with growing evidence that the restoration of host
immunosurveillance may be part of the benefit seen with con-
ventional chemotherapies [22–24]. IMpassion130 was a
registrational phase III trial that evaluated chemotherapy
(nab-paclitaxel) plus atezolizumab versus placebo in first-
line metastatic/advanced TNBC [17•]. In the intention-to-
treat (ITT) analysis at a median follow-up of 12.9 months,
median PFS was 7.2 months in the atezolizumab plus nab-
paclitaxel arm (n = 451) versus 5.5 months in the placebo plus
nab-paclitaxel arm (n = 451) (p = 0.0025). In a pre-specified
subgroup analysis, improvements were more pronounced in
PD-L1-positive tumors (PFS, 7.5 vs. 5.0 months). In the ITT
overall survival (OS) analysis, OS was 21.3 months in the
atezolizumab arm versus 17.6 months in the chemotherapy
alone arm, which did not meet statistical significance (p =
0.08). Among PD-L1-positive tumors, the median OS was
25.0 months versus 15.5 months. The hazard ratio was report-
ed of 0.62 (95% CI 0.45–0.86); however, formal p value test-
ing could not be performed because it was not designated as a
pre-specified primary outcome in the setting of the ITT OS
being non-significant. This data led to the FDA approval for
atezolizumab plus nab-paclitaxel only for PD-L1-positive tu-
mors. Updated OS data from the second interim analysis at

median follow-up of 18.0 months showed an OS of
21.0 months in the atezolizumab plus nab-paclitaxel arm ver-
sus 18.7 months in the nab-paclitaxel alone arm (p = 0.0777)
in the ITT population. In the PD-L1-positive subgroup, OS
was 25.0 months versus 18.0 months, for a hazard ratio of
0.71. This updated data showed persistent benefit in overall
survival in the PD-L1-positive population [25].

IMpassion130was the first randomized trial to demonstrate
improved outcomes of anti-PD-1/L1; however, the trial leaves
a number of questions unanswered. No atezolizumab mono-
therapy arm was included in the study, and it is unknown
whether patients could equally benefit from a sequential ap-
proach of atezolizumab followed by nab-paclitaxel at progres-
sion. One appealing future direction might be to employ bio-
markers or risk stratification factors (LDH, visceral disease) to
identify a subset of patients most likely to benefit from mono-
therapy. In the monotherapy trials, responses have been worse
in patients who have had multiple prior lines of therapy. In
addition, the inclusion of patients with elevated LDH was
thought to have played a role in the response rate seen in
KEYNOTE-012/086, with no responses noted in patients with
elevated LDH in KEYNOTE-012 [18]. Investigators
commented on the possibility that these patients had more
aggressive, rapidly growing tumors compared with patients
with lower baseline LDH. Other poor prognostic factors in-
cluded the presence of visceral disease and liver metastases.
However, in the IMpassion130 subgroup analysis, subjects
with liver metastases had a similar improvement in benefit
with the addition of atezolizumab to nab-paclitaxel [17•].

A second unanswered question is whether patients with
early relapse could benefit from combination therapy. The
ongoing IMpassion132 trial will evaluate patients who would
have been IMpassion130 ineligible, enrolling subjects with
relapse ≤ 12 months from receipt of curative-intent chemo-
therapy to receive atezolizumab or placebo with investigator
choice gemcitabine + carboplatin or capecitabine. The prima-
ry endpoint will be overall survival [26]. In the ongoing
KEYNOTE-355 study, subjects with de novo metastatic dis-
ease or relapse > 6 months from receiving curative-intent ther-
apy receive investigator’s choice chemotherapy (gemcitabine/
carboplatin or nab-paclitaxel or paclitaxel) with or without
pembrolizumab [27]. In a recent phase Ib trial, patients with
early relapse < 12 months from curative-intent chemotherapy
experienced 38% ORR (n = 3/8) to capecitabine plus
pembrolizumab [28].

