Skip to main content
Log in

Effect of Encapsulated Lactobacillus bulgaricus on Innate Immune System and Hematological Parameters in Rainbow Trout (Oncorhynchus mykiss), Post-Administration of Pb

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The present study was conducted to investigate the effects of probiotic and encapsulated Lactobacillus bulgaricus on hematological and immunological factors after lead toxicity in rainbow trout (Oncorhynchus mykiss). Two hundred and forty fish weighing about 16 ± 3.8 g were divided randomly in to four groups including two groups which were fed by a diet containing ~ 108 CFU g−1Lactobacillus bulgaricus and encapsulated Lactobacillus bulgaricus bacteria and also the third group diet without Lactobacillus bulgaricus. After 45 days, in addition to probiotic (~ 108 CFU g−1), 500 μg kg of lead nitrate was added to the food of the three groups for 21 days. The fourth group (control) was first fed to the normal diet for 45 days then exposed to Pb. Blood samples were collected at days 45, 52, 59, and 66, and hematological and some immunological parameters were assessed. Results showed that hemoglobin, red blood cells, white blood cells, and lysozyme activity in the two probiotics groups were increased significantly up to 45 day (P < 0.05), but followed by a decreasing trend by adding Pb. Complement and bactericidal activity were enhanced significantly in the bulgaricus group (P < 0.05). Respiratory burst activity at day 45 in group bulgaricus had significant increase (P < 0.05) and decreased in all groups particularly after Pb exposure (P < 0.05). The achieved data shows that microencapsulation of probiotics with alginate-chitosan may be a suitable method to improve the fish condition against heavy metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3):997–1026. https://doi.org/10.1016/j.procbio.2004.04.008

    Article  CAS  Google Scholar 

  2. Al-Dohail MA, Hashim R, Aliyu-Paiko M (2009) Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquac Res 40(14):1642–1652. https://doi.org/10.1111/j.1365-2109.2009.02265.x

    Article  CAS  Google Scholar 

  3. Alexander B, Checkoway H, Costa-Mallen P, Faustman E, Woods J, Kelsey K, van Netten C, Costa L (1998) Interaction of blood lead and delta-aminolevulinic acid dehydratase genotype on markers of heme synthesis and sperm production in lead smelter workers. Environ Health Perspect 106:213–216

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashraf MA, Maah MJ, Yusoff I (2011) Heavy metals accumulation in plants growing in ex tin mining catchment. Int J Environ Sci Technol 8(2):401–416. https://doi.org/10.1007/BF03326227

    Article  CAS  Google Scholar 

  5. Balcázar JL, De Blas I, Ruiz-Zarzuela I, Vendrell D, Gironés O, Muzquiz JL (2007) Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunol Med Microbiol 51(1):185–193. https://doi.org/10.1111/j.1574-695X.2007.00294.x

    Article  CAS  PubMed  Google Scholar 

  6. Barta O (1993) Veterinary clinical immunology laboratory. Bar-Lab Incorporated, USA

    Google Scholar 

  7. Benifey TJ, Biron M (2000) Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture 184:167–176. https://doi.org/10.1016/S0044-8486(99)00314-2

    Article  Google Scholar 

  8. Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhakta JN, Munekage Y, Ohnishi K, Jana BB (2012a) Isolation and identification of cadmium-and lead-resistant lactic acid bacteria for application as metal removing probiotic. Int J Environ Sci Technol 9(3):433–440. https://doi.org/10.1007/s13762-012-0049-3

    Article  CAS  Google Scholar 

  10. Bhakta JN, Ohnishi K, Munekage Y, Iwasaki K, Wei M-Q (2012b) Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J Appl Microbiol 112(6):1193–1206. https://doi.org/10.1111/j.1365-2672.2012.05284.x

    Article  CAS  PubMed  Google Scholar 

  11. Carvalