Skip to main content

Advertisement

Log in

Probiotics—Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects—Not Only for Humans

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Speedy AW (2003) Global production and consumption of animal source foods. J Nutr 13:4048S–4053S. https://doi.org/10.1093/jn/133.11.4048S

    Article  Google Scholar 

  2. OECD/FAO (2018) OECD - FAO Agricultural Outlook 2018–2027. Paris: OECD Publishing https://doi.org/10.1787/agr_outlook-2018-en

  3. FAO (2016) “Probiotics in animal nutrition – production, impact and regulation,” in Makkar FAO Animal Production and Health Paper No. 179, ed. P. S. Harinder (Rome: FAO). https://doi.org/10.3920/BM2008.1002

  4. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H et al (2010) Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  5. Niewold TA (2007) The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult Sci 86:605–609. https://doi.org/10.1093/ps/86.4.605

    Article  CAS  PubMed  Google Scholar 

  6. Lee ON, Lyu SR, Wang RC, Weng CF, Chen BJ (2011) Exhibit differential functions of various antibiotic growth promoters in broiler growth, immune response and gastrointestinal physiology. Int J Poult Sci 10:216–220. https://doi.org/10.3923/ijps.2011.216.220

    Article  CAS  Google Scholar 

  7. Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733. https://doi.org/10.1128/CMR.00002-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    CAS  PubMed  Google Scholar 

  9. American Meat Institution (2013) The facts about antibiotics in livestock & poultry production. Available at: https://www.meatinstitute.org/index.php?ht= a/GetDocumentAction/i/99943

  10. Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on grampositive bacteria. Clin Microbiol Rev 16:175–188. https://doi.org/10.1128/CMR.16.2.175-188.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verstegen MWA, Williams BA (2002) Alternatives to the use of antibiotics as growth promoters for monogastric animals. Anim Biotechnol 13:113–127. https://doi.org/10.1081/ABIO-120005774

    Article  CAS  PubMed  Google Scholar 

  12. Kogut MH (2014) Perspectives and research challenges in veterinary infectious diseases. Front Vet Sci 1:21. https://doi.org/10.3389/fvets.2014.00021

    Article  PubMed  PubMed Central  Google Scholar 

  13. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA et al (2016) Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 16:239–251. https://doi.org/10.1016/S1473-3099(15)00466-1

    Article  CAS  PubMed  Google Scholar 

  14. Tuohy KM, Rouzaud GCM, Bruck WM, Gibson GR (2005) Modulation of the human gut microflora towards improved health using probiotics assessment of efficacy. Curr Pharmaceut Design 11:75–90. https://doi.org/10.2174/1381612053382331

    Article  CAS  Google Scholar 

  15. Allen HK, Levine UY, Looft T, Bandrick M, Casey TA (2013) Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol 21:114–119. https://doi.org/10.1016/j.tim.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  16. Seal BS, Drider D, Oakley BB, Brüssow H, Bikard D, Rich JO et al (2018) Microbial-derived products as potential new antimicrobials. Vet Res 49:66. https://doi.org/10.1186/s13567-018-0563-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Rome: FAO. https://doi.org/10.1111/j.1469-0691.2012.03873

  18. Hill C, Guarner FG, Reid GR, Gibson DJ, Merenstein B et al (2014) Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  Google Scholar 

  19. Williams BA, Verstegen MW, Tamminga S (2001) Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev 14:207–227. https://doi.org/10.1079/NRR200127

    Article  CAS  PubMed  Google Scholar 

  20. Choct M (2009) Managing gut health through nutrition. Br Poult Sci 50:9–15. https://doi.org/10.1080/00071660802538632

    Article  CAS  PubMed  Google Scholar 

  21. Yirga H (2015) The use of probiotics in animal nutrition. J Prob Health 3:132. https://doi.org/10.4172/2329-8901.1000132

    Article  CAS  Google Scholar 

  22. Kabir SML (2009) The role of probiotics in the poultry industry. Int J Mol Sci 10(8):3531–3546. https://doi.org/10.3390/ijms10083531

    Article  CAS  Google Scholar 

  23. Alloui MN, Szczurek W, Swiatkiewicz S (2013) The usefulness of prebiotics and probiotics in modern poultry nutrition: a review. Ann Anim Sci 13:17–32. https://doi.org/10.2478/v10220-012-0055-x

    Article  Google Scholar 

  24. Pandiyan P, Balaraman D, Thirunavukkarasu R, George EGJ, Subaramaniyan K, Manikkam S et al (2013) Probiotics in aquaculture. Drug Invent Today 5:55–59. https://doi.org/10.1016/j.dit.2013.03.003

    Article  CAS  Google Scholar 

  25. Dowarah R, Verma AK, Agarwal N (2017) The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Anim Nutr 3:1–6. https://doi.org/10.1016/j.aninu.2016.11.002

    Article  PubMed  Google Scholar 

  26. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27:201–214. https://doi.org/10.1177/0884533611436116

    Article  PubMed  PubMed Central  Google Scholar 

  27. FAO (2013) Poultry development review. FAO, Rome

    Google Scholar 

  28. Seo JK, Kim SW, Kim MH, Upadhaya SD, Kam DK, Ha JK (2010) Direct-fed microbials for ruminant animals. Asian Austral J Anim Sci 23:1657–1667. https://doi.org/10.5713/ajas.2010.r.08

    Article  Google Scholar 

  29. Hai NV (2015) The use of probiotics in aquaculture. J Appl Microbiol 119:917–935. https://doi.org/10.1111/jam.12886

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77. https://doi.org/10.1016/j.rvsc.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  31. Carnevali O, Maradonna F, Gioacchini G (2017) Integrated control of fish metabolism, wellbeing and reproduction: the role of probiotic. Aquaculture 472:144–155. https://doi.org/10.1016/j.aquaculture.2016.03.037

    Article  CAS  Google Scholar 

  32. Liao SF, Nyachoti CM (2017) Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr 3:331–343. https://doi.org/10.1016/j.aninu.2017.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol 10:57. https://doi.org/10.3389/fmicb.2019.00057

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thornton P (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc Lond Ser B Biol Sci 365(1554):2853–2867. https://doi.org/10.1098/rstb.2010.0134

    Article  Google Scholar 

  35. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL et al (2011) Foodborne illness acquired in the United States–major pathogens. Emerging Infect Dis 17:7–15. https://doi.org/10.3201/eid1701.P11101

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lei X, Piao X, Ru Y, Zhang H, Péron A, Zhang H (2015) Effect of Bacillus amyloliquefaciens-based direct-fed microbial on performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. Asian-Australasian J Anim Sci 28(2):239–246. https://doi.org/10.5713/ajas.14.0330

    Article  CAS  Google Scholar 

  37. Rigobelo EC, Ávila FA (2012) Protective effect of probiotics strains in ruminants. In Rigobelo EC (ed): “Probiotic in Animals. InTech.” Croatia: In Tech, pp. 455–466. https://doi.org/10.5772/50054

  38. Bajagai YS, Klieve AV, Dart PJ, Bryden WL (2016) Probiotics in animal nutrition, production, impact and regulation. In: Makkar HPS, editor. FAO animal production and health paper No. 179. Rome, Italy: Food and Agriculture Organization of the United Nation

  39. Jha DK, Bhujel RC, Anal AK (2015) Dietary supplementation of probiotics improves survival and growth of rohu (Labeo rohita Ham.) hatchlings and fry in outdoor tanks. Aquaculture 435:475–479. https://doi.org/10.1016/j.aquaculture.2014.10.026

    Article  CAS  Google Scholar 

  40. Farrell D (2013) The role of poultry in human nutrition. http://wwwfaoorg/docrep/013/al709e/ al709e00pdf Accessed 10 April 2015

  41. FAO [Food and Agriculture Organiz1ation of the United Nations], (2014a) Meat & meat products. http://wwwfaoorg/ag/againfo/themes/en/meat/homehtml Accessed 18 December 2014

  42. Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82:627–631. https://doi.org/10.1093/ps/82.4.627

    Article  CAS  PubMed  Google Scholar 

  43. Shokryazdan P, Kalavathy R, Sieo CC, Alitheen NB, Liang JB, Jahromi MF, Ho YW (2014) Isolation and characterization of Lactobacillus strains as potential probiotics for chickens. Pertanika J Trop Agric Sci 37:141–157

    Google Scholar 

  44. Dalloul R, Lillehoj H, Shellem T, Doerr J (2003) Enhanced mucosal immunity against Eimeria acervulina in broilers fed a Lactobacillus-based probiotic. Poult Sci 82(1):62–66. https://doi.org/10.1093/ps/82.1.62

    Article  CAS  PubMed  Google Scholar 

  45. Jayaraman S, Thangavel G, Kurian H, Mani R, Mukkalil R, Chirakkal H (2013) Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poult Sci 92(2):370–374. https://doi.org/10.3382/ps.2012-02528

    Article  CAS  PubMed  Google Scholar 

  46. Ghareeb K, Awad W, Mohnl M, Porta R, Biarnes M, Böhm J, Schatzmayr G (2012) Evaluating the efficacy of an avian-specific probiotic to reduce the colonization of Campylobacter jejuni in broiler chickens. Poult Sci 91(8):1825–1832. https://doi.org/10.3382/ps.2012-02168

    Article  CAS  PubMed  Google Scholar 

  47. Haghighi HR, Abdul-Careem MF, Dara RA, Chambers JR, Sharif S (2008) Cytokine gene expression in chicken caecal tonsils following treatment with probiotics and Salmonella infection. Veter Microbiol 126(1):225–233. https://doi.org/10.1016/j.vetmic.2007.06.026

    Article  CAS  Google Scholar 

  48. Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM (2012) Probiotics/direct fed microbials for Salmonella control in poultry. Food Res Int 45(2):628–633. https://doi.org/10.1016/j.foodres.2011.03.047

    Article  Google Scholar 

  49. Biloni A, Quintana C, Menconi A, Kallapura G, Latorre J, Pixley C, Layton S, Dalmagro M, Hernandez-Velasco X, Wolfenden A (2013) Evaluation of effects of EarlyBird associated with FloraMax-B11 on Salmonella enteritidis, intestinal morphology, and performance of broiler chickens. Poult Sci 92(9):2337–2346. https://doi.org/10.3382/ps.2013-03279

    Article  CAS  PubMed  Google Scholar 

  50. Afsharmanesh M, Sadaghi B (2014) Effects of dietary alternatives (probiotic, green tea powder and Kombucha tea) as antimicrobial growth promoters on growth, ileal nutrient digestibility, blood parameters, and immune response of broiler chickens. Comparative Clin Pathol 23(3):717–724. https://doi.org/10.1007/s00580-013-1676-x

    Article  CAS  Google Scholar 

  51. Mookiah S, Sieo CC, Ramasamy K, Abdullah N, Ho YW (2014) Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J Sci Food Agric 94(2):341348. https://doi.org/10.1002/jsfa.6365

    Article  CAS  Google Scholar 

  52. Zhang Z, Kim I (2014) Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult Sci 93(2):364–370. https://doi.org/10.3382/ps.2013-03314

    Article  CAS  PubMed  Google Scholar 

  53. Shim Y, Ingale S, Kim J, Kim K, Seo D, Lee S, Chae B, Kwon I (2012) A multi-microbe probiotic formulation processed at low and high drying temperatures: effects on growth performance, nutrient retention and caecal microbiology of broilers. Brit Poult Sci 53(4):482–490. https://doi.org/10.1080/00071668.2012.690508

    Article  CAS  Google Scholar 

  54. Abdel-Rahman H, Shawky S, Ouda H, Nafeaa A, Orabi S (2013) Effect of two probiotics and bioflavonoids supplementation to the broilers diet and drinking water on the growth performance and hepatic antioxidant parameters. Global Veterinaria 10(6):734–741. https://doi.org/10.5829/idosi.gv.2013.10.6.7459

    Article  Google Scholar 

  55. Bai SP, Wu AM, Ding X, Lei Y, Bai J, Zhang KY, Chio JS (2013) Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poult Sci 92(3):663–670. https://doi.org/10.3382/ps.2012-02813

    Article  CAS  PubMed  Google Scholar 

  56. Cao GT, Zeng XF, Chen AG, Zhou L, Zhang L, Xiao YP, Yang CM (2013) Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci 92:2949–2955. https://doi.org/10.3382/ps.2013-03366

    Article  CAS  PubMed  Google Scholar 

  57. Landy N, Kavyani A (2013) Effects of using a multi-strain probiotic on performance, immune responses and caecal microflora composition in broiler chickens reared under cyclic heat stress condition. Iran J Appl Anim Sci 3(4):703–708

    Google Scholar 

  58. Bujnakova D, Strakova E, Kmet V (2014) In vitro evaluation of the safety and probiotic properties of lactobacilli isolated from chicken and calves. Anaerobe 29:118–127. https://doi.org/10.1016/j.anaerobe.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  59. Cean A, Stef L, Simiz E, Julean C, Dumitrescu G, Vasile A, Pet E, Drinceanu D, Corcionivoschi N (2015) Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry. Foodborne Pathog Dis 12:122–130. https://doi.org/10.1089/fpd.2014.1849

    Article  PubMed  Google Scholar 

  60. Wang L, Liu C, Chen M, Ya T, Huang W, Gao P, Zhang H (2015) A novel Lactobacillus plantarum strain P-8 activates beneficial immune response of broiler chickens. Int Immunopharmacol 29:901–907. https://doi.org/10.1016/j.intimp.2015.07.024

    Article  CAS  PubMed  Google Scholar 

  61. García-Hernández Y, Rodríguez Z, Brandão LR, Rosa CA, Nicoli JR, Elías Iglesias A, Peréz-Sanchez T, Salabarría RB, Halaihel N (2012) Identification and in vitro screening of avian yeasts for use as probiotic. Res Vet Sci 93:798–802. https://doi.org/10.1016/j.rvsc.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  62. Park JH, Kim IH (2014) Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poult Sci 93:2054–2059. https://doi.org/10.3382/ps.2013-03818

    Article  CAS  PubMed  Google Scholar 

  63. Ahmed ST, Islam MM, Mun HS, Sim HJ, Kim YJ, Yang CJ (2014) Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poult Sci 93(8):1963–1971. https://doi.org/10.3382/ps.2013-03718

    Article  CAS  PubMed  Google Scholar 

  64. Jahromi MF, Liang JB, Ebrahimi R, Shokryazdan P (2014) Inventors; Universiti Putra Malaysia, assignee: composition for reducing metal toxicity and a method thereof. Malaysia Patent PI2014702845

  65. Latha S, Vinothini G, John Dickson Calvin D, Dhanasekaran D (2015) In vitro probiotic profile based selection of indigenous actinobacterial probiont Streptomyces sp. JD9 for enhanced broiler production. J Biosci Bioeng 121:124–131. https://doi.org/10.1016/j.jbiosc.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  66. Arsi K, Donoghue AM, Woo-Ming A, Blore PJ, Donoghue DJ (2015) The efficacy of selected probiotic and prebiotic combinations in reducing Campylobacter colonization in broiler chickens. J Appl Poult Res 24:327–334. https://doi.org/10.3382/japr/pfv032

    Article  CAS  Google Scholar 

  67. Upadhaya SD, Hossiendoust A, Kim IH (2016) Probiotics in Salmonella-challenged Hy-Line brown layers. Poult Sci 95:1894–1897. https://doi.org/10.3382/ps/pew106

    Article  CAS  PubMed  Google Scholar 

  68. Fajardo P, Pastrana L, Mendez J, Rodriguez I, Fucinos C, Guerra NP (2012) Effects of feeding of two potentially probiotic preparations from lactic acid bacteria on the performance and faecal microflora of broiler chickens. Scientific World J Art. No. 562635

  69. Hung AT, Lin SY, Yang TY, Chou CK, Liu HC, Lu JJ, Wang B, Chen SY, Lien TF (2012) Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Anim Prod Sci 52(9):874–879

    CAS  Google Scholar 

  70. Gallazzi D, Giardini A, Mangiagalli MG, Marelli S, Ferrazzi V, Orsi C, Cavalchini LG (2009) Effects of Lactobacillus acidophilus D2/CSL on laying hen performance. Ital J Anim Sci 7(1):27–38. https://doi.org/10.4081/ijas.2008.27

