Skip to main content
Log in

The Ability of Probiotic Lactobacillus Strains in Removal of Benzo[a]pyrene: a Response Surface Methodology Study

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this study, the ability of various lactic acid bacteria was assessed in removing benzo[a]pyrene (BaP) from contaminated phosphate buffer saline (PBS). Response surface methodology (RSM) was performed using Box-Behnken design to investigate the effect of four independent variables including pH (5–7), incubation time (1–24 h), cell density (107–109 cfu/mL), and initial BaP concentration (5–15 mg/kg) at three levels to evaluate in vitro removal of BaP as response. The results showed that all the tested strains were able to remove BaP from PBS and this reduction was entirely strain-specific. Bifidobacterium lactis BB-12 followed by Lactobacillus casei TD10 exhibited the lowest binding ability while the highest binding rate was related to Lactobacillus acidophilus LA-5, Lactobacillus delbrueckii subsp. bulgaricus PTCC 1737, Lactobacillus casei TD4, and Lactobacillus brevis TD3, respectively. Cyclohexane washing weakened BaP-bacteria complex, while this complex was not significantly changed by PBS washing. The results showed that BaP binding rate was influenced by pH, cell density, time, and BaP concentration in linear and quadratic manners. Moreover, there were interactions between cell density and time as well as between time and BaP concentration. The highest BaP-binding rate by L. acidophilus LA-5 was 10 ppm of BaP concentration, pH = 5, cell density of 109 cfu/mL, and an incubation period of 24 h. It can be concluded that a range of pH, time, and microbial population is required to obtain maximum binding efficiency for BaP based on the concentration of the toxin and the species of the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zoghi A, Khosravi-Darani K, Sohrabvandi S (2014) Surface binding of toxins and heavy metals by probiotics. Mini-Rev Med Chem 14(1):84–98. https://doi.org/10.2174/1389557513666131211105554

    Article  CAS  PubMed  Google Scholar 

  2. Zhao H, Zhou F, Qi Y, Dziugan P, Bai F, Walczak P, Zhang B (2013) Screening of Lactobacillus strains for their ability to bind benzo (a) pyrene and the mechanism of the process. Food Chem Toxicol 59:67–71. https://doi.org/10.1016/j.fct.2013.05.040

    Article  CAS  PubMed  Google Scholar 

  3. Khorshidian N, Asli MY, Hosseini H, Shadnoush M, Mortazavian AM (2016) Potential anticarcinogenic effects of lactic acid bacteria and probiotics in detoxification of process-induced food toxicants. IJCP 9 (5):e7920. https://doi.org/10.17795/ijcp-7920

  4. Lamichhane S, Bal Krishna KC, Sarukkalige R (2016) Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148:336–353. https://doi.org/10.1016/j.chemosphere.2016.01.036

    Article  CAS  PubMed  Google Scholar 

  5. Yousefi M, Shemshadi G, Khorshidian N, Ghasemzadeh-Mohammadi V, Fakhri Y, Hosseini H, Mousavi Khaneghah A (2018) Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: a risk assessment study. Food Chem Toxicol 118:480–489. https://doi.org/10.1016/j.fct.2018.05.063

    Article  CAS  PubMed  Google Scholar 

  6. Bansal V, Kim KH (2015) Review of PAH contamination in food products and their health hazards. Environ Int 84:26–38. https://doi.org/10.1016/j.envint.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  7. Conte F, Copat C, Longo S, Conti GO, Grasso A, Arena G, Dimartino A, Brundo MV, Ferrante M (2016) Polycyclic aromatic hydrocarbons in Haliotis tuberculata (Linnaeus, 1758) (Mollusca, Gastropoda): considerations on food safety and source investigation. Food Chem Toxicol 94:57–63. https://doi.org/10.1016/j.fct.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  8. Wenzl T, Simon R, Anklam E, Kleiner J (2006) Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC, Trends Anal Chem 25(7):716–725. https://doi.org/10.1016/j.trac.2006.05.010

    Article  CAS  Google Scholar 

  9. Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, Kannan K (2011) Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 22(12):2028–2035. https://doi.org/10.1016/j.foodcont.2011.05.024

    Article  CAS  Google Scholar 

  10. Shi LK, Zhang DD, Liu YL (2016) Incidence and survey of polycyclic aromatic hydrocarbons in edible vegetable oils in China. Food Control 62:165–170. https://doi.org/10.1016/j.foodcont.2015.10.037

    Article  CAS  Google Scholar 

  11. Kim KH, Jahan SA, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. https://doi.org/10.1016/j.envint.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  12. Purcaro G, Moret S, Conte LS (2013) Overview on polycyclic aromatic hydrocarbons: occurrence, legislation and innovative determination in foods. Talanta 105:292–305. https://doi.org/10.1016/j.talanta.2012.10.041

    Article  CAS  PubMed  Google Scholar 

  13. Buckley TJ, Lioy PJ (1992) An examination of the time course from human dietary exposure to polycyclic aromatic hydrocarbons to urinary elimination of 1-hydroxypyrene. J Occup Environ Med 49(2):113–124. https://doi.org/10.1136/oem.49.2.113

    Article  CAS  Google Scholar 

  14. European Food Safety Authority (EFSA) (2008) Polycyclic aromatic hydrocarbons in food, scientific opinion of the panel on contaminants in the food chain. EFSA J 724:1–114

    Google Scholar 

  15. Slotkin TA, Skavicus S, Card J, Di Giulio RT, Seidler FJ (2017) In vitro models reveal differences in the developmental neurotoxicity of an environmental polycylic aromatic hydrocarbon mixture compared to benzo [a] pyrene: neuronotypic PC12 cells and embryonic neural stem cells. Toxicology 377:49–56. https://doi.org/10.1016/j.tox.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  16. Shoukat S (2020) Potential anti-carcinogenic effect of probiotic and lactic acid bacteria in detoxification of benzo [a] pyrene: a review. Trends Food Sci Tech 99:450–459. https://doi.org/10.1016/j.tifs.2020.02.029

    Article  CAS  Google Scholar 

  17. Faridnia F, Hussin A, Saari N, Mustafa S, Yee L, Manap M (2010) In vitro binding of mutagenic heterocyclic aromatic amines by Bifidobacterium pseudocatenulatum G4. Benef Microbes 1(2):149–154. https://doi.org/10.3920/BM2009.0035

    Article  CAS  PubMed  Google Scholar 

  18. Jira W, Pöhlmann M, Hitzel A, Schwägele F (2013) Smoked meat productsinnovative strategies for reduction of polycyclic aromatic hydrocarbons by optimisation of the smoking process. In: Proceedings of International 57th Meat Industry Conference. Belgrade.

  19. Yebra-Pimentel I, Fernández-González R, Martínez-Carballo E, Simal-Gándara J (2014) Optimization of purification processes to remove polycyclic aromatic hydrocarbons (PAHs) in polluted raw fish oils. Sci Total Environ 470:917–924. https://doi.org/10.1016/j.scitotenv.2013.10.061

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh S, Debsarkar A, Dutta A (2019) Technology alternatives for decontamination of arsenic-rich groundwater—a critical review. Environ Technol Innov 13:277–303. https://doi.org/10.1016/j.eti.2018.12.003

    Article  Google Scholar 

  21. Gonçalves BL, Coppa CFSC, Neeff DVd, Corassin CH, Oliveira CAF (2019) Mycotoxins in fruits and fruit-based products: occurrence and methods for decontamination. Toxin Rev 38(4):263–272. https://doi.org/10.1080/15569543.2018.1457056

    Article  CAS  Google Scholar 

  22. Mahmood Fashandi H, Abbasi R, Mousavi Khaneghah A (2018) The detoxification of aflatoxin M1 by Lactobacillus acidophilus and Bifidobacterium spp.: a review. J Food Process Pres 42 (9):e13704. https://doi.org/10.1111/jfpp.13704

