Skip to main content
Log in

Boosted Growth Performance, Mucosal and Serum Immunity, and Disease Resistance Nile Tilapia (Oreochromis niloticus) Fingerlings Using Corncob-Derived Xylooligosaccharide and Lactobacillus plantarum CR1T5

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The present work, herein, studied the effects of corncob-derived xylooligosaccharides (CDXOS) and Lactobacillus plantarum CR1T5 (LP) integrated into fish diets (diet 1 (0—control), diet 2 (10 g kg−1 CDXOS), diet 3 (108 CFU g−1L. plantarum CR1T5), diet 4 (10 g kg−1 CDXOS +108 CFU g−1L. plantarum CR1T5)) on growth performance, innate immune parameters, and disease resistance of Nile tilapia (Oreochromis niloticus). Fingerlings, with average mean weight of 4.97 ± 0.04, were randomly distributed into 16 glass tanks (20 fish per tank) for 12 weeks. Growth performance, skin mucus, and serum immune parameters were evaluated at the conclusion of the experiment. Eight randomly selected fish were used for challenge test against Streptococcus agalactiae. The results indicated that fish fed CDXOS and LP had significantly improved final weight (FW), weight gain (WG), specific growth rate (SGR), and feed conversion ratio (FCR). However, no significant difference in survival rate was observed between specimens fed the supplemented diets and the control. Regarding skin mucus, the dietary inclusion of CDXOS and LP significantly increased lysozyme and peroxidase activities compared with the control (P < 0.05). Similarly, significant increases in serum lysozyme, peroxidase, alternative complement, phagocytosis, and respiratory burst activities were observed in the fish fed the supplemented diets. However, no significant differences were found in these parameters between fish fed CDXOS and LP diets. For the challenge test, diet 4 produced a higher relative percentage of survival (RPS) and resistance to S. agalactiae than fish from the other experimental groups (P < 0.05). The results suggested that CDXOS and L. plantarum CR1T5 are viable considerations for potential feed-additive sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pulkkinen K, Suomalainen LR, Read AF, Ebert D, Rintamäki P, Valtonen ET (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proceedings Biological sciences 277(1681):593–600. https://doi.org/10.1098/rspb.2009.1659

    Article  CAS  PubMed  Google Scholar 

  2. Faggio C, Piccione G, Marafioti S, Arfuso F, Trischitta F, Fortino G, Fazio F (2014) Monthly variations of haematological parameters of Sparus aurata and Dicentrarchus labrax reared in Mediterranean land off-shore tanks. Cah Biol Mar 55:437–443

    Google Scholar 

  3. Fazio F, Marafioti S, Torre A, Sanfilippo M, Panzera M, Faggio C (2013) Haematological and serum protein profiles of Mugil cephalus: effect of two different habitats. Ichthyol Res 60(1):36–42. https://doi.org/10.1007/s10228-012-0303-1

    Article  Google Scholar 

  4. Fazio F, Marafioti S, Arfuso F, Piccione G, Faggio C (2013) Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet, Mugil cephalus. Mar Freshw Behav Phy 46(4):211–218. https://doi.org/10.1080/10236244.2013.817728

    Article  CAS  Google Scholar 

  5. Faggio C, Piccione G, Marafioti S, Arfuso F, Fortino G, Fazio F (2014) Metabolic response to monthly variations of Sparus aurata reared in Mediterranean on-shore tanks. Turk J Fish Aquat Sc 14(2):567–574

    Google Scholar 

  6. Faggio C, Fedele G, Arfuso F, Panzera M, Fazio F (2014) Haematological and biochemical response of Mugil cephalus after acclimation to captivity. Cah Biol Mar 55:31–36

    Google Scholar 

  7. Fazio F, Marafioti S, Filiciotto F, Buscaino G, Panzera M, Faggio C (2013) Blood hemogram profiles of farmed onshore and offshore gilthead sea bream (Sparus aurata) from Sicily, Italy. Turk J Fish Aquat Sc 13(3):415–422

    Google Scholar 

  8. Fazio F, Faggio C, Marafioti S, Torre A, Sanfilippo M, Piccione G (2012) Comparative study of haematological profile on Gobius niger in two different habitat sites: Faro Lake and Tyrrhenian Sea. Cah Biol Mar 53(1):213–219

    Google Scholar 

  9. Done HY, Venkatesan AK, Halden RU (2015) Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? AAPS J 17(3):513–524. https://doi.org/10.1208/s12248-015-9722-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santos L, Ramos F (2018) Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. Int J Antimicrob Ag 52(2):135–143. https://doi.org/10.1016/j.ijantimicag.2018.03.010

    Article  CAS  Google Scholar 

  11. Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Review: developments in the use of probiotics for disease control in aquaculture. Aquacult 431:1–11. https://doi.org/10.1016/j.aquaculture.2013.08.026

    Article  Google Scholar 

  12. Gatesoupe FJ (2010) Probiotics and other microbial manipulations in fish feeds: prospective health benefits. In: Bioactive foods in promoting health. Elsivier, In, pp 541–552. https://doi.org/10.1016/B978-0-12-374938-3.00032-3

    Chapter  Google Scholar 

  13. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14(3):251–258. https://doi.org/10.1016/j.mib.2011.03.004

    Article  PubMed  Google Scholar 

  14. Akhter N, Wu B, Memon AM, Mohsin M (2015) Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol 45(2):733–741. https://doi.org/10.1016/j.fsi.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  15. Huynh T-G, Shiu Y-L, Nguyen T-P, Truong Q-P, Chen J-C, Liu C-H (2017) Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish Shellfish Immunol 64:367–382. https://doi.org/10.1016/j.fsi.2017.03.035

    Article  CAS  PubMed  Google Scholar 

  16. Guardiola FA, Porcino C, Cerezuela R, Cuesta A, Faggio C, Esteban MA (2016) Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol 52:298–308. https://doi.org/10.1016/j.fsi.2016.03.152

    Article  CAS  PubMed  Google Scholar 

  17. Nath S, Matozzo V, Bhandari D, Faggio C (2018) Growth and liver histology of Channa punctatus exposed to a common biofertilizer. Nat Prod Res:1–8

  18. Capillo G, Savoca S, Costa R, Sanfilippo M, Rizzo C, Lo Giudice A, Albergamo A, Rando R, Bartolomeo G, Spanò N (2018) New insights into the culture method and antibacterial potential of Gracilaria gracilis. Mar Drugs 16(12):492

    Article  CAS  PubMed Central  Google Scholar 

  19. Carbone D, Faggio C (2016) Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol 54:172–178. https://doi.org/10.1016/j.fsi.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  20. Faggio C, Fazio F, Marafioti S, Arfuso F, Piccione G (2015) Oral administration of Gum Arabic: effects on haematological parameters and oxidative stress markers in Mugil cephalus. Iran J Fish Sci 14(1):60–72

    Google Scholar 

  21. Hoseinifar SH, Yousefi S, Capillo G, Paknejad H, Khalili M, Tabarraei A, Van Doan H, Spanò N, Faggio C (2018) Mucosal immune parameters, immune and antioxidant defence related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol 83:232–237. https://doi.org/10.1016/j.fsi.2018.09.046

    Article  CAS  PubMed  Google Scholar 

  22. Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Opinion: towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12(5):303–310. https://doi.org/10.1038/nrgastro.2015.47

    Article  CAS  PubMed  Google Scholar 

  23. Pineiro M, Asp NG, Reid G, Macfarlane S, Morelli L, Brunser O, Tuohy K (2008) FAO technical meeting on prebiotics. J Clin Gastroenterol 42(Suppl 3 Pt 2):S156–S159. https://doi.org/10.1097/MCG.0b013e31817f184e

    Article  PubMed  Google Scholar 

  24. Choque Delgado GT, WMdSC T, MRM J, YMF M, Pastore GM (2011) The putative effects of prebiotics as immunomodulatory agents. Food Res Int 44(10):3167–3173. https://doi.org/10.1016/j.foodres.2011.07.032

    Article  CAS  Google Scholar 

  25. Hoseinifar SH, Esteban MÁ, Cuesta A, Sun Y-Z (2015) Prebiotics and fish immune response: a review of current knowledge and future perspectives. Rev Fish Sci Aquac 23(4):315–328. https://doi.org/10.1080/23308249.2015.1052365

    Article  Google Scholar 

  26. Song SK, Beck BR, Kim D, Park J, Kim J, Kim HD, Ringø E (2014) Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunol 40(1):40–48. https://doi.org/10.1016/j.fsi.2014.06.016

    Article  CAS  PubMed  Google Scholar 

  27. Buruiana C-T, Gómez B, Vizireanu C, Garrote G (2017) Manufacture and evaluation of xylooligosaccharides from corn stover as emerging prebiotic candidates for human health. LWT-Food Sci Technol 77:449–459. https://doi.org/10.1016/j.lwt.2016.11.083

    Article  CAS  Google Scholar 

  28. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115(supplement C):215–221. https://doi.org/10.1016/j.biortech.2011.10.083

    Article  CAS  PubMed  Google Scholar 

  29. Statista (2019) Worldwide production of grain in 2018/19, by type. https://www.statista.com/statistics/263977/world-grain-production-by-type/. Accessed 15 April 2019

  30. Aachary AA, Prapulla SG (2009) Value addition to corncob: production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresour Technol 100(2):991–995. https://doi.org/10.1016/j.biortech.2008.06.050

    Article  CAS  PubMed  Google Scholar 

  31. Sun J, Zhang Z, Xiao F, Jin X (2015) Production of xylooligosaccharides from corncobs using ultrasound-assisted enzymatic hydrolysis. Food Sci Biotechnol 24(6):2077–2081. https://doi.org/10.1007/s10068-015-0276-8

    Article  CAS  Google Scholar 

  32. Salas-Veizaga DM, Villagomez R, Linares-Pastén JA, Carrasco C, Álvarez MT, Adlercreutz P, Nordberg Karlsson E (2017) Extraction of glucuronoarabinoxylan from quinoa stalks (Chenopodium quinoa Willd.) and evaluation of xylooligosaccharides produced by GH10 and GH11 xylanases. J Agric Food Chem 65(39):8663–8673. https://doi.org/10.1021/acs.jafc.7b01737

    Article  CAS  PubMed  Google Scholar 

  33. Carvalho AFA, Neto PO, da Silva DF, Pastore GM (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51(1):75–85. https://doi.org/10.1016/j.foodres.2012.11.021

    Article  CAS  Google Scholar 

  34. Gullón P, Gullón B, Cardelle-Cobas A, Alonso JL, Pintado M, Gomes AM (2014) Effects of hemicellulose-derived saccharides on behavior of lactobacilli under simulated gastrointestinal conditions. Food Res Int 64:880–888. https://doi.org/10.1016/j.foodres.2014.08.043

    Article  CAS  PubMed  Google Scholar 

  35. Jagtap S, Deshmukh RA, Menon S, Das S (2017) Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour Technol 245:283–288. https://doi.org/10.1016/j.biortech.2017.08.174

    Article  CAS  PubMed  Google Scholar 

  36. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  37. FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with liver lactic acid bacteria. Food and Agriculture Organization and World Health Organization Joint report. http://www.fao.org/3/a-a0512e.pdf. Accessed 15 January 2019

  38. Dawood MAO, Koshio S (2016) Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquacult 454:243–251. https://doi.org/10.1016/j.aquaculture.2015.12.033

    Article  CAS  Google Scholar 

  39. Dawood MAO, Koshio S, Ishikawa M, El-Sabagh M, Esteban MA, Zaineldin AI (2016) Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. Fish Shellfish Immunol 57:170–178. https://doi.org/10.1016/j.fsi.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  40. Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2016) Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquac Nutr 22(4):923–932. https://doi.org/10.1111/anu.12314

    Article  CAS  Google Scholar 

  41. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  42. Calo-Mata P, Arlindo S, Boehme K, de Miguel T, Pascoal A, Barros-Velazquez J (2008) Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Tech 1:43–63. https://doi.org/10.1007/s11947-007-0021-2

    Article  Google Scholar 

  43. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquacult 274(1):1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  44. Yu L, Zhai Q, Zhu J, Zhang C, Li T, Liu X, Zhao J, Zhang H, Tian F, Chen W (2017) Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicol Environ Saf 143:307–314

    Article  CAS  PubMed  Google Scholar 

  45. Van Doan H, Hoseinifar SH, Dawood MAO, Chitmanat C, Tayyamath K (2017) Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 70(Supplement C):87–94. https://doi.org/10.1016/j.fsi.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  46. Van Doan H, Hoseinifar SH, Tapingkae W, Tongsiri S, Khamtavee P (2016) Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 58:678–685. https://doi.org/10.1016/j.fsi.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  47. Lee S, Katya K, Park Y, Won S, Seong M, Hamidoghli A, Bai SC (2017) Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish Immunol 61(Supplement C):201–210. https://doi.org/10.1016/j.fsi.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  48. Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K, Van Kim V, Srichaiyo S (2018) Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquacult 491:94–100. https://doi.org/10.1016/j.aquaculture.2018.03.019

    Article  Google Scholar 

  49. Beck BR, Kim D, Jeon J, Lee SM, Kim HK, Kim OJ, Lee JI, Suh BS, Do HK, Lee KH, Holzapfel WH, Hwang JY, Kwon MG, Song SK (2015) The effects of combined dietary probiotics Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 on innate immunity and disease resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 42(1):177–183. https://doi.org/10.1016/j.fsi.2014.10.035

    Article  CAS  PubMed  Google Scholar 

  50. Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34(2):660–666. https://doi.org/10.1016/j.fsi.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  51. FAO/WHO (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO and WHO, Rome Accessed 26 April 2019

    Google Scholar 

  52. Van Doan H, Hoseinifar SH, Faggio C, Chitmanat C, Mai NT, Jaturasitha S, Ringø E (2018) Effects of corncob derived xylooligosaccharide on innate immune response, disease resistance, and growth performance in Nile tilapia (Oreochromis niloticus) fingerlings. Aquacult 495:786–793. https://doi.org/10.1016/j.aquaculture.2018.06.068

    Article  CAS  Google Scholar 

  53. Yoon KY, Woodams EE, Hang YD (2006) Enzymatic production of pentoses from the hemicellulose fraction of corn residues. LWT - Food Sci Technol 39(4):388–392. https://doi.org/10.1016/j.lwt.2005.02.005

    Article  CAS  Google Scholar 

  54. Boonchuay P, Techapun C, Seesuriyachan P, Chaiyaso T (2014) Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties. Food Sci Biotechnol 23(5):1515–1523. https://doi.org/10.1007/s10068-014-0207-0

    Article  CAS  Google Scholar 

  55. Meidong R, Doolgindachbaporn S, Sakai K, Tongpim S (2017) Isolation and selection of lactic acid bacteria from Thai indigenous fermented foods for use as probiotics in tilapia fish Oreochromis niloticus. AACL Bioflux 10(2):455–463

    Google Scholar 

  56. Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342. https://doi.org/10.1046/j.1365-2761.2002.00375.x

    Article  CAS  Google Scholar 

  57. Van Doan H, Hoseinifar SH, Tapingkae W, Khamtavee P (2017) The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 62:139–146. https://doi.org/10.1016/j.fsi.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  58. Ross NW, Firth KJ, Wang A, Burka JF, Johnson SC (2000) Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis Aquat Org 41(1):43–51. https://doi.org/10.3354/dao041043

    Article  CAS  Google Scholar 

  59. Van Doan H, Tapingkae W, Moonmanee T, Seepai A (2016) Effects of low molecular weight sodium alginate on growth performance, immunity, and disease resistance of tilapia, Oreochromis niloticus. Fish Shellfish Immunol 55:186–194. https://doi.org/10.1016/j.fsi.2016.05.034

    Article  CAS  PubMed  Google Scholar 

  60. Chung S, Secombes CJ (1988) Analysis of events occurring within teleost macrophages during the respiratory burst. Comp Biochem Physiol B 89(3):539–544. https://doi.org/10.1016/0305-0491(88)90171-X

    Article  Google Scholar 

  61. Parry RM, Chandan RC, Shahani KM (1965) A rapid and sensitive assay of muramidase. Exp Biol Med (Maywood) 119(2):384–386. https://doi.org/10.3181/00379727-119-30188

    Article  CAS  Google Scholar 

  62. Quade MJ, Roth JA (1997) A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet Immunol Immunopathol 58(3–4):239–248

    Article  CAS  PubMed  Google Scholar 

  63. Cordero H, Cuesta A, Meseguer J, Esteban MA (2016) Changes in the levels of humoral immune activities after storage of gilthead seabream (Sparus aurata) skin mucus. Fish Shellfish Immunol 58:500–507. https://doi.org/10.1016/j.fsi.2016.09.059

    Article  CAS  PubMed  Google Scholar 

  64. Yoshida T, Kitao T (1991) The opsonic effect of specific immune serum on the phagocytic and chemiluminescent response in rainbow trout, Oncorhynchus mykiss phagocytes. Fish Pathol 26(1):29–33. https://doi.org/10.3147/jsfp.26.29

