Skip to main content
Log in

Enhancement of the Anti-inflammatory Effect of Bromelain by Its Immobilization on Probiotic Spore of Bacillus cereus

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The therapeutic application of bromelain is limited due to its sensitivity to operating conditions such as high acidity, gastric proteases in the stomach juice, chemicals, organic solvents and elevated temperature. We hypothesized that bromelain immobilized on probiotic bacterial spores would show enhanced therapeutic activity through possible synergistic or additive effects. In this study, the oedema inhibition potential of bromelain immobilized on probiotic Bacillus spores was compared to the free enzyme using the carrageenan paw oedema model with Wistar rats. In batch A rats (carrageenan-induced inflammation 30 min after receiving oral treatments), group 7 rats treated with a lower dose of spore-immobilized bromelain suspension showed the highest oedema inhibition, 89.20 ± 15.30%, while group 4 treated with a lower dose of free bromelain had oedema inhibition of 60.25 ± 13.00%. For batch B rats (carrageenan-induced inflammation after receiving oral treatment for three days), group 7 rats treated with a lower dose of spore-immobilized bromelain suspension showed higher inhibition percentage (81.94 ± 8.86) than group 4 treated with a lower dose of free bromelain (78.45 ± 4.46) after 24 h. Our results showed that used alone, the enzyme and the spores produced oedema inhibition and improved the motility of the rats. The spore-immobilized bromelain formulation performed approximately 0.9-fold better than the free bromelain and the free spores at the lower evaluated dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

SCFAs:

Short-chain fatty acids

IBD:

Inflammatory bowel disease

NSAID:

Non-steroidal anti-inflammatory drugs

COX 1:

Inhibit cyclooxygenase-1

COX 2:

Cyclooxygenase-2

WHO:

World Health Organisation

DSM:

Difco sporulation medium

References

  1. Pavan R, Jain S, Shraddha C, Kumar A (2012) Properties and therapeutic application of bromelain: a review. Biotechnol Res Int 6:1–6. https://doi.org/10.1155/2012/976203

    Article  CAS  Google Scholar 

  2. Kelly GS (1996) Bromelain: a literature review and discussion of its therapeutic applications. Altern Med Rev 1:243-257. https://www.anaturalhealingcenter.com/documents/Thorne/articles/Bromelain.pdf

  3. Maurer H (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58:1234–1245. https://doi.org/10.1007/PL00000936

    Article  CAS  PubMed  Google Scholar 

  4. Hale L, Greer P, Trinh C, Gottfried M (2005) Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clin Immunol 116:135–142. https://doi.org/10.1016/j.clim.2005.04.011

    Article  CAS  PubMed  Google Scholar 

  5. Xue Y, Wu C, Brandford-White C, Ning X, Nie H, Zhu L (2010) Chemical modification of stem bromelain with anhydride groups to enhance its stability and catalytic activity. J Mol Cat B Enzym 63:188–193. https://doi.org/10.1016/j.molcatb.2010.01.018

    Article  CAS  Google Scholar 

  6. Bernela M, Ahuja M, Thakur R (2016) Enhancement of anti-inflammatory activity of bromelain by its encapsulation in katira gum nanoparticles. Carbohydr Polym 143:18–24. https://doi.org/10.1016/j.carbpol.2016.01.055

    Article  CAS  PubMed  Google Scholar 

  7. Nwagu T, Okolo B, Aoyagi H, Yoshida S (2013) Improved yield and stability of amylase by multipoint covalent binding on polyglutaraldehyde activated chitosan beads: activation of denatured enzyme molecules by calcium ions. Process Biochem 48:1031–1038. https://doi.org/10.1016/j.procbio.2013.05.013

    Article  CAS  Google Scholar 

  8. Fan Y, Tian Y, Zhao X, Zhang J, Liu J (2013) Isolation of acetoin-producing Bacillus strains from Japanese traditional food—natto. Prep Biochem Biotechnol 43:551–564. https://doi.org/10.1080/10826068.2012.762631

    Article  CAS  PubMed  Google Scholar 

  9. Hoa T, Duc L, Isticato R, Baccigalupi L, Ricca E, Van P, Cutting S (2001) Fate and dissemination of Bacillus subtilis spores in a murine model. Appl Environ Microbiol 67:3819–3823. https://doi.org/10.1128/AEM.67.9.3819-3823.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tam N, Uyen N, Hong H, Ducle H, Hoa T, Serra C, Henriques A, Cutting S (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188:2692–2700. https://doi.org/10.1128/JB.188.7.2692-2700.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cutting S (2011) Bacillus probiotics. Food Microbiol 28:214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  12. Peran L, Camuesco D, Comalada M, Bailon E, Henriksson A, Xaus J, Zarzuelo A, Galvez J (2007) Comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J Appl Microbiol 103:836–844. https://doi.org/10.1111/j.1365-2672.2007.03302.x

    Article  CAS  PubMed  Google Scholar 

  13. Moller P, Pærregaard A, Gad M, Kristensen N, Claesson M (2005) Colitic scid mice fed Lactobacillus spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells. Inflamm Bowel Dis 11:814–819. https://doi.org/10.1097/01.mib.0000175906.77340.15

    Article  PubMed  Google Scholar 

  14. Holma R, Salmenpera P, Lohi J, Vapaatalo H, Korpela R (2001) Effects of Lactobacillus rhamnosus GG and Lactobacillus reuteri R2LC on acetic acid-induced colitis in rats. Scand J Gastroenterol 36:630–635. https://doi.org/10.1080/003655201750163114

    Article  CAS  PubMed  Google Scholar 

  15. Kerry RG, Patra JK, Gouda S, Park Y, Shin H, Das G (2018) Benefaction of probiotics for human health: a review. J Food Drug Anal 26:927–939. https://doi.org/10.1016/j.jfda.2018.01.002

    Article  CAS  Google Scholar 

  16. Foligné B, Peys E, Vandenkerckhove J, Van Hemel J, Dewulf J, Breton J, Pot B (2012) Spores from two distinct colony types of the strain Bacillus subtilis PB6 substantiate anti-inflammatory probiotic effects in mice. Clin Nutr 31:987–994. https://doi.org/10.1016/j.clnu.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  17. Silva FR, Dore CM, Marques CT, Nascimento MS, Benevides NM, Rocha HA, Chavante SF, Leite EL (2009) Anticoagulant activity, paw oedema and pleurisy induced carrageenan: Action of major types of commercial carrageenans. Carbohydr Polym 79:26–33. https://doi.org/10.1016/j.carbpol.2009.07.010

    Article  CAS  Google Scholar 

  18. Solanki HK, Shah DA, Maheriya P, Patel CA (2015) Evaluation of anti-inflammatory activity of probiotic on carrageenan-induced paw oedema in Wistar rats. Int J Biol Macromol 72:1277–1282. https://doi.org/10.1016/j.ijbiomac.2014.09.059

    Article  CAS  PubMed  Google Scholar 

  19. Andrade SF, Cardoso L, Carvalho JC, Bastos JK (2007) Anti-inflammatory and antinociceptive activities of extract, fractions and populnoic acid from bark wood of Austroplenckia populnea. J Ethnopharmacol 109:464–471. https://doi.org/10.1016/j.jep.2006.08.023

    Article  CAS  PubMed  Google Scholar 

  20. Kiecolt-Glaser JK, Christian L, Preston H, Houts CR, Malarkey WB, Emery CF, Glaser R (2010) Stress, inflammation and yoga practice. Psychol Med 72:113–121. https://doi.org/10.1097/PSY.0b013e3181cb9377

    Article  CAS  Google Scholar 

  21. Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun 21:901–912. https://doi.org/10.1016/j.bbi.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  22. Vane JR, Botting RM (1998) Anti-inflammatory drugs and their mechanism of action. Inflamm Res 47:78–87. https://doi.org/10.1007/s000110050284

    Article  Google Scholar 

  23. Sostres C, Gargallo CJ, Arroyo MT, Lanas A (2010) Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract Res Clin Gastroenterol 24:121–132. https://doi.org/10.1016/j.bpg.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  24. Whelton A (2000) Renal and related cardiovascular effects of conventional and COX-2-specific NSAIDs and non-NSAID analgesics. Am J Ther 7:63–74. https://doi.org/10.1097/00045391-200007020-00004

    Article  CAS  PubMed  Google Scholar 

  25. Nwagu TN, Okolo BN, Aoyagi H (2012) Stabilization of raw-starch digesting amylase by multipoint covalent attachment of glutaraldehyde-activated amberlite beads. J Microbiol Biotech 22(5):628–636. https://doi.org/10.4014/jmb.1108.08070

    Article  CAS  Google Scholar 

  26. Lacerda MF, Lopes FM, Sartoratto A, Ponezi AN, Thomaz DV, Schimidt F, Santiago MF (2018) Stability of immobilized laccase on Luffa Cylindrica fibers and assessment of synthetic hormone degradation. Prep Biochem Biotechnol 2:1–6. https://doi.org/10.1080/10826068.2018.1525568

    Article  CAS  Google Scholar 

  27. Nwagu TN, Ugwuodo CJ (2019) Stabilizing bromelain for therapeutic applications by adsorption immobilization on spores of probiotic Bacillus. Int J Biol Macromol 127:406–414. https://doi.org/10.1016/j.ijbiomac.2019.01.061

    Article  CAS  PubMed  Google Scholar 

  28. Nwagu TN, Ugwuodo CJ, Onwosi CO, Inyima O, Uchendu OC, Akpuru C (2020) Evaluation of the probiotic attributes of Bacillus strains isolated from traditional fermented African locust bean seeds (Parkia biglobosa), “daddawa.” Ann Microbiol 70:20. https://doi.org/10.1186/s13213-020-01564-x

    Article  CAS  Google Scholar 

  29. Gashtasbi F, Ahmadian G, Noghabi KA (2014) New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization. Enzyme Microb Technol 64–65:17–23. https://doi.org/10.1016/j.enzmictec.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  30. Sudjarwo SA (2005) Anti-inflammatory and analgesic effect of bromelain in mice and rats. Univ Med 24:155-160. https://pdfs.semanticscholar.org/4a4c/15ff50ea048cccefc7ffbe287561d3382203.pdf

  31. Joseph SV, Edirisinghe I, Burton-Freeman BM (2016) Fruit polyphenols: a review of anti-inflammatory effects in humans. Crit Rev Food Sci Nutr 56:419–444. https://doi.org/10.1080/10408398.2013.767221

    Article  CAS  PubMed  Google Scholar 

  32. Phull AR, Kim SJ (2017) Fucoidan as bio-functional molecule: insights into the anti-inflammatory potential and associated molecular mechanisms. J Funct Foods 38:415–426. https://doi.org/10.1016/j.jff.2017.09.051

    Article  CAS  Google Scholar 

  33. Talero E, Ávila-Roman J, Motilva V (2012) Chemoprevention with phytonutrients and microalgae products in chronic inflammation and colon cancer. Curr Pharm Des 18:3939–3965. https://doi.org/10.2174/138161212802083725

    Article  CAS  PubMed  Google Scholar 

  34. Du B, Zhu F, Xu B (2018) An insight into the anti-inflammatory properties of edible and medicinal mushrooms. J Funct Foods 47:334–342. https://doi.org/10.1016/j.jff.2018.06.003

    Article  CAS  Google Scholar 

  35. Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180. https://doi.org/10.1016/j.carbpol.2009.01.020

    Article  CAS  Google Scholar 

  36. Brooks PM, Day RO (1991) Nonsteroidal anti-inflammatory drugs: differences and similarities. N Engl J Med 324:1716–1719. https://doi.org/10.1056/NEJM199106133242407

    Article  CAS  PubMed  Google Scholar 

  37. Cuzzocrea S, Zingarelli B, Hake P, Salzman AL, Szabo C (1998) Anti-inflammatory effects of mercaptoethylguanidine, a combined inhibitor of nitric oxide synthase and peroxynitrite scavenger, in carrageenan-induced models of inflammation. Free Radic Biol Med 24:450–459. https://doi.org/10.1016/s0891-5849(97)00280-3

    Article  CAS  PubMed  Google Scholar 

  38. Katzung BG (1998) Basic and Clinical Pharmacology. Lange, Stanford, Connecticut

    Google Scholar 

  39. Fitzhugh DJ, Shan S, Dewhirst MW, Hale L (2008) Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol 128:66–74. https://doi.org/10.1016/j.clim.2008.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majima M, Nishiyama K, Iguchi Y, Yao K, Ogino M, Ohno T, Sunahara N, Katoh K, Tatemichi N, Takei Y, Katori M (1996) Determination of bradykinin-(1–5) in inflammatory exudate by a new ELISA as a reliable indicator of bradykinin generation. Inflamm Res 45:416–423. https://doi.org/10.1007/BF02252938

    Article  CAS  PubMed  Google Scholar 

  41. Ogino M, Majima M, Kawamura M, Hatanaka K, Saito M, Harada Y, Katori M (1996) Increased migration of neutrophils to granulocyte-colony stimulating factor in rat carrageenin-induced pleurisy: roles of complement, bradykinin, and inducible cyclooxygenase-2. Inflamm Res 45:335–346. https://doi.org/10.1007/BF02252946

    Article  CAS  PubMed  Google Scholar 

  42. Wittenborg A, Bock PR, Hanisch J, Saller R, Schneider B (2000) Comparative epidemiological study in patients with rheumatic diseases illustrated in an example of a treatment with non-steroidal anti-inflammatory drugs versus an oral enzyme combination preparation. Arzneimittelforschung 50:728–738. https://doi.org/10.1055/s-0031-1300280

    Article  CAS  PubMed  Google Scholar 

  43. Masson M (1995) Bromelain in blunt injuries of the locomotor system. A study of observed applications in general practice. MMW Fortschr Med 113:303-306. https://pubmed.ncbi.nlm.nih.gov/7672747/