  23. Khosravi-Darani K, Barzegar F, Baghdadi M (2019) Detoxification of heterocyclic aromatic amines by probiotic to inhibit medical hazards. Mini-Rev Med Chem 19(15):1196–1203. https://doi.org/10.2174/1389557519666190318102201

    Article  CAS  PubMed  Google Scholar 

  24. Yousefi M, Shariatifar N, Tajabadi Ebrahimi M, Mortazavian AM, Mohammadi A, Khorshidian N, Arab M, Hosseini H (2019) In vitro removal of polycyclic aromatic hydrocarbons by lactic acid bacteria. J Appl Microbiol 126(3):954–964. https://doi.org/10.1111/jam.14163

    Article  CAS  PubMed  Google Scholar 

  25. Yousefi Asli M, Khorshidian N, Mohammad Mortazavian A, Hosseini H (2017) A review on the impact of herbal extracts and essential oils on viability of probiotics in fermented milks. Curr Nutr Food Sci 13(1):6–15. https://doi.org/10.2174/1573401312666161017143415

    Article  CAS  Google Scholar 

  26. Kerry RG, Patra JK, Gouda S, Park Y, Shin H-S, Das G (2018) Benefaction of probiotics for human health: a review. J Food Drug Anal 26(3):927–939. https://doi.org/10.1016/j.jfda.2018.01.002

    Article  CAS  Google Scholar 

  27. Abou-Arab A, Salim A-B, Maher R, El-Hendawy H, Awad A (2010) Degradation of polycyclic aromatic hydrocarbons as affected by some lactic acid bacteria. J Am Sci 6(10):1237–1246

    Google Scholar 

  28. Dominici L, Villarini M, Trotta F, Federici E, Cenci G, Moretti M (2014) Protective effects of probiotic Lactobacillus rhamnosus IMC501 in mice treated with PhIP. J Microbiol Biotechnol 24(3):371–378. https://doi.org/10.4014/jmb.1309.09072

    Article  PubMed  Google Scholar 

  29. Vorobjeva LI, Abilev SK (2002) Antimutagenic properties of bacteria: review. Appl Biochem Microbiol 38(2):97–107. https://doi.org/10.1023/A:1014338712108

    Article  CAS  Google Scholar 

  30. Khorshidian N, Yousefi M, Shadnoush M, Siadat SD, Mohammadi M, Mortazavian AM (2020) Using probiotics for mitigation of acrylamide in food products: a mini review. Curr Opin Food Sci 32:67–75. https://doi.org/10.1016/j.cofs.2020.01.011

    Article  Google Scholar 

  31. Zhao L, Jin H, Lan J, Zhang R, Ren H, Zhang X, Yu G (2015) Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food in vitro. Food Control 54:158–164. https://doi.org/10.1016/j.foodcont.2015.02.003

    Article  CAS  Google Scholar 

  32. Ju J, Tinyiro SE, Yao W, Yu H, Guo Y, Qian H, Xie Y (2019) The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. J Food Process Pres 43(10):e14122. https://doi.org/10.1111/jfpp.14122

    Article  CAS  Google Scholar 

  33. Serrano-Niño J, Cavazos-Garduño A, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A, García H (2014) In vitro study of the potential protective role of Lactobacillus strains by acrylamide binding. J Food Safety 34(1):62–68. https://doi.org/10.1111/jfs.12096

    Article  CAS  Google Scholar 

  34. Serrano-Niño J, Cavazos-Garduño A, Cantú-Cornelio F, Gonzalez-Cordova A, Vallejo-Cordoba B, Hernández-Mendoza A, García H (2015) In vitro reduced availability of aflatoxin B1 and acrylamide by bonding interactions with teichoic acids from Lactobacillus strains. LWT-Food Sci Technol 64(2):1334–1341. https://doi.org/10.1016/j.lwt.2015.07.015