    Article  CAS  Google Scholar 

  65. Secombes CJ (1990) Isolation of salmonid macrophage and analysis of their killing ability. Techniques in fish immunology. SOS Publication, New Jersey

    Google Scholar 

  66. Yanno T (1992) Assays of hemolitic complement activity. In: Stolen JS, Fletcher TC, Anderson DP, Kaatari SL, Roley AF (eds) Techniques in fish immunology. SOS Publications, Fair Haven, pp 131–141

    Google Scholar 

  67. Wang B, Gan Z, Cai S, Wang Z, Yu D, Lin Z, Lu Y, Wu Z, Jian J (2016) Comprehensive identification and profiling of Nile tilapia (Oreochromis niloticus) microRNAs response to Streptococcus agalactiae infection through high-throughput sequencing. Fish Shellfish Immunol 54:93–106. https://doi.org/10.1016/j.fsi.2016.03.159

    Article  CAS  PubMed  Google Scholar 

  68. SAS (2003). SAS Institute Inc, SAS Campus Drive, Cary, NC USA 27513

  69. Millet S, Maertens L (2011) The European ban on antibiotic growth promoters in animal feed: from challenges to opportunities. Vet J 187(2):143–144. https://doi.org/10.1016/j.tvjl.2010.05.001

    Article  PubMed  Google Scholar 

  70. Markowiak P, Śliżewska K (2018) The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog 10:21. https://doi.org/10.1186/s13099-018-0250-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production – a Mediterranean perspective. Fish Shellfish Immunol 30(1):1–16. https://doi.org/10.1016/j.fsi.2010.08.009

    Article  CAS  PubMed  Google Scholar 

  72. Guerreiro I, Oliva-Teles A, Enes P (2015) Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquacult 441:57–63. https://doi.org/10.1016/j.aquaculture.2015.02.015

    Article  CAS  Google Scholar 

  73. Torrecillas S, Rivero-Ramírez F, Izquierdo MS, Caballero MJ, Makol A, Suarez-Bregua P, Fernández-Montero A, Rotllant J, Montero D (2018) Feeding European sea bass (Dicentrarchus labrax) juveniles with a functional synbiotic additive (mannan oligosaccharides and Pediococcus acidilactici): an effective tool to reduce low fishmeal and fish oil gut health effects? Fish Shellfish Immunol 81:10–20. https://doi.org/10.1016/j.fsi.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  74. Abasubong KP, Liu WB, Zhang DD, Yuan XY, Xia SL, Xu X, Li XF (2018) Fishmeal replacement by rice protein concentrate with xylooligosaccharides supplement benefits the growth performance, antioxidant capability and immune responses against Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol In press 78:177–186. https://doi.org/10.1016/j.fsi.2018.04.044

    Article  CAS  Google Scholar 

  75. Li C, Ren Y, Jiang S, Zhou S, Zhao J, Wang R, Li Y (2018) Effects of dietary supplementation of four strains of lactic acid bacteria on growth, immune-related response and genes expression of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish Shellfish Immunol 74:69–75. https://doi.org/10.1016/j.fsi.2017.12.037

    Article  CAS  PubMed  Google Scholar 

  76. Wang X, Sun Y, Wang L, Li X, Qu K, Xu Y (2017) Synbiotic dietary supplement affects growth, immune responses and intestinal microbiota of Apostichopus japonicus. Fish Shellfish Immunol 68:232–242. https://doi.org/10.1016/j.fsi.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  77. Hamdan AM, El-Sayed AF, Mahmoud MM (2016) Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). J Appl Microbiol 120(4):1061–1073. https://doi.org/10.1111/jam.13081

    Article  CAS  PubMed  Google Scholar 

  78. Azimirad M, Meshkini S, Ahmadifard N, Hoseinifar SH (2016) The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immunol 54:516–522

    Article  PubMed  Google Scholar 

  79. Munir MB, Hashim R, Chai YH, Marsh TL, Nor SAM (2016) Dietary prebiotics and probiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (Channa striata) fingerlings. Aquacult 460:59–68. https://doi.org/10.1016/j.aquaculture.2016.03.041

    Article  CAS  Google Scholar 

  80. Munir MB, Hashim R, Nor SAM, Marsh TL (2018) Effect of dietary prebiotics and probiotics on snakehead (Channa striata) health: haematology and disease resistance parameters against Aeromonas hydrophila. Fish Shellfish Immunol 75:99–108. https://doi.org/10.1016/j.fsi.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  81. Rahimnejad S, Guardiola FA, Leclercq E, Ángeles Esteban M, Castex M, Sotoudeh E, Lee S-M (2018) Effects of dietary supplementation with Pediococcus acidilactici MA18/5M, galactooligosaccharide and their synbiotic on growth, innate immunity and disease resistance of rockfish (Sebastes schlegeli). Aquacult 482:36–44. https://doi.org/10.1016/j.aquaculture.2017.09.020

    Article  CAS  Google Scholar 

  82. Ashouri G, Mahboobi Soofiani N, Hoseinifar SH, Jalali SAH, Morshedi V, Van Doan H, Torfi Mozanzadeh M (2018) Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish Shellfish Immunol 79:34–41. https://doi.org/10.1016/j.fsi.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  83. Kumar P, Jain KK, Sardar P (2018) Effects of dietary synbiotic on innate immunity, antioxidant activity and disease resistance of Cirrhinus mrigala juveniles. Fish Shellfish Immunol 80:124–132. https://doi.org/10.1016/j.fsi.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  84. Abid A, Davies S, Waines P, Emery M, Castex M, Gioacchini G, Carnevali O, Bickerdike R, Romero J, Merrifield D (2013) Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immunol 35(6):1948–1956

    Article  CAS  PubMed  Google Scholar 

  85. González-Félix ML, Gatlin Iii DM, Urquidez-Bejarano P, de la Reé-Rodríguez C, Duarte-Rodríguez L, Sánchez F, Casas-Reyes A, Yamamoto FY, Ochoa-Leyva A, Perez-Velazquez M (2018) Effects of commercial dietary prebiotic and probiotic supplements on growth, innate immune responses, and intestinal microbiota and histology of Totoaba macdonaldi. Aquacult 491:13. https://doi.org/10.1016/j.aquaculture.2018.03.031

    Article  CAS  Google Scholar 

  86. Hoseinifar SH, Khalili M, Rostami HK, Esteban MÁ (2013) Dietary galactooligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol 35(5):1416–1420

    Article  CAS  PubMed  Google Scholar 

  87. Hoseinifar SH, Zare P, Merrifield DL (2010) The effects of inulin on growth factors and survival of the Indian white shrimp larvae and postlarvae (Fenneropenaeus indicus). Aquac Res 41(9):e348–e352. https://doi.org/10.1111/j.1365-2109.2010.02485.x

    Article  CAS  Google Scholar 

  88. Hai NV (2015) Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol 45(2):592–597. https://doi.org/10.1016/j.fsi.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  89. Cerezuela R, Guardiola FA, Meseguer J, Esteban MÁ (2012) Increases in immune parameters by inulin and Bacillus subtilis dietary administration to gilthead seabream (Sparus aurata L.) did not correlate with disease resistance to Photobacterium damselae. Fish Shellfish Immunol 32(6):1032–1040. https://doi.org/10.1016/j.fsi.2012.02.025

    Article  CAS  PubMed  Google Scholar 

  90. Ai Q, Xu H, Mai K, Xu W, Wang J, Zhang W (2011) Effects of dietary supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquacult 317(1–4):155–161. https://doi.org/10.1016/j.aquaculture.2011.04.036

    Article  CAS  Google Scholar 

  91. Geng X, Dong X-H, Tan B-P, Yang Q-H, Chi S-Y, Liu H-Y, Liu X-Q (2011) Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish Shellfish Immunol 31(3):400–406. https://doi.org/10.1016/j.fsi.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  92. Ye JD, Wang K, Li FD, Sun YZ (2011) Single or combined effects of fructo- and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquac Nutr 17(4):e902–e911. https://doi.org/10.1111/j.1365-2095.2011.00863.x

    Article  Google Scholar 

  93. Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Merrifield DL, Ringø E (2017) In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac Nutr 23(1):111–118. https://doi.org/10.1111/anu.12373

    Article  CAS  Google Scholar 

  94. Yu X, Yin J, Li L, Luan C, Zhang J, Zhao C, Li S (2015) Prebiotic potential of xylooligosaccharides derived from corn cobs and their in vitro antioxidant activity when combined with Lactobacillus. J Microbiol Biotechnol 25(7):1084–1092. https://doi.org/10.4014/jmb.1501.01022