  44. Akhtar NM, Naseer R, Farooqi AZ, Aziz W, Nazir M (2004) Oral enzyme combination versus diclofenac in the treatment of osteoarthritis of the knee — a double-blind prospective randomized study. Clin Rheumatol 23:410–415. https://doi.org/10.1007/s10067-004-0902-y

    Article  PubMed  Google Scholar 

  45. Sumi CD, Yang BW, Yeo IC, Hahm YT (2015) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61:93–103. https://doi.org/10.1139/cjm-2014-0613

    Article  CAS  PubMed  Google Scholar 

  46. Schultz M, Burton JP, Chanyi RM (2017) Use of Bacillus in human intestinal probiotic applications. In Floch MH, Ringel Y, Walker WA (ed) The microbiota in gastrointestinal pathophysiology implications for human health, prebiotics, probiotics and dysbiosis, Academic Press, United Kingdom, pp 119-123. https://doi.org/10.1016/B978-0-12-804024-9.00011-2

  47. Chen C, Kong M, Lai M, Chao H, Chang K, Chen S, Huang Y, Chiu C, Li W, Lin P, Chen C, Li T (2010) Probiotics have clinical, microbiologic, and immunologic efficacy in acute infectious diarrhea. Pediatr Infect Dis J 29:135–138. https://doi.org/10.1097/inf.0b013e3181b530bf

    Article  PubMed  Google Scholar 

  48. Spinosa MR, Braccini T, Ricca E, De Felice M, Morelli L, Pozzi G, Oggioni MR (2000) On the fate of ingested Bacillus spores. Res Microbiol 151:361–368. https://doi.org/10.1016/s0923-2508(00)00159-5

    Article  CAS  PubMed  Google Scholar 

  49. Hong HA, Khaneja R, Tam NM, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160:134–143. https://doi.org/10.1016/j.resmic.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  50. Le Duc H, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70:2161–2171. https://doi.org/10.1128/AEM.70.4.2161-2171.2004

    Article  CAS  PubMed Central  Google Scholar 

  51. Muhammad ZA, Ahmad T (2017) Therapeutic uses of pineapple-extracted bromelain in surgical care - a review. J Pak Med Assoc 67(1):121–125

    PubMed  Google Scholar 

  52. Zengion AH, Yarnell E (2011) Herbal and nutritional supplements in painful condition. In: Pain procedures in Clinical practice (Third Edition) Elsevier Publishing. Pp. 187-204

  53. Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias, Behavioral Ecology, 15(6), Pp 1044 – 1045. 1045, https://doi.org/10.1093/beheco/arh107

  54. Thompson B (2017) Effect sizes, confidence intervals and confidence intervals of effect sizes. Psychology in the Schools 44(5):426–431

    Google Scholar 

  55. Peper A (2009) Aspects of the relationship between drug dose and drug effect. Dose-Repsonse 7:172–192. https://doi.org/10.2203/dose-response.08-019.Peper

    Article  CAS  Google Scholar 

  56. Archer AC, Muthukumar SP, Halami PM (2015) Anti-inflammatory potential of probiotic Lactobacillus spp. on carrageenan induced paw oedema in Wistar rats. Int J Biol Macromol 81:530–537. https://doi.org/10.1016/j.ijbiomac.2015.08.044

    Article  CAS  PubMed  Google Scholar 

  57. Ramli AM, Aznan TN, Illias R (2017) Bromelain: from production to commercialisation. J Sci Food Agric 97:1386–1395

    Article  CAS  Google Scholar 

  58. Elisashvili V, Kachlishvili E, Chikinda ML (2019) Recent advances in the physiology of the spore formation for Bacillus probiotic production. Probiotic & Antimicro Prot 11:731–747. https://doi.org/10.1007/s12602-018-9492-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CU carried out the laboratory experiments, conducted the statistical analysis and contributed during the writing of the manuscript. TU assisted in the laboratory experiments and data collation and analysis. COO assisted in the supervision and contributed in writing the manuscript. TNTN designed the work, supervised and contributed in result analysis and writing the manuscript. All authors read and approved the manuscript for submission.

Corresponding author

Correspondence to Tochukwu Nwamaka T. Nwagu.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugwuodo, C.J., Nwagu, T.N.T., Ugwu, T.T. et al. Enhancement of the Anti-inflammatory Effect of Bromelain by Its Immobilization on Probiotic Spore of Bacillus cereus. Probiotics & Antimicro. Prot. 13, 847–861 (2021). https://doi.org/10.1007/s12602-020-09714-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09714-y

Keywords

Navigation