    Article  CAS  Google Scholar 

  35. Shoukat S, Aslam MZ, Rehman A, Zhang B, Preservation, (2019) Screening of Bifidobacterium strains to bind with benzo [a] pyrene under food stress factors and the mechanism of the process. J Food Process Pres 43(7):e13956. https://doi.org/10.1111/jfpp.13956

    Article  CAS  Google Scholar 

  36. Srivastava S, Garg RK (2017) Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology. J Manuf Process 25:296–305. https://doi.org/10.1016/j.jmapro.2016.12.016

    Article  Google Scholar 

  37. Huang W, Chang J, Wang P, Liu C, Yin Q, Zhu Q, Lu F, Gao T (2018) Effect of the combined compound probiotics with mycotoxin–degradation enzyme on detoxifying aflatoxin B1 and zearalenone. J Toxicol Sci 43(6):377–385. https://doi.org/10.2131/jts.43.377

    Article  CAS  PubMed  Google Scholar 

  38. Debasmita N, Rajasimman M (2013) Optimization and kinetics studies on biodegradation of atrazine using mixed microorganisms. Alex Eng J 52(3):499–505. https://doi.org/10.1016/j.aej.2013.06.008

    Article  Google Scholar 

  39. Virupakshappa PKS, Krishnaswamy MB, Mishra G, Mehkri MA (2016) Optimization of crude oil and PAHs degradation by Stenotrophomonas rhizophila KX082814 strain through response surface methodology using Box-Behnken design. Biotechnol Res Int 2016:4769542. https://doi.org/10.1155/2016/4769542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tafvizi F, TajabadiEbrahimi, (2012) DNA Fingerprinting based on repetitive requences of Iranian indigenous Lactobacilli species by (GTG) 5-REP-PCR. J Fasa Univ Med Sci 2(3):218–226

    Google Scholar 

  41. Barati M, Chamani M, Mousavi SN, Hoseini SA, Ebrahimi MT (2017) Effect of commercial toxin binder, native probiotic strains, cell wall yeast and aluminosilicate in diets contaminated with aflatoxin, on the expression of GOT2, CYP450 1A5 genes and serum concentrations of liver enzymes in broiler chickens. Kafkas Univ Vet Fak Derg 23(6):953–960. https://doi.org/10.9775/kvfd.2017.18022

    Article  Google Scholar 

  42. Zhu YT, Yang CX, Luo BB, Zhou K, Liu Sl (2017) Efficiency of dairy strains of lactic acid bacteria to bind bisphenol A in phosphate buffer saline. Food Control 73:1203–1209. https://doi.org/10.1016/j.foodcont.2016.10.039

    Article  CAS  Google Scholar 

  43. Chmiel T, Kupska M, Wardencki W, Namieśnik J (2017) Application of response surface methodology to optimize solid-phase microextraction procedure for chromatographic determination of aroma-active monoterpenes in berries. Food Chem 221:1041–1056. https://doi.org/10.1016/j.foodchem.2016.11.057

    Article  CAS  PubMed  Google Scholar 

  44. Wong KH, Li GQ, Li KM, Razmovski-Naumovski V, Chan K (2017) Optimisation of Pueraria isoflavonoids by response surface methodology using ultrasonic-assisted extraction. Food Chem 231:231–237. https://doi.org/10.1016/j.foodchem.2017.03.068

    Article  CAS  PubMed  Google Scholar 

  45. Pei-Ren L, Cheng-Chun C, Ya-Hui T (2002) Antimutagenic activity of several probiotic bifidobacteria against benzo [a] pyrene. J Biosci Bioeng 94(2):148–153. https://doi.org/10.1016/S1389-1723(02)80135-9