A third unanswered question is whether alternative chemo-
therapy backbones will be safe or effective. Chemotherapies
have varied mechanisms of immunomodulation and have
been the subject of extensive review [22–24]. Phase III trials
of various combinations are ongoing, including the aforemen-
tioned KEYNOTE-355 study of investigator’s choice chemo-
therapy (gemcitabine/carboplatin or nab-paclitaxel or pacli-
taxel) with or without pembrolizumab and a number of small

Curr Breast Cancer Rep (2019) 11:259–271 261



phase Ib/II trials have demonstrated safety and encouraging
activity of combinations including capecitabine, eribulin,
doxorubicin, cisplatin, and paclitaxel, among others
(Table 1). The TONIC study aimed to compare the immuno-
modulatory effects of induction chemotherapy followed by
nivolumab (anti-PD-1). The overall ORR = 20%, with the
highest response rates noted in the cisplatin (ORR = 23%)
and doxorubicin (ORR = 35%) cohorts. Analysis of initial
and post-induction biopsies showed upregulation of
immune-related genes in PD-1/PD-L1 and T cell cytotoxicity
pathways in the doxorubicin and cisplatin cohorts [29•]. In
addition to exhibiting immunostimulatory effects, one must
also consider the long-term lymphodepleting effects of che-
motherapy. In a recent comparison of pembrolizumab plus
capecitabine or paclitaxel, both chemotherapy backbones
were associated with sustained and profound decay of T cell
populations over time, including CD4+ and CD8+ T cell pop-
ulations [28]. Lymphodepletion has been hypothesized as one
potential mechanism to explain the decline in anti-PD-1/L1
efficacy in later lines of therapy in TNBC.

Immune Checkpoint Blockade in the Neoadjuvant
and Adjuvant Settings

Preliminary neoadjuvant studies of anti-PD-1/L1 have been
encouraging, with combination approaches being well toler-
ated and associated with increases in pathologic complete re-
sponse (pCR) rate, a known surrogate of overall survival in
TNBC (Table 2) [32]. KEYNOTE-173 was a phase Ib study
of pembrolizumab with various regimens/dosings of platinum
and taxanes as neoadjuvant therapy, followed by 4 cycles of
doxorubicin + cyclophosphamide prior to surgery in patients
with stage II-III TNBC [33]. In this small study, pCR rates of
various chemotherapy/pembrolizumab combinations ranged
from 60 to 80%, with the best responses observed in

carboplatin-containing cohorts. These data provide rationale
for a phase III trial evaluating curative-intent chemotherapy
(carboplatin + “ACT” doxorubicin, cyclophosphamide, pacli-
taxel) + placebo versus pembrolizumab (KEYNOTE-522)
[34]. I-SPY2 is an adaptive phase II study that evaluated
pCR rates of ACT with or without pembrolizumab. A total
of 69 subjects were randomized to combination therapy and
showed a 40% increase in the estimated pCR of 60% from
20% in the chemotherapy only control. There are concerns
that the pCR rate in the control group was lower than expect-
ed; however, the study design permitted investigators to
switch therapy or advance to surgery in the setting of clinical
non-response, and these subjects were considered treatment
failures per the ITT analysis. Of note, dramatic increases in
pCR were observed with pembrolizumab even in the context
of potential immunosuppressive effects of steroids adminis-
tered with paclitaxel [30]. Additional neoadjuvant studies are
ongoing (Table 3).

One unanswered question is whether treatment sequencing
can modulate response. GeparNuevo was a phase II study ran-
domizing subjects to neoadjuvant chemotherapy plus
durvalumab (anti-PD-L1) versus placebo [31]. Approximately
117 patients received a 2-week durvalumab/placebo induction
prior to commencing chemotherapy. The study failed to meet
its endpoint, with 53.4% of patients in the durvalumab arm
(n= 88) and 44.2% in the placebo arm (n = 86) achieving pCR
(p= 0.287). However, in an unplanned analysis, subjects treated
with induction therapy had greater difference in pCR rate (61%
vs. 41.4%), highlighting the possibility that anti-PD-L1 pre-
treatment may enhance response. A related question is whether
anti-PD-1/L1 would be effective in the adjuvant setting. In mu-
rine models, neoadjuvant immunotherapy was superior to adju-
vant immunotherapy in reducing metastatic lesions [35•].
However, treating in the adjuvant setting affords the opportunity
to select patients at higher risk of recurrence based upon

Table 2 Reported trials of immune checkpoint blockade in the neoadjuvant setting in TNBC

Trial/phase Treatment groups pCR in ICB pCR in control Reference

I-SPY2; phase II Pembrolizumab + paclitaxel followed by AC vs. placebo +
paclitaxel followed by AC

62.4%1 22.3%1 Nanda et al. [30]

GeparNuevo; phase II Durvalumab + Nab-paclitaxel vs. placebo + Nab-paclitaxel ITT 53.4%; window 61.0% ITT 44.2%; window 41.4% Loibl et al. [31]
KEYNOTE-173; phase Ib Pembrolizumab + chemotherapy by cohort followed by AC:

Cohort A: nab-paclitaxel 125 mg/m2 weekly
Cohort B: nab-paclitaxel 100 mg/m2 weekly plus carboplatin

AUC6 every 3 weeks
Cohort C: nab-paclitaxel 125 mg/m2 weekly plus carboplatin

AUC5 every 3 weeks
Cohort D: nab-paclitaxel 125 mg/m2weekly plus carboplatin

AUC2 weekly
Cohort E: paclitaxel 80 mg/m2 weekly plus carboplatin

AUC5 every 3 weeks
Cohort F: paclitaxel 80 mg/m2 weekly plus carboplatin

AUC2 weekly

Cohort A: 60%
Cohort B: 80%
Cohort C: 80%
Cohort D: 60%
Cohort E: 30%
Cohort F: 50%

No control arm Schmid et al. [33]

1 Estimated pCR rates reported for the TNBC cohort

pCR, pathologic complete response;ORR, objective response rate; AC, doxorubicin + cyclophosphamide; ITT, intention-to-treat; AUC, area under curve

Curr Breast Cancer Rep (2019) 11:259–271262
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suboptimal chemotherapy response. A number of adjuvant anti-
PD-1/L1 studies are ongoing, including IMpassion030, a phase
III study of adjuvant atezolizumab versus placebo in combination
with chemotherapy (NCT03498716), and SWOG 1418, a phase
III study of adjuvant pembrolizumab versus placebo for subjects
experiencing non-pCR following neoadjuvant chemotherapy
(NCT02954874).

Dual Immune Checkpoint Blockade

There is interest in evaluating the combination of anti-PD-1/
L1with antibodies against other checkpoints such as cytotoxic
T lymphocyte antigen 4 (CTLA-4). Ipilimumab (anti-CTLA-
4) is FDA-approved in combination with anti-PD-1
(nivolumab) for the indication of melanoma [36, 37], lung
cancer, and renal cell carcinoma, and is thought to enhance
response by blocking suppressive CTLA-4 signaling on T
cells, and/or by depleting CTLA-4-expressing T-regulatory
cells [38]. Studies in breast cancer with dual immune check-
point blockade have been limited, though preclinical studies
have shown promise with this combination in TNBC [39]. In a
pilot study of anti-PD-L1 (durvalumab) plus anti-CTLA-4
(tremelimumab), the estimated ORR for TNBC was 43%
(n = 4/7) [40]. A study of dual immune checkpoint blockade
using nivolumab and ipilimumab with androgen receptor
blockade in metastatic HR-positive and TNBC is currently
enrolling [41]. Furthermore, a number of early phase studies
are ongoing to evaluate the safety and efficacy of anti-PD-1/
L1 with other immune checkpoint agents, including modula-
tors of macrophage or natural killer cell activity.

Immunotherapy with Locoregional Therapy

Radiation is frequently employed in TNBC, either in the adju-
vant setting following surgical resection or in the metastatic
setting to palliate symptoms. The abscopal effect has long been
described in radiotherapy whereby regression of non-radiated
lesions occurs following local radiotherapy, a phenomenon
thought to be related to a systemic anti-tumor immune response
[42]. The synergistic effect of radiotherapy with immunothera-
py may be related to release of tumor antigens and DAMPs that
can activate an immune response [43]. In a phase II study,
pembrolizumab plus radiotherapy in metastatic TNBC was
well tolerated in a heavily pre-treated population. Eight of the
17 patients enrolled could not be evaluated for response due to
rapid tumor progression and death; however, 33% of evaluable
patients (n = 3/9) experienced partial response, with one re-
sponse up to 31 weeks, and another ongoing at 22 weeks, for
an ORR = 17.6% [44]. Multiple trials are underway to evaluate
the combination of immunotherapy with radiotherapy in
TNBC, in the metastatic setting with pembrolizumab
(NCT02730130) and nivolumab (NCT02499367), and in pre-
operative settings with pembrolizumab (NCT03366844) andT
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durvalumab (NCT03872505). Studies are also underway com-
paring single versus multi-fraction stereotactic ablative body
radiotherapy with atezolizumab in advanced TNBC
(NCT03464942). In addition to radiotherapy, cryoablation has
been evaluated in combination with immunotherapy. A pilot
study of pre-operative cryoablation and single-dose of
ipilimumab found to be safe and associated with intra-
tumoral and systemic immune effects [45]. A phase II study
of peri-operative ipilimumab + nivolumab + cryoablation after
taxane-based neoadjuvant chemotherapy in resectable TNBC
is ongoing (NCT03546686).

Immunotherapy with Other Targeted Therapies

Approximately 15% of TNBCs have alterations in the Ras/
MAPK pathway. In preclinical TNBC models, MEK inhibiters
were clinically active in combination with anti-PD-1/L1 inhibi-
tors, and associated with MHC and PD-L1 upregulation [46].
The phase II COLET study evaluated the MEK 1/2 inhibitor
cobimetinib with atezolizumab plus taxane in TNBC, with an
ORR= 34% (11/32•) with paclitaxel, and an ORR= 29% (9/31)
with nab-paclitaxel. Higher response rates were noted in PD-L1-
positive tumors (ORR 44%/33%) [47]. Additional studies are
underway (NCT03106415, NCT03971409).

BRCA1/2mutations are found in 20–30% of TNBCs [48••,
49], causing deficiency in DNA repair and sensitivity to
DNA-targeting cytotoxic agents (cisplatin/carboplatin) and in-
hibitors of the poly(ADP-Ribose) polymerase 1 enzyme
(PARP) [48••, 50, 51]. Furthermore, PARP inhibitors can up-
regulate PD-L1 and enhance cancer-associated immunosup-
pression, and therefore, combination with anti-PD-1/L1
agents is of interest [52]. TOPACIO/KEYNOTE-162 was a
study combining the PARP inhibitor niraparib with
pembrolizumab in TNBC, with initial data on 45 patients
showing an ORR = 29%, with a disease control rate of 49%.
Among BRCA mutant patients, the ORR was 67% with a
disease control rate of 75% [53]. Studies with durvalumab
plus olaparib in metastatic TNBC are also ongoing
(NCT03167619, NCT03801369).

The androgen receptor has also been identified as a poten-
tial target for TNBC, with approximately 55% of TNBC hav-
ing some degree of upregulation of the androgen receptor
[54]. Early trials have shown tolerability and clinical benefit
with androgen receptor blockade in TNBC, with a clinical
benefit rate of 35% at 16 weeks in one study, with higher rates
noted in patients who were positive for an androgen-related
gene signature [55]. Preclinical studies have shown that an-
drogen receptor blockade may augment thymic production of
T cells, leading to interest in combination with immunothera-
py [56]. A phase II study of pembrolizumab with GTx-024, a
nonsteroidal selective androgen receptor modulator, showed
that treatment was well tolerated, with 2 partial responses and
2 with stable disease out of 16 patients, and is ongoing [57].

Additionally, a phase II study combining bicalutamide with
dual immune checkpoint blockade with nivolumab plus
ipilimumab is currently underway (NCT03650894) [41].

More than 3000 next-generation immunomodulatory
agents are in clinical development either as monotherapy or
in combination with anti-PD-1/L1 to increase efficacy. As of
this review, no phase II/III studies have confirmed clinical
benefit of this approach in TNBC. However, going forward,
next-generation biomarkers (such as DNA/RNA deep se-
quencing and multispectral TIL analysis) may provide more
nuanced understanding of immune profiles and pharmacody-
namic effects of immunotherapy agents, and could ultimately
be used to personalize combination therapy and improve like-
lihood of clinical benefit.

Cellular Therapy

Tcells have been identified as key players in potentiating anti-
tumor immunity, and are being investigated in TNBC.
Adoptive cell therapy is a form of immunotherapy that in-
volves isolating T cells from a patient, enriching for tumor-
specific clones (sometimes by selecting for reactivity against
mutated proteins), expanding and activating these cells ex-
vivo, and then autologously administrating them back to the
patient [58, 59]. Recently, a subject with chemo-refractory
hormone receptor–positive breast cancer experienced a com-
plete response with this approach, and evaluation is ongoing
in TNBC patients [60]. An alternative adoptive cell therapy is
chimeric antigen receptor (CAR) T cell therapy, whereby T
cells are genetically engineered to express receptors against a
specific target (such as CD19 for B cell malignancies). Target
selection is critical for the success and safety of this approach,
as even low target expression on non-malignant tissue can
lead to substantial toxicity. Severe allergic reactions, cytokine
release syndrome, and neurologic toxicities have been docu-
mented with cellular therapies, often requiring inpatient ad-
ministration and monitoring [61]. Potential targets under in-
vestigation for cellular therapy in TNBC include MUC1 [62],
NKG2D [63], AXL [64], TEM8/ANTXR1 [65], FRα [66],
mesothelin (NCT02892114), and ROR1 (NCT02706392).
Preliminary data of 4 TNBC patients treated with ROR1+
CAR-T cells has been presented, with 2 patients demonstrat-
ing stable disease (one at 15 weeks, one at 19 weeks), and one
patient with partial response after a 2nd infusion [67].

Vaccines

Anumber of cancer vaccines are in development for TNBC, and
aim to facilitate anti-tumor immunity by directing the immune
response against tumor-associated antigens (NCT03674827,
NCT03387085, NCT02593227, NCT03012100) [68]. In addi-
tion, there is great interest in the combination of vaccines with
immune checkpoint blockade to enhance the ability of vaccines
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to elicit a T cell response (NCT03362060, NCT02432963,
NCT03761914 , NCT02826434 , NCT03199040 ,
NCT03606967, NCT03289962). Early data on peptides as vac-
cines for metastatic cancer showed low response rates, with a
2.9% ORR in a combined evaluation of 381 patients with met-
astatic cancer receiving peptide vaccines [69]. More encourag-
ing results have come from personalized peptide vaccination
(PPV), a type of vaccine where antigens are selected from a pool
of different peptides based on pre-existing host immunity.
Currently, a maximum of 4 peptides are selected among a group
of 31 different HLA class-I peptide candidates, based on
HLA typing and pre-existing immune responses to each
candidate. Early trials in multiple different tumor types
have shown a response rate of 9.9% and a disease control
rate of 42.9% in a group of 500 patients with advanced
cancer [70]. PPV has been evaluated in TNBC and was safe
and potentially effective, with a median PFS of 7.5 months
and median OS of 11.1 months in metastatic TNBC, with 1
complete response and 1 partial response noted in a cohort
of 18 patients [71]. Additional small studies are ongoing in
TNBC (NCT02427581). Dendritic cell (DC) vaccines have
also been found to be an effective strategy in multiple can-
cer types, most notably prostate, and evaluation in TNBC
has found safety and potential efficacy as well [72, 73].

Autophagy-based vaccines are being developed for TNBC.
In short, cancer cells are manipulated ex vivo with proteasome
inhibitors and other modulators of autophagy to create a vac-
cine against tumor-associated proteins as well as short-lived
proteins and organelle fragments that would be otherwise de-
graded [74]. Autophagy-based vaccines have been shown pre-
clinically to be effective not only in the autologous setting
where the vaccine was made from a host’s own tumor but also
in an allogenic setting whereby the vaccine is made by other
tumor cell lines, allowing for creation of an “off-the-shelf”
vaccine that could be used for many different patients [74].
Based upon preclinical efficacy in mammary carcinomas, a
trial of vaccine + anti-PD-1 + T cell agonist (anti-OX40) is
underway (NCT02737475).

The Role of Biomarkers in Immunotherapy for Breast
Cancer

The results of the IMpassion130 highlight the need for
immune-based biomarkers in TNBC, as larger improve-
ments in PFS and OS were noted in the PD-L1-positive
subgroup compared with the ITT population. However, it
must be noted that PD-L1 positivity may vary according to
assay and cutoff and has not been consistently predictive

Fig. 1 Overview of potential biologic changes in TNBC over the natural
history of the disease. The changes in iatrogenic lymphodepletion, TILs,
and PD-L1 expression over the natural history of TNBC may impact the
timing and effectiveness of immunotherapies. A trend towards decreased
PD-L1 expression in metastatic versus early breast cancer has been seen,
though a clear correlation has not been established. Epithelial-to-

mesenchymal transition is being evaluated as a predictive marker for
immunotherapy outcomes. TILs: tumor-infiltrating lymphocytes; PD-
L1: programmed death-ligand 1; EMT: epithelial-mesenchymal
transition. 1 Page et al. [27]. 2 Ogiya et al. [79]. 3 Manson et al., Tawfik
et al. [86, 87]. 4 Terry et al. [88]
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for anti-PD-1/L1 response [75]. One unanswered question
is whether it is more relevant to test PD-L1 on tumor cells
or immune cells or both, with preclinical data supporting
the relevance of both [76]. IMpassion130 used a definition
of PD-L1 positivity of ≥ 1% PD-L1 expression on immune
cells, whereas other clinical trials employ combined tumor/
immune cell scores or other approaches. Various PD-L1
assays (Dako 22C3, SP142, SP263) may provide incongru-
ous results on the same tumor [77•]. In particular, the
SP142 assay used in the IMpassion130 trial appears to be
less sensitive than Dako 22C3 and SP263, with a lower
percentage of tumors testing PD-L1-positive. It is un-
known whether tumors that are PD-L1-negative by
SP142 but PD-L1-positive by other assays are biologically
distinct entities, and whether they would benefit from anti-
PD-1/L1.

Another biomarker of interest is the stromal TIL score,
which is known to be prognostic and predictive in the setting
of curative-intent chemotherapy. In the IMpassion130 analysis,
stromal TIL score or CD8+ T cell count did not independently
predict benefit to atezolizumab [78]. There are some consider-
ations as to why stromal TILs were unable to correlate with
benefit. TILs have been noted to be decreased in metastatic
compared with early breast cancers [79]. There also appears
to be a scarcity of stroma in metastatic breast cancer specimens
and whether this could contribute to an inability to detect an
association between stromal TILs and OS benefit is a consid-
eration. Assessment of KEYNOTE-086 patients who received
pembrolizumab monotherapy in metastatic TNBC showed
higher TILs could identify patients who were more likely to
respond to therapy. TIL level was higher in the previously un-
treated population, and higher TIL levels were associated with
significantly improved ORR and disease control rates [80].

Tumor mutational burden (TMB) has been correlated
with response to immunotherapy in multiple cancer types;
however, high TMB is uncommon in breast cancer [5]. In
one study, only 3.1% of breast carcinomas had high TMB
(> 20 mutations/Mb), compared with 39.7% of melanoma
and up to 24.3% of lung carcinomas. In another study of
TMB in 3689 breast cancer samples, 4.2% of TNBC sam-
ples were found to have a high TMB [81]. TMB may be a
useful biomarker in TNBC patients with high TMB, but
may also exclude patients who may benefit from immuno-
therapy. Extensive research is ongoing to develop pipelines
for identifying specific mutations that may be associated
with anti-tumor immune response [5, 6]. Mismatch repair
deficiency is also predictive of benefit with anti-PD-1 ther-
apy, and pembrolizumab is FDA-approved for solid tumors
with high microsatellite instability or mismatch repair de-
ficiency [82]. However, these defects are uncommon in
TNBC, with one analysis estimating 0.7% in TNBC [83,
84]. A number of novel biomarkers are being explored in

immunotherapy, such as serum proteins, peripheral blood
immune cells, and host genomic factors [85].

Conclusions

Immunotherapy has emerged as a promising treatment modal-
ity for TNBC. Initial trials have established a role for anti-PD-
L1 in the first-line metastatic setting in combination with che-
motherapy. Ongoing trials will clarify the role of anti-PD-1/L1
as monotherapy, in later lines of therapy, or in combination
with other therapies. Additional work is ongoing to identify
clinical factors (LDH, liver metastases) and biomarkers to
optimize use of these agents. Multiple trials are also underway
evaluating which combination of therapies may work best
with immune checkpoint blockade including combinations
with chemotherapy, radiotherapy, cryotherapy, vaccines, and
other targeted agents (Table 3).

With factors such as TILs and PD-L1 expression decreased
in metastatic versus early TNBC, and with the impact of iat-
rogenic lymphodepletion over the course of the disease and
treatment for it, immunotherapy benefit may be more pro-
nounced in earlier settings (14, 15, 17, 25, 76) (Fig. 1).
Initial studies of immunotherapy in early TNBC have been
encouraging (Table 2), and results of further studies evaluating
the role of immunotherapy in early breast cancer are highly
anticipated.
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