    Article  Google Scholar 

  71. Mikulski D, Jankowski J, Naczmanski J, Mikulska M, Demey V (2012) Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poult Sci 91(10):2691–2700. https://doi.org/10.3382/ps.2012-02370

    Article  CAS  PubMed  Google Scholar 

  72. Kurtoglu V, Kurtoglu F, Seker E, Coskun B, Balevi T, Polat E (2004) Effect of probiotic supplementation on laying hen diets on yield performance and serum and egg yolk cholesterol. Food Additives and Contamination 21(9):817–823. https://doi.org/10.1080/02652030310001639530

    Article  CAS  Google Scholar 

  73. Salma U, Miah A, Tareq K, Maki T, Tsujii H (2007) Effect of dietary Rhodobacter capsulatus on egg-yolk cholesterol and laying hen performance. Poult Sci 86(4):714–719. https://doi.org/10.1093/ps/86.4.714

    Article  CAS  PubMed  Google Scholar 

  74. Jahromi MF, Altaher YW, Shokryazdan P, Ebrahimi R, Ebrahimi M, Idrus Z, Goh YM, Tufarelli V, Liang JB (2015) Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. Int J Biometeorol 60:1099–1110. https://doi.org/10.1007/s00484-015-1103-x

    Article  Google Scholar 

  75. Zhao X, Guo Y, Guo S, Tan J (2013) Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl Microbiol Biotechnol 97(14):6477–6488

    CAS  PubMed  Google Scholar 

  76. Amerah A, Quiles A, Medel P, Sánchez J, Lehtinen M, Gracia M (2013) Effect of pelleting temperature and probiotic supplementation on growth performance and immune function of broilers fed maize/soy-based diets. Anim Feed Sci Technol 180(1):55–63

    CAS  Google Scholar 

  77. Giannenas I, Papadopoulos E, Tsalie E, Triantafillou E, Henikl S, Teichmann K, Tontis D (2012) Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. Vet Parasitol 188(1/2):31–40

    CAS  PubMed  Google Scholar 

  78. Chawla S, Katoch S, Sharma K, Sharma V (2013) Biological response of broiler supplemented with varying dose of direct fed microbial. Vet World 6(8):521–524

    Google Scholar 

  79. Haddadin M, Abdulrahim S, Hashlamoun E, Robinson R (1996) The effect of Lactobacillus acidophilus on the production and chemical composition of hen’s eggs. Poult Sci 75(4):491–494

    CAS  PubMed  Google Scholar 

  80. Panda A, Reddy M, Rao SR, Praharaj N (2003) Production performance, serum/yolk cholesterol and immune competence of white leghorn layers as influenced by dietary supplementation with probiotic. Trop Anim Health Prod 35(1):85–94. https://doi.org/10.1023/A:1022036023325

    Article  CAS  PubMed  Google Scholar 

  81. Yörük M, Gül M, Hayirli A, Macit M (2004) The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens. Poult Sci 83(1):84–88. https://doi.org/10.1093/ps/83.1.84

    Article  PubMed  Google Scholar 

  82. Li L, Xu CL, Ji C, Ma Q, Hao K, Jin ZY, Li K (2006) Effects of a dried Bacillus subtilis culture on egg quality. Poult Sci 85(2):364–368. https://doi.org/10.1093/ps/85.2.364

    Article  CAS  PubMed  Google Scholar 

  83. Balevi T, Ucan U, Coşun B, Kurtoğu V, Cetingül I (2001) Effect of dietary probiotic on performance and humoral immune response in layer hens. Brit Poultry Sci 42(4):456–461. https://doi.org/10.1080/00071660120073133

    Article  CAS  Google Scholar 

  84. Asli MM, Hosseini SA, Lotfollahian H, Shariatmadari F (2007) Effect of probiotics, yeast, vitamin E and vitamin C supplements on performance and immune response of laying hen during high environmental temperature. Int J Poult Sci 6(12):895–900. https://doi.org/10.3923/ijps.2007.895.900

    Article  Google Scholar 

  85. Dizaji SB, Pirmohammadi R (2009) Effect of Saccharomyces cerevisiae and Bioplus 2B on performance of laying hens. Int J Agric Biol 11(4):495–497

    Google Scholar 

  86. Yousefi M, Karkoodi K (2007) Effect of probiotic Thepax® and Saccharomyces cerevisiae supplementation on performance and egg quality of laying hens. Int J Poult Sci 6(1):52–54. https://doi.org/10.3923/ijps.2007.52.54

    Article  Google Scholar 

  87. Guo JR, Dong XF, Liu S, Tong JM (2017) Effects of long-term Bacillus subtilis CGMCC 1.921 supplementation on performance, egg quality, and fecal and cecal microbiota of laying hens. Poult Sci 96:1280–1289

    CAS  PubMed  Google Scholar 

  88. Sobczak A, Kozłowski K (2015) The effect of a probiotic preparation containing Bacillus subtilis ATCC PTA-6737 on egg production and physiological parameters of laying hens. Ann Anim Sci 15:711–723

    CAS  Google Scholar 

  89. Fathi M, Al-Homidan I, Al-Dokhail A, Ebeid T, Abou-Emera O, Alsagan A (2018) Effects of dietary probiotic (Bacillus subtilis) supplementation on productive performance, immune response and egg quality characteristics in laying hens under high ambient temperature. Ital J Anim Sci 17(3):804–814. https://doi.org/10.1080/1828051X.2018.1425104

    Article  CAS  Google Scholar 

  90. de Lange CFM, Pluske J, Gong J, Nyachoti CM (2010) Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest Sci 134:124–134. https://doi.org/10.1016/j.livsci.2010.06.117

    Article  Google Scholar 

  91. Le Bon M, Davies HE, Glynn C, Thompson C, Madden M, Wiseman J et al (2010) Influence of probiotics on gut health in the weaned pig. Livest Sci 133:179–181. https://doi.org/10.1016/j.livsci.2010.06.058

    Article  Google Scholar 

  92. Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM (2013) Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhea without using in-feed antimicrobials. J Anim Physiol Anim Nutr 97:207–237. https://doi.org/10.1111/j.1439-0396.2012.01284.x

    Article  CAS  Google Scholar 

  93. Sezen AG (2013) Effects of prebiotics, probiotics and synbiotics upon human and animal health. Atatürk Üniv Vet Bil Derg 8:248–258

    Google Scholar 

  94. Adjiri-Awere A, van Lunen TA (2005) Subtherapeutic use of antibiotics in pork production: risks and alternatives. Can J Anim Sci 85:117–130. https://doi.org/10.4141/A04-041

    Article  CAS  Google Scholar 

  95. Guerra NP, Castro LP (2009) Probiotics: production, evaluation and uses in animal feed. Research Signpost, Trivandrum

    Google Scholar 

  96. Cromwell GL (2002) Why and how antibiotics are used in swine production. Anim Biotechnol 13:7–27. https://doi.org/10.1081/ABIO-120005767

    Article  PubMed  Google Scholar 

  97. Thacker PA (2013) Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 4:35. https://doi.org/10.1186/2049-1891-4-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Casewell M, Friis C, Marco E, McMullin P, Phillips I (2003) The European ban on growth promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52:159–161. https://doi.org/10.1093/jac/dkg313

    Article  CAS  PubMed  Google Scholar 

  99. European Commission, (2005) Ban on antibiotics as growth promoters in animal feed enters into effect. Brussels, Belgium: Press Release Database. IP/05/1687

  100. Seal BS, Lillehoj HS, Donovan DM, Gay CG (2013) Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim Health Res Rev 14:78–87. https://doi.org/10.1017/S1466252313000030

    Article  PubMed  Google Scholar 

  101. Reid G, Friendship R (2002) Alternatives to antibiotic use: probiotics for the gut. Anim Biotechnol 13:97–112. https://doi.org/10.1081/ABIO-120005773

    Article  PubMed  Google Scholar 

  102. Bomba A, Nemcova R, Gancarcikova S, Herich R, Kastel R (1999) Potentiation of the effectiveness of Lactobacillus casei in the prevention of E. coli induced diarrhea in conventional and gnotobiotic pigs. Adv Exp Med Biol 473:185–190

    CAS  PubMed  Google Scholar 

  103. Chang YH, Kinm JK, Kim HJ, Kim WY, Kim YB, Park YH (2000) Probiotic effects of Lactobacillus reuteri BSA-131 on piglets. San’oeb Misaengmul Haghoeji 28:8–13

    CAS  Google Scholar 

  104. Huang Y, Li YL, Cui ZW, Yu DY, Rajput IR, Hu CH, Li WF (2012) Effect of orally administered Enterococcus faecium EF1 on intestinal cytokines and chemokines production of suckling piglets. Park Vet J 32:81–84

    Google Scholar 

  105. Suo C, Yin Y, Wang X, Lou X, Song D, Wang X, Gu Q (2012) Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet Res 8:89. https://doi.org/10.1186/1746-6148-8-89

    Article  PubMed  Google Scholar 

  106. Liu H, Zhang J, Zhang S, Yang F, Thacker PA, Zhang G, Qiao S, Ma X (2014) Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem 62:860–866. https://doi.org/10.1021/jf403288r

    Article  CAS  PubMed  Google Scholar 

  107. Wang J, Ji GF, Hou CL, Wang SX, Zhang DY, Liu H, Shan DC, Wang YM (2014) Effects of Lactobacillus johnsonii XS4 supplementation on reproductive performance, gut environment, and blood biochemical and immunological index in lactating sows. Livest Sci 164:96–101. https://doi.org/10.1016/j.livsci.2014.03.008

    Article  Google Scholar 

  108. Lv CH, Wang T, Regmi N, Chen X, Huang K, Liao SF (2015) Effects of dietary supplementation of selenium-enriched probiotics on production performance and intestinal microbiota of weanling piglets raised under high ambient temperature. J Anim Physiol Anim Nutr 99:1161–1171. https://doi.org/10.1111/jpn.12326

    Article  CAS  Google Scholar 

  109. Herfel TM, Jacobi SK, Lin X, Jouni ZE, Chichlowski M, Stahl CH, Odle J (2013) Dietary supplementation of Bifidobacterium longum strain AH1206 increases its cecal abundance and elevates intestinal interleukin-10 expression in the neonatal piglet. Food Chem Toxicol 60:116–122. https://doi.org/10.1016/j.fct.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  110. Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Park CS, Kang DK (2015) Effects of probiotic Enterococcus faecium NCIMB 11181 administration on swine fecal microbiota diversity and composition using barcoded pyrosequencing. Anim Feed Sci Technol 201:80–88. https://doi.org/10.1016/j.anifeedsci.2015.01.011

    Article  CAS  Google Scholar 

  111. Hanczakowska E, Świątkiewicz M, Natonek-Wiśniewska M, Okoń K (2016) Medium chain fatty acids (MCFA) and /or probiotic Enterococcus faecium as a feed supplement for piglets. Livest Sci 192:1–7. https://doi.org/10.1016/j.livsci.2016.08.002

    Article  Google Scholar 

  112. Meng QW, Yan L, Ao X, Zhou TX, Wang JP, Lee JH et al (2010) Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J Anim Sci 88:3320–3326. https://doi.org/10.2527/jas.2009-2308

    Article  CAS  PubMed  Google Scholar 

  113. Hu Y, Dun Y, Li S, Zhao S, Peng N, Liang Y (2014) Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian Australasian J Anim Sci 27:1131–1140. https://doi.org/10.5713/ajas.2013.13737

    Article  CAS  Google Scholar 

  114. Kantas D, Papatsiros VG, Tassis PD, Giavasis I, Bouki P, Tzika ED (2015) A feed additive containing Bacillus toyonensis (Toyocerin (R)) protects against enteric pathogens in post-weaning piglets. J Appl Microbiol 118(3):727–738. https://doi.org/10.1111/jam.12729

    Article  CAS  PubMed  Google Scholar 

  115. Alexopoulos C, Georgoulakis IE, Tzivara A, Kritas SK, Siochu A, Kyriakis SC (2004) Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J Anim Physiol Anim Nutr (Berl) 88:381–392. https://doi.org/10.1111/j.1439-0396.2004.00492.x

    Article  CAS  Google Scholar 

  116. Gaggia F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:S15–S28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031

    Article  PubMed  Google Scholar 

  117. Franz CM, Huch M, Abriouel H, Holzapfel W, Galvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  118. Davis M, Parrott T, Brown D, De Rodas B, Johnson Z, Maxwell C, Rehberger T (2008) Effect of a Bacillus based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. J Anim Sci 86(6):1459–1467

    CAS  PubMed  Google Scholar 

  119. Van Heugten E, Funderburke D, Dorton K (2003) Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast. J Anim Sci 81(4):1004–1012

    PubMed  Google Scholar 

  120. Ross GR, Gusils C, Oliszewski R, De Holgado SC, González SN (2010) Effects of probiotic administration in swine. J Biosci Bioeng 109(6):545–549

    CAS  PubMed  Google Scholar 

  121. Collado MC, Grzeskowiak L, Salminen S (2007) Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol 55(3):260–265

    CAS  PubMed  Google Scholar 

  122. Szabó I, Wieler LH, Tedin K, Scharek-Tedin L, Taras D, Hensel A, Appel B, Nöckler K (2009) Influence of a probiotic strain of Enterococcus faecium on Salmonella enterica serovar Typhimurium DT104 infection in a porcine animal infection model. Appl Environm Microbiol 75(9):2621–2628

    Google Scholar 

  123. Wang A, Yu H, Gao X, Li X, Qiao S (2009) Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets. Antonie Van Leeuwenhoek 96(1):89–98

    CAS  PubMed  Google Scholar 

  124. Lessard M, Dupuis M, Gagnon N, Nadeau E, Matte J, Goulet J, Fairbrother J (2009) Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge [Erratum: 2009 Oct., v. 87, no. 10, p. 3440.]. J Anim Sci 87(3)

  125. Siepert B, Reinhardt N, Kreuzer S, Bondzio A, Twardziok S, Brockmann G, Nöckler K, Szabó I, Janczyk P, Pieper R (2014) Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets. Vet Immunol Immunopathol 157(1):65–77

  126. Scharek L, Guth J, Reiter K, Weyrauch K, Taras D, Schwerk P, Schierack P, Schmidt M, Wieler L, Tedin K (2005) Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet Immunol Immunopathol 105(1):151–161

    CAS  PubMed  Google Scholar 

  127. Oltjen JW, Beckett JL (1996) Role of ruminant livestock in sustainable agricultural systems. J Anim Sci 74(6):1406–1409

    CAS  PubMed  Google Scholar 

  128. Guedes CM, Gonçalves D, Rodrigues MAM, Dias-Da-Silva A (2008) Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Animal Feed Sci Technol 145:27–40. https://doi.org/10.1016/j.anifeedsci.2007.06.037

    Article  CAS  Google Scholar 

  129. Marden JP, Julien C, Monteils V, Auclair E, Moncoulon R, Bayourthe C (2008) How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? J Dairy Sci 91:3528–3535. https://doi.org/10.3168/jds.2007-0889

    Article  CAS  PubMed  Google Scholar 

  130. Chaucheyras-Durand F, Fonty G (2001) Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reprod Nutr Develop 41:57–68. https://doi.org/10.1051/rnd:2001112

    Article  CAS  Google Scholar 

  131. Mosoni P, Chaucheyras-Durand F, Béra-Maillet C, Forano E (2007) Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J Appl Microbiol 103:2676–2685. https://doi.org/10.1111/j.1365-2672.2007.03517.x

    Article  CAS  PubMed  Google Scholar 

  132. Hussain MA, Yu S, Bennett G (2012) Importance of probiotics for ruminants. New Zealand Food Technol, News

    Google Scholar 

  133. Jahromi MF, Liang JB, Shokryazdan P (2011) Inventors; Universiti Putra Malaysia, assignee: method for reduction of methane production per unit of volatile fatty acids (VFA) production from ruminants and improvement of microbial feed degradation using lactic acid bacteria (LAB). Malaysia Patent PI2011005281

  134. Takahashi J (2013) Lactic acid bacteria and mitigation of GHG emission from ruminant livestock. In Kongo JM (ed): “Lactic Acid Bacteria–R & D for Food, Health and Livestock Purposes. InTech.” https://doi.org/10.5772/50358

  135. Ferket P, Van Heugten E, Van Kempen T, Angel R (2002) Nutritional strategies to reduce environmental emissions from non ruminants. J Anim Sci 80:E168–E182. https://doi.org/10.2527/animalsci2002.80E-Suppl_2E168x

    Article  Google Scholar 

  136. Agarwal N, Kamra DN, Chaudhary LC, Agarwal L, Sahoo A, Pathak NN (2002) Microbial status and rumen enzyme profile of crossbred calves on different microbial feed additives. Lett Appl Microbil 34:329–336. https://doi.org/10.1046/j.1472-765X.2002.01092.x

    Article  CAS  Google Scholar 

  137. Schamberger GP, Diez-Gonzalez F (2002) Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Escherichia coli O157:H7. J Food Protec 65:1381–1387. https://doi.org/10.4315/0362-028X-65.9.1381

    Article  Google Scholar 

  138. Tkalcic S, Zhao T, Harmon BG, Doyle MP, Brown A, Zhao P (2003) Fecal shedding of entero-hemorrhagic Escherichia coli in weaned calves following treatment with probiotic Escherichia coli. J Food Protec 66:184–1189. https://doi.org/10.4315/0362-028X-66.7.1184

    Article  Google Scholar 

  139. Schamberger GP, Ronald L, Phillips RL, Jennifer L, Jacobs JL, Diez-Gonzalez F (2004) Reduction of Escherichia coli O157:H7 populations in cattle by addition of colicin E7-producing E. coli to feed. Appl Environ Microbiol 70:6053–6060. https://doi.org/10.1128/AEM.70.10.6053-6060.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Younts-Dahl SM, Galyean ML, Lonergan GH, Elam NA, Brashears MM (2004) Dietary supplementation with LactobacillusPropionibacterium-based direct-fed with microbials and prevalence of Escherichia coli O157 in beef feedlot cattle and on hides at harvest. J Food Protec 67:889–893. https://doi.org/10.4315/0362-028X-67.5.889

    Article  CAS  Google Scholar 

  141. Galvao KN, Santos JE, Coscioni A, Villasenor M, Sischo WM, Berge AC (2005) Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod Nutr Devel 45:427–440. https://doi.org/10.1051/rnd:2005040

    Article  Google Scholar 

  142. Timmerman HM, Mulder L, Everts H, van Espen DC, van der Wal E, Klaassen G et al (2005) Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci 88:2154–2165. https://doi.org/10.3168/jds.S0022-0302(05)72891-5

    Article  CAS  PubMed  Google Scholar 

  143. Von Buenau R, Jaekel L, Schubotz E, Schwarz S, Stroff T, Krueger M (2005) Escherichia coli strain Nissle 1917: significant reduction of neonatal calf diarrhea. J Dairy Sci 88:317–323. https://doi.org/10.3168/jds.S0022-0302(05)72690-4

    Article  Google Scholar 

  144. Jouany JP (2006) Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Anim Reprod Sci 96:250–264. https://doi.org/10.1016/j.anireprosci.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  145. Stella AV, Paratte R, Valnegri L, Cigalino G, Soncini G, Chevaux E, Dell'Orto V, avoini G (2007) Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Ruminant Res 67, 7–13. https://doi.org/10.1016/j.smallrumres.2005.08.024

  146. Adams MC, Luo J, Rayward D, King S, Gibson R, Moghaddam GH (2008) Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim Feed Sci Technol 145:41–52. https://doi.org/10.1016/j.anifeedsci.2007.05.035

    Article  Google Scholar 

  147. Peterson RE, Klopfenstein TJ, Erickson GE, Folmer J, Hinkley S, Moxley RA, Smith DR (2007) Effect of Lactobacillus acidophilus strain NP51 on Escherichia coli O157:H7 fecal shedding and finishing performance in beef feedlot cattle. J Food Protec 70(2):287–291 http://digitalcommons.unl.edu/animalscifacpub/540

    CAS  Google Scholar 

  148. Tabe ES, Oloya J, Doetkott DK, Bauer ML, Gibbs PS, Khaitsa ML (2008) Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle. J Food Protec 71:539–544. https://doi.org/10.4315/0362-028X-71.3.539

    Article  Google Scholar 

  149. Vasconcelos JT, Elam NA, Brashears MM, Galyean ML (2008) Effects of increasing dose of live cultures of Lactobacillus acidophilus (strain NP 51) combined with a single dose of Propionibacterium freudenreichii (strain NP 24) on performance and carcass characteristics of finishing beef steers. J Anim Sci 86:756–762. https://doi.org/10.2527/jas.2007-0526

    Article  CAS  PubMed  Google Scholar 

  150. Desnoyers M, Giger-reverdin S, Bertin G, Duvaux-Ponter C, Sauvant D (2009) Meta analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J Dairy Sci 92:1620–1632. https://doi.org/10.3168/jds.2008-1414

    Article  CAS  PubMed  Google Scholar 

  151. Maragkoudakis PA, Mountzouris KC, Rosu C, Zoumpopoulou G, Papadimitriou K, Dalaka E, Hadjipetrou A, Theofanous G et al (2010) Feed supplementation of Lactobacillus plantarum PCA 236 modulates gut microbiota and milk fatty acid composition in dairy goats - a preliminary study. Int J Food Microbiol 141:109–116. https://doi.org/10.1016/j.ijfoodmicro.2010.03.007

    Article  CAS  Google Scholar 

  152. Maldonado NC, de Ruiz CS, Otero MC, Sesma F, Nader-Macías ME (2012) Lactic acid bacteria isolated from young calves–characterization and potential as probiotics. Res Vet Sci 92:342–349. https://doi.org/10.1016/j.rvsc.2011.03.017

    Article  CAS  PubMed  Google Scholar 

  153. Apás AL, González SN, Arena ME (2014) Potential of goat probiotic to bind mutagens. Anaerobe 28:8–12. https://doi.org/10.1016/j.anaerobe.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  154. Wisener LV, Sargeant JM, O’Connor AM, Faires MC, Glass-Kaastra SK (2015) The use of direct-fed microbials to reduce shedding of Escherichia coli O157 in beef cattle: a systematic review and meta-analysis. Zoonoses. Public Health 62:75–89. https://doi.org/10.1111/zph.12112

    Article  CAS  Google Scholar 

  155. Le O, Dart P, Harper K, Zhang D, Schofield B, Callaghan M, Lisle A, Klieve A, McNeill D (2017) Effect of probiotic Bacillus amyloliquefaciens strain H57 on productivity and the incidence of diarrhoea in dairy calves. Anim Production Sci 57(5):912–919

    CAS  Google Scholar 

  156. FAO (2014b) The State of World Fisheries and Aquaculture

  157. Tuan TN, Duc PM, Hatai K (2013) Overview of the use of probiotics in aquaculture. Int J Res Fish Aquacult 3(3):89–97

    Google Scholar 

  158. Chen Y, Zhu X, Yang Y, Han D, Jin J, Xie S (2014) Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquac Nutr 20:532–546. https://doi.org/10.1111/anu.12106

    Article  CAS  Google Scholar 

  159. Newaj-Fyzul A, Austin B (2014) Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. J Fish Dis 14:12313–12318. https://doi.org/10.1111/jfd.12313

    Article  CAS  Google Scholar 

  160. Lakshmi B, Viswanath B, Sai Gopal DVR (2013) Probiotics as antiviral agents in shrimp aquaculture. J Pathog 424123:1–13. https://doi.org/10.1155/2013/424123

    Article  Google Scholar 

  161. Brogden G, Krimmling T, Adamek M, Naim HY, Steinhagen D, von Köckritz-Blickwede M (2014) The effect of β-glucan on formation and functionality of neutrophil extracellular traps in carp (Cyprinus carpio L.). Dev Comp Immunol 44:280–285. https://doi.org/10.1016/j.dci.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  162. Allameh SK, Yusoff FM, Ringø E, Daud HM, Saad CR, Ideris A (2015) Effects of dietary mono-and multi-probiotic strains on growth performance, gut bacteria and body composition of Javanese carp (Puntius gonionotus, Bleeker 1850). Aquac Nutr. https://doi.org/10.1111/anu.12265

  163. Standen BT, Rawling MD, Davies SJ, Castex M, Foey A, Gioacchini G (2013) Probiotic Pediococcus acidilactici modulates both localised intestinal- and peripheral-immunity in tilapia (Oreochromis niloticus). Fish Shellfish Immunol 35:1097–1104. https://doi.org/10.1016/j.fsi.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  164. Lazado CC, Caipang CM, Estante EG (2015) Prospects of hostassociated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45(1):2–12. https://doi.org/10.1016/j.fsi.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  165. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  166. Lazado CC, Caipang CMA (2014a) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39:78–89. https://doi.org/10.1016/j.fsi.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  167. Lazado CC, Caipang CMA (2014b) Bacterial viability differentially influences the immunomodulatory capabilities of potential host-derived probiotics in the intestinal epithelial cells of Atlantic cod Gadus morhua. J Appl Microbiol 116(4):990–998. https://doi.org/10.1111/jam.12414

    Article  CAS  PubMed  Google Scholar 

  168. Akhter N, Wu B, Memon AM, Mohsin M (2015) Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol 45(2):733–741. https://doi.org/10.1016/j.fsi.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  169. Bandyopadhyay P, Mishra S, Sarkar B, Swain SK, Pal A, Tripathy PP, Ojha SK (2015) Dietary Saccharomyces cerevisiae boosts growth and immunity of IMC Labeo rohita (Ham.) juveniles. Indian J Microbiol 55:81–87. https://doi.org/10.1007/s12088-014-0500-x

    Article  CAS  Google Scholar 

  170. Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015) Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol 45:33–42. https://doi.org/10.1016/j.fsi.2015.01.033

    Article  CAS  PubMed  Google Scholar 

  171. Hai NV (2015) Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol 45:592–597. https://doi.org/10.1016/j.fsi.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  172. Dhanaraj M, Haniffa MA, Singh SA, Arockiaraj AJ, Ramakrishanan CM, Seetharaman S, Arthimanju R (2010) Effect of probiotics on growth performance of koi carp (Cyprinus carpio). J Appl Aquac 22:202–209. https://doi.org/10.1080/10454438.2010.497739

    Article  Google Scholar 

  173. Magda ME, Sabry SE, Mohamed AE, Santoch L, Said MD, Neven AE (2011) The viability of probiotics as a factor influencing the immune response in the Nile tilapia (Oreochromis niloticus). Egypt J Aquat Biol Fish 15(1):105–124. https://doi.org/10.21608/EJABF.2011.2081

    Article  Google Scholar 

  174. Veni T, Chelladuari G, Mohanraj J, Vijayakumar I, Petchimuthu M (2012) Dietary administration of Lactobacillus acidophillus as probiotics on health, survival and gut microbial load in cat fish (Mystus montanus). Int J Res Fish Aquacult 2(4):48–54

    Google Scholar 

  175. Iman MKA, Wafaa TA, Elham SA, Mohammad MNA, El-Shafei K, Osama MS, Gamal AI, Zeinab IS, El-Sayed HS (2013) Evaluation of Lactobacillus plantarum as a probiotic in aquaculture: emphasis on growth performance and innate immunity. J Appl Sci Res 9(1):572–582

    Google Scholar 

  176. Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34(2):Acta 660–Acta 666. https://doi.org/10.1016/j.fsi.2012.12.008

    Article  CAS  Google Scholar 

  177. Zhang S, Sing Y, Long M, Wei Z (2012) Does dietary administration of Lactococcus lactis modulate the gut microbiota of grouper, Epinephelus coioides. J World Aquacult Soc 43(2):198–207

    Google Scholar 

  178. Raida MK, Larsen JL, Nielsen ME, Buchmann K (2003) Enhanced resistance of rainbow trout (Oncorhynchus myskiss) against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (Bio plus 2B). J Fish Dis 26:495–498. https://doi.org/10.1046/j.1365-2761.2003.00480.x

    Article  CAS  PubMed  Google Scholar 

  179. Bandyopadhyay P, Mohapatra PKD (2009) Effect of a probiotic bacterium Bacillus circulans PB7 in the formulated diets: on growth, nutritional quality and immunity of Catla catla (Ham.). Fish Physiol Biochem 35:467–478. https://doi.org/10.1007/s10695-008-9272-8

    Article  CAS  PubMed  Google Scholar 

  180. Sun YZ, Yang HL, Ma RL, Lin WY (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper (Epinephelus coioides). Fish Shellfish Immunol 29:803–809. https://doi.org/10.1016/j.fsi.2010.07.018

    Article  PubMed  Google Scholar 

  181. Olmos J, Ochoa L, Paniagua-Michel J, Rosalia C (2011) Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains. Marine Drugs 9:1119–1132. https://doi.org/10.3390/md9061119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wu ZX, Feng X, Xie LL, Peng XY, Yuan J, Chen XX (2012) Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora. J Appl Ichthyol 28:721–727. https://doi.org/10.1111/j.1439-0426.2012.01968.x

    Article  Google Scholar 

  183. Hossain MI, Kamal MM, Mannan MA, Bhuyain MAB (2013) Effects of probiotics on growth and survival of shrimp (Penaeus monodon) in coastal pond at Khulna, Bangladesh. J Sci Res 5(2):363–370. https://doi.org/10.3329/jsr.v5i2.11815

    Article  CAS  Google Scholar 

  184. Mehran AK, Masoumeh M (2013) Effect of Bacillus subtilis on Aeromonas hydrophila infection resistance in juvenile freshwater prawn (Macrobrachium rosenbergii). Aquacult Int 21(3):553–562. https://doi.org/10.1007/s10499-012-9588-3

    Article  Google Scholar 

  185. Purwandari AR, Chen HY (2013) Effects of probiotic Bacillus subtilis on intestinal microbial diversity and immunity of Orange spotted grouper Epinephelus coioides. J Appl Biotechnol 1(1):25–36. https://doi.org/10.5296/jab.v1i1.3714

    Article  Google Scholar 

  186. Gupta A, Gupta P, Dhawan A (2014) Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry. Fish Shellfish Immunol 41:113–119. https://doi.org/10.1016/j.fsi.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  187. Mohapatra S, Chakraborty T, Prusty AK, PaniPrasad K, Mohanta KN (2014) Beneficial effects of dietary probiotics mixture on hemato-immunology and cell apoptosis of Labeo rohita fingerlings reared at higher water temperatures. PLoS One 9:6. https://doi.org/10.1371/journal.pone.0100929

    Article  CAS  Google Scholar 

  188. Huang L, Ran C, He S, Ren P, Hu J, Zhao X, Zhou Z (2015) Effects of dietary Saccharomyces cerevisiae culture or live cells with Bacillus amyloliquefaciens spores on growth performance, gut mucosal morphology, hsp70 gene expression, and disease resistance of juvenile common carp (Cyprinus carpio). Aquaculture 438:33–38. https://doi.org/10.1016/j.aquaculture.2014.12.029

    Article  CAS  Google Scholar 

  189. Hudson JM, Cohen ND, Gibbs PG, Thompson JA (2001) Feeding practices associated with colic in horses. J Amer Vet Med Assoc 219(10):1419–1425. https://doi.org/10.2460/javma.2001.219.1419

    Article  CAS  Google Scholar 

  190. Al Jassim RA, Andrews FM (2009) The bacterial community of the horse gastrointestinal tract and its relation to fermentative acidosis, laminitis, colic, and stomach ulcers. The veterinary clinics of North America. Equine Pract 25:199–215. https://doi.org/10.1016/j.cveq.2009.04.005

    Article  Google Scholar 

  191. Costa MC, Weese JS (2012) The equine intestinal microbiome. Anim Health Res Rev 13(1):121–128. https://doi.org/10.1017/S1466252312000035

    Article  PubMed  Google Scholar 

  192. de Fombelle A, Julliand V, Drogoul C, Jacotot E (2001) Feeding and microbial disorders in horses. 1. Effects of an abrupt incorporation of two levels of barley in a hay diet on microbial profile and activities. J Equine Vet Sci 21:439–445. https://doi.org/10.1016/S0737-0806(01)70018-4

    Article  Google Scholar 

  193. Baverud V, Gunnarsson A, Franklin A, Lindholm A, Gunnarsson A (1997) Clostridium difficile associated with acute colitis in mature horses treated with antibiotics. Equine Vet J 29(4):279–284. https://doi.org/10.1111/j.2042-3306.1997.tb03124.x

    Article  CAS  PubMed  Google Scholar 

  194. Gustafsson A, Baverud V, Gunnarsson A, Rantzien MH, Lindholm A, Franklin A (1997) The association of erythromycin ethylsuccinate with acute colitis in horses in Sweden. Equine Vet J 29(4):314–318. https://doi.org/10.1111/j.2042-3306.1997.tb03129.x

    Article  CAS  PubMed  Google Scholar 

  195. Garrett LA, Brown R, Poxton IR (2002) A comparative study of the intestinal microbiota of healthy horses and those suffering from equine grass sickness. Vet Microbiol 87:81–88. https://doi.org/10.1016/S0378-1135(02)00018-4

    Article  PubMed  Google Scholar 

  196. Milinovich GJ, Trott DJ, Burrell PC, Croser EL, Al Jassim RA, Morton et al (2007) Fluorescence in situ hybridization analysis of hindgut bacteria associated with the development of equine laminitis. Environ Microbiol 9:2090–2100. https://doi.org/10.1111/j.1462-2920.2007.01327.x

    Article  CAS  PubMed  Google Scholar 

  197. Costa MC, Arroyo LG, Allen-Vercoe E et al (2012) Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PLoS One 7:e41484. https://doi.org/10.1371/journal.pone.0041484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Moreau MM, Eades SC, Reinemeyer CR, Fugaro MN, Onishi JC (2014) Illumina sequencing of the V4 hypervariable region 16S rRNA gene reveals extensive changes in bacterial communities in the cecum following carbohydrate oral infusion and development of early-stage acute laminitis in the horse. Vet Microbiol 168:436–441. https://doi.org/10.1016/j.vetmic.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  199. Parraga ME, Spier SJ, Thurmond M, Hirsh D (1997) A clinical trial of probiotic administration for prevention of Salmonella shedding in the postoperative period in horses with colic. J Vet Internal Med 11:36–41. https://doi.org/10.1111/j.1939-1676.1997.tb00071.x

    Article  CAS  Google Scholar 

  200. Kim LM, Morley PS, Traub-Dargatz JL, Salman M, Gentry-Weeks C (2001) Factors associated with Salmonella shedding among equine colic patients at a veterinary teaching hospital. J Am Vet Med A 218:740–748. https://doi.org/10.2460/javma.2001.218.740

    Article  CAS  Google Scholar 

  201. Ward MP, Alinovi CA, Couetil LL et al (2004) A randomized clinical trial using probiotics to prevent Salmonella fecal shedding in hospitalized horses. J Equine Vet Sci 24:242–247. https://doi.org/10.1016/j.jevs.2004.05.004

    Article  Google Scholar 

  202. Yuyama T (2004) Evaluation of a host-specific Lactobacillus probiotic in neonatal foals. J Appl Res Vet Med 2:26–32 (Yusa S, ed.)

    Google Scholar 

  203. Desrochers AM, Dolente BA, Roy MF, Boston R, Carlisle S (2005) Efficacy of Saccharomyces boulardii for treatment of horses with acute enterocolitis. J Am Vet Med A 227:954–959. https://doi.org/10.2460/javma.2005.227.954

    Article  Google Scholar 

  204. Weese JS, Rousseau J (2005) Evaluation of Lactobacillus pentosus WE7 for prevention of diarrhea in neonatal foals. J Am Vet Med Assoc 226:2031–2034. https://doi.org/10.2460/javma.2005.226.2031

    Article  PubMed  Google Scholar 

  205. Landes AD, Hassel DM, Funk JD, Hill A (2008) Fecal sand clearance is enhanced with a product combining probiotics, prebiotics, and psyllium in clinically normal horses. J Equine Vet Sci 28:79–84. https://doi.org/10.1016/j.jevs.2008.01.004

    Article  Google Scholar 

  206. Boyle AG, Magdesian KG, Durando MM et al (2013) Saccharomyces boulardii viability and efficacy in horses with antimicrobial-induced diarrhea. Vet Rec 172:128. https://doi.org/10.1136/vr.100833

    Article  CAS  PubMed  Google Scholar 

  207. Coverdale JA (2016) Can the microbiome of the horse be altered to improve digestion? J Anim Sci 94(6):2275–2281. https://doi.org/10.2527/jas.2015-0056

    Article  CAS  PubMed  Google Scholar 

  208. Vohra A, Syal P, Madan A (2016) Probiotic yeasts in livestock sector. Anim Feed Sci Technol 219:31–47. https://doi.org/10.1016/j.anifeedsci.2016.05.019

    Article  Google Scholar 

  209. Bertin G, McCartney E (2005) Live yeast for horses. Feed Int 12–17

  210. Chaucheyras-Durand F, Durand H (2010) Probiotics in animal nutrition and health. Benef Microb 1:3–9. https://doi.org/10.3920/BM2008.1002

    Article  CAS  Google Scholar 

  211. Respondek F, Goachet AG, Rudeaux F, Julliand V (2007) Effects of short-chain fructo- oligosaccharides on the microbial and biochemical profiles of different segments of the gastrointestinal tract of horses. Pferdeheilkunde 23(2):146–150. https://doi.org/10.21836/PEM20070206

    Article  Google Scholar 

  212. Jouany JP, Gobert J, Medina B, Bertin G, Julliand V (2008) Effect of live yeast culture supplementation on apparent digestibility and rate of passage in horses fed a high-fiber or high-starch diet. J Anim Sci 86:339–347. https://doi.org/10.2527/jas.2006-796

    Article  CAS  PubMed  Google Scholar 

  213. de Rezende ASC, Trigo P, Lana AMQ, Santiago JM, Silva VP, Montijano FC (2012) East as a feed additive for training horses. Cienc Agrotecnol 36:354–362. https://doi.org/10.1590/S1413-70542012000300012

    Article  Google Scholar 

  214. Julliand V, de Fombelle A, Varloud M (2006) Starch digestion in horses: the impact of feed processing. Livest Sci 100:44–52. https://doi.org/10.1016/j.livprodsci.2005.11.001

    Article  Google Scholar 

  215. Moura RS, Saliba EOS, Almeida FQ, Lana AMQ, Silva VP, Rezende ASC (2009) Feed efficiency in Mangalarga Marchador foals fed diet supplemented with probiotics or phytase. Rev Brasil Zootech 38(6):1045–1050. https://doi.org/10.1590/S1516-35982009000600011

    Article  Google Scholar 

  216. Moura RS, Saliba EOS, Almeida FQ, Lana AMQ, Moreira DCA, Silva V et al (2011) Apparent digestibility of diets supplemented with probiotics or phytase for Mangalarga Marchador foals. Archiv Zootech 60:193–203. https://doi.org/10.4321/S0004-05922011000200004

    Article  Google Scholar 

  217. Jugan MC, Rudinsky AJ, Parker VJ, Gilor C (2017) Use of probiotics in small animal veterinary medicine. JAVMA 250(5):519–528

    PubMed  Google Scholar 

  218. Wadud SJ (2011) Understanding the microbial ecology of chicken litter in the context of odour production. Thesis, The University of New South Wales, Australia, Ph. D

    Google Scholar 

  219. Araji AA, Abdo ZO, Joyce P (2001) Efficient use of animal manure on cropland economic analysis. Bioresour Technol 79:179–191

    CAS  PubMed  Google Scholar 

  220. Wężyk S (2004) Odchody drobiowe – zanieczyszczenie czy szansa [Poultry dung – contaminant or promising prospect]. Polskie Drobiarstwo 1:40–43

    Google Scholar 

  221. Kaczmarek Z, Jakubus M, Grzelak M, Mrugalska L (2008) Wpływ dodatków różnych dawek efektywnych mikroorganizmów do poziomów orno-próchnicznych gleb mineralnych na właściwości fizyczne i wodne [the effect of addition of various doses of effective microorganisms to arable and humus horizons of mineral soils on physical properties and water relations]. J Res Appl Agric Engng 53(3):118–122

    Google Scholar 

  222. Mahajan P, Sahoo J, Panda PC (2000) Effect of probiotic (Lacto-Sacc) feeding and seasons on the different characteristics of poultry meat. Ind J Poult Sci 35:297–301

    Google Scholar 

  223. Mountzouris KC, Tsitrsikos P, Palamidi I, Arvaniti A, Mohnl M, Schatzmayr G, Fegeros K (2010) Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult Sci 89:58–67

    CAS  PubMed  Google Scholar 

  224. Deniz G, Orman A, Cetinkaya F, Gencoglu H, Meral Y, Turkmen II (2011) Effects of probiotic (Bacillus subtilis DSM 17299) supplementation on the caecal microflora and performance in broiler chickens. Revue Méd Vét 162:538–545

    CAS  Google Scholar 

  225. Yang CM, Cao GT, Ferket PR, Liu TT, Zhou L, Zhang L, Xiao YP, Chen AG (2012) Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poult Sci 91:2121–2129

    CAS  PubMed  Google Scholar 

  226. Lee KW, Lillehoj HS, Siragusa GR (2010) Direct-fed microbials and their impact on the intestinal microflora and immune system of chickens. Jpn Poult Sci 47:106–114

    Google Scholar 

  227. Hassan MR, Ryu KS (2012) Naturally derived probiotic supplementation effects on physiological properties and manure gas emission of broiler chickens. J Agric Life Sci 46:119–127

    Google Scholar 

  228. Zhang ZF, Cho JH, Kim IH (2013) Effects of Bacillus subtilis UBT-MO2 on growth performance, relative immune organ weight, gas concentration in excreta, and intestinal microbial shedding in broiler chickens. Livest Sci 155:343–347

    Google Scholar 

  229. Zhang ZF, Kim IH (2013) Effects of probiotic supplementation in different energy and nutrient density diets on performance, egg quality, excreta microflora, excreta noxious gas emission, and serum cholesterol concentrations in laying hens. J Anim Sci 91(10):4781–4787. https://doi.org/10.2527/jas.2013-6484

    Article  CAS  PubMed  Google Scholar 

  230. Jeong J, Kim I (2014) Effect of bacillus subtilis c-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poult Sci 93:3097–3103

    CAS  PubMed  Google Scholar 

  231. Zhang ZF, Kim IH (2014) Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. 93:364-370. https://doi.org/10.3382/ps.2013-03314

  232. Chang MH, Chen TC (2003) Reduction of broiler house malodour by direct feeding of a lactobacilli containing probiotic. Int J Poult Sci 2:313–317

    Google Scholar 

  233. Sharma NK, Choct M, Dunlop MW, Wu SB, Castada HZ, Swick RA (2016) Characterisation and quantification of changes in odorants from litter headspace of meat chickens fed diets varying in protein levels and additives. Poult Sci 2016. https://doi.org/10.3382/ps/pew309

  234. Sen S, Ingale S, Kim Y, Kim J, Kim K, Lohakare J, Kim E, Kim H, Ryu M, Kwon I (2012) Effect of supplementation of bacillus subtilis ls 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res Vet Sci 93:264–268

    PubMed  Google Scholar 

  235. Hossain M, Begum M, Kim I (2015) Effect of Bacillus subtilis, Clostridium butyricum and Lactobacillus acidophilus endospores on growth performance, nutrient digestibility, meat quality, relative organ weight, microbial shedding and excreta noxious gas emission in broilers. Veterinarni Medicina 60(2):77–82

    CAS  Google Scholar 

  236. Upadhaya S, Kim S, Valientes R, Kim I (2015) The effect of Bacillus-based feed additive on growth performance, nutrient digestibility, fecal gas emission, and pen cleanup characteristics of growingfinishing pigs. Asian-Australasian J Anim Sci 28(7):999–1005

    CAS  Google Scholar 

  237. Rachwał A (2003) Naturalne promotory wzrostu. Hodowca drobiu 8:31–32

    Google Scholar 

  238. Szeleszczuk P (2005) Weterynaryjne aspekty stosowania żywych kultur mikroorganizmów w praktyce drobiarskiej. Cz I Praktyka kliniczna 11(99):56–58

    Google Scholar 

  239. Markowiak P, Śliżewska K (2018) The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog 10:21. https://doi.org/10.1186/s13099-018-0250-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Galdeano CM, Perdigón G (2004) Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. J Appl Microbiol 97(4):673–681. https://doi.org/10.1111/j.1365-2672.2004.02353.x

    Article  PubMed  Google Scholar 

  241. Kosin B, Rakshit SK (2006) Criteria for production of probiotics. Food Technol Biotechnol 44(3):371–379

    Google Scholar 

  242. Lee YK (2009) Selection and maintenance of probiotic microorganisms. In Handbook of Probiotics and Prebiotics; Lee, Y.K., Salminen, S., Eds.; Wiley-VCH:Weinheim, Germany, pp. 177–187. https://doi.org/10.1002/9780470432624.ch2

  243. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215. https://doi.org/10.1016/S0168-1656(00)00375-8

    Article  CAS  PubMed  Google Scholar 

  244. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S (1999) Probiotics: mechanisms and established effects. Int Dairy J 9:43–52. https://doi.org/10.1016/S0958-6946(99)00043-6

    Article  Google Scholar 

  245. Anadón A, Castellano V, Martínez-Larrañaga MR (2014) Regulation and guidelines of probiotics and prebiotics. In: Ötles, S. (Ed.), probiotics and prebiotics in food, nutrition and health. CRC Press, LLC Taylor & Francis Group, Boca Raton, FL, USA, ISBN: 978-1-4665-8623-9, pp. 91–113. https://doi.org/10.1201/b15561-6

  246. Patel A, Shah N, Prajapati JB (2014) Clinical application of probiotics in the treatment of Helicobacter pylori infection-a brief review. J Microbiol Immunol Infect 47:429–437. https://doi.org/10.1016/j.jmii.2013.03.010

    Article  PubMed  Google Scholar 

  247. Snydman DR (2008) The safety of probiotics. Clin Infect Dis 46(Suppl 2):S104–S111. https://doi.org/10.1086/523331

    Article  PubMed  Google Scholar 

  248. Shanahan F (2012) A commentary on the safety of probiotics. Gastroenterol Clin N Am 41:869–876. https://doi.org/10.1016/j.gtc.2012.08.006

    Article  Google Scholar 

  249. Dash SK (1980) Selection criteria for probiotics. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  250. Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73:386–392

    Google Scholar 

  251. Food and Agriculture Organization (FAO), (2002) Guidelines for the evaluation of probiotics in food; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; FAO: London, ON, Canada, 30 April–1 May 2002

  252. Holzapfel WH, Haberer P, Geisen R, Bjorkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365–373

    Google Scholar 

  253. Andrighetto C, de Dea P, Lombardi A, Neviani E, Rossetti L, Giraffa G (1998) Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products. Res Microbiol 149:631–643. https://doi.org/10.1016/S0923-2508(99)80011-4

    Article  CAS  PubMed  Google Scholar 

  254. FEFANA (2005) Probiotics in animal nutrition. EU feed additives and Premixtures Association

  255. Hughes P, Heritage J (2002) Food and agriculture organization. Antibiotic growth-promoters in food animals. Retrieved from Leeds, U.K.

    Google Scholar 

  256. Bull M, Plummer S, Marchesi J, Mahenthiralingam E (2013) The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 349:77–87. https://doi.org/10.1111/1574-6968.12293

    Article  CAS  PubMed  Google Scholar 

  257. Dinleyici EC, Kara A, Ozen M, Vandenplas Y (2014) Saccharomyces boulardii CNCM I-745 in different clinical conditions. Expert Opin Biol Ther 14:1593–1609. https://doi.org/10.1517/14712598.2014.937419

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Ferchichi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zommiti, M., Chikindas, M.L. & Ferchichi, M. Probiotics—Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects—Not Only for Humans. Probiotics & Antimicro. Prot. 12, 1266–1289 (2020). https://doi.org/10.1007/s12602-019-09570-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09570-5

Keywords

Navigation