    Article  Google Scholar 

  46. Apás AL, González SN, Arena ME (2014) Potential of goat probiotic to bind mutagens. Anaerobe 28:8–12. https://doi.org/10.1016/j.anaerobe.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  47. Niderkorn V, Morgavi D, Aboab B, Lemaire M, Boudra H (2009) Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. J Appl Microbiol 106(3):977–985. https://doi.org/10.1111/j.1365-2672.2008.04065.x

    Article  CAS  PubMed  Google Scholar 

  48. Hatab S, Yue T, Mohamad O (2012) Removal of patulin from apple juice using inactivated lactic acid bacteria. J Appl Microbiol 112(5):892–899. https://doi.org/10.1111/j.1365-2672.2012.05279.x

    Article  CAS  PubMed  Google Scholar 

  49. Karazhiyan H, Mehraban Sangatash M, Karazhyan R, Mehrzad A, Haghighi E (2016) Ability of different treatments of Saccharomyces cerevisiae to surface bind aflatoxin M1 in yoghurt. J Agric Sci Technol 18(6):1489–1498

    Google Scholar 

  50. Chapot-Chartier M-P, Kulakauskas S (2014) Cell wall structure and function in lactic acid bacteria. Microb Cell Fact 13(1):S9. https://doi.org/10.1186/1475-2859-13-S1-S9

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sangsila A, Faucet-Marquis V, Pfohl-Leszkowicz A, Itsaranuwat P (2016) Detoxification of zearalenone by Lactobacillus pentosus strains. Food Control 62:187–192. https://doi.org/10.1016/j.foodcont.2015.10.031

    Article  CAS  Google Scholar 

  52. Dalié D, Deschamps A, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380. https://doi.org/10.1016/j.foodcont.2009.07.011

    Article  CAS  Google Scholar 

  53. Ismail A, Levin RE, Riaz M, Akhtar S, Gong YY, de Oliveira CA (2017) Effect of different microbial concentrations on binding of aflatoxin M1 and stability testing. Food Control 73:492–496. https://doi.org/10.1016/j.foodcont.2016.08.040

    Article  CAS  Google Scholar 

  54. El-Nezami H, Kankaanpaa P, Salminen S, Ahokas J (1998) Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem Toxicol 36(4):321–326. https://doi.org/10.1016/s0278-6915(97)00160-9

    Article  CAS  PubMed  Google Scholar 

  55. Sarlak Z, Rouhi M, Mohammadi R, Khaksar R, Mortazavian AM, Sohrabvandi S, Garavand F (2017) Probiotic biological strategies to decontaminate aflatoxin M1 in a traditional Iranian fermented milk drink (Doogh). Food Control 71:152–159. https://doi.org/10.1016/j.foodcont.2016.06.037

    Article  CAS  Google Scholar 

  56. Fuchs S, Sontag G, Stidl R, Ehrlich V, Kundi M, Knasmüller S (2008) Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem Toxicol 46(4):1398–1407. https://doi.org/10.1016/j.fct.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  57. Bolognani F, Rumney C, Rowland I (1997) Influence of carcinogen binding by lactic acid-producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens. Food Chem Toxicol 35(6):535–545. https://doi.org/10.1016/s0278-6915(97)00029-x

    Article  CAS  PubMed  Google Scholar 

  58. Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT (2001) Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol 67(7):3086–3091. https://doi.org/10.1128/AEM.67.7.3086-3091.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nutrition and Food Technology Research Institute (NNFTRI) of Iran.

Author information

Authors and Affiliations

Authors

Contributions

HH and MY conceived and designed the research. MY and NK conducted the research and wrote the manuscript draft. HH revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hedayat Hosseini.

Ethics declarations

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, M., Khorshidian, N. & Hosseini, H. The Ability of Probiotic Lactobacillus Strains in Removal of Benzo[a]pyrene: a Response Surface Methodology Study. Probiotics & Antimicro. Prot. 14, 464–475 (2022). https://doi.org/10.1007/s12602-021-09810-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09810-7

Keywords

Navigation