    Article  CAS  PubMed  Google Scholar 

  95. Stanton C, Ross RP, Fitzgerald GF, Van Sinderen D (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol 16(2):198–203. https://doi.org/10.1016/j.copbio.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  96. Xu B, Wang Y, Li J, Lin Q (2009) Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol Biochem 35(3):351–357. https://doi.org/10.1007/s10695-008-9248-8

    Article  CAS  PubMed  Google Scholar 

  97. Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20(2):137–151. https://doi.org/10.1016/j.fsi.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  98. Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Sharifian M, Esteban MÁ (2015) Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish Shellfish Immunol 45(1):27–32. https://doi.org/10.1016/j.fsi.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  99. Hoseinifar SH, Ringø E, Shenavar Masouleh A, Esteban MÁ (2016) Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Rev Aquacult 8(1):89–102. https://doi.org/10.1111/raq.12082

    Article  Google Scholar 

  100. Burgos-Aceves MA, Cohen A, Smith Y, Faggio C (2016) Estrogen regulation of gene expression in the teleost fish immune system. Fish Shellfish Immunol 58:42–49. https://doi.org/10.1016/j.fsi.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  101. Kabat AM, Pott J, Maloy KJ (2016) The mucosal immune system and its regulation by autophagy. Front Immunol 7(240). https://doi.org/10.3389/fimmu.2016.00240

  102. Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C (2016) Immunohistochemical characterization of toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. Fish Shellfish Immunol 59:250–255. https://doi.org/10.1016/j.fsi.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  103. Lazado CC, Caipang CMA (2014) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39(1):78–89. https://doi.org/10.1016/j.fsi.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  104. Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015) Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol 45(1):33–42. https://doi.org/10.1016/j.fsi.2015.01.033

    Article  CAS  PubMed  Google Scholar 

  105. Modanloo M, Soltanian S, Akhlaghi M, Hoseinifar SH (2017) The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings. Fish Shellfish Immunol 70(supplement C):391–397. https://doi.org/10.1016/j.fsi.2017.09.032

    Article  CAS  PubMed  Google Scholar 

  106. Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35(2):83–108. https://doi.org/10.1111/j.1365-2761.2011.01333.x

    Article  CAS  PubMed  Google Scholar 

  107. Cerezuela R, Meseguer J, Esteban MA (2011) Current knowledge in synbiotic use for fish aquaculture: a review. J Aquac Res Development S1(008). https://doi.org/10.4172/2155-9546.S1-008

  108. Liu W, Wang W, Ran C, He S, Yang Y, Zhou Z (2017) Effects of dietary scFOS and lactobacilli on survival, growth, and disease resistance of hybrid tilapia. Aquacult 470:50–55. https://doi.org/10.1016/j.aquaculture.2016.12.013

    Article  CAS  Google Scholar 

  109. Makras L, Triantafyllou V, Fayol-Messaoudi D, Adriany T, Zoumpopoulou G, Tsakalidou E, Servin A, De Vuyst L (2006) Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol 157(3):241–247. https://doi.org/10.1016/j.resmic.2005.09.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are also due to Assoc. Prof. Dr. Saowanit Tongpim, Assoc. Prof. Dr. Supamit Meckchay, and Assist. Prof. Dr. Chanagun Chitmanat for their kind assistance. Finally, the authors would like to thank the staff of the Central and Biotechnology Laboratories, Faculty of Agriculture, Chiang Mai University for their kind support during the data analysis process. The support of the Fundación Séneca de la Región de Murcia (grant number 19883/GERM/15) is also acknowledged.

Funding

This study received financial support from the Thai Research Fund (TRF) (Grant No. MRG5980127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ángeles Esteban.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The study was performed in accordance with the guidelines on use of animals for scientific purposes (Chiang Mai University).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Doan, H., Hoseinifar, S.H., Tapingkae, W. et al. Boosted Growth Performance, Mucosal and Serum Immunity, and Disease Resistance Nile Tilapia (Oreochromis niloticus) Fingerlings Using Corncob-Derived Xylooligosaccharide and Lactobacillus plantarum CR1T5. Probiotics & Antimicro. Prot. 12, 400–411 (2020). https://doi.org/10.1007/s12602-019-09554-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09554-5

Keywords

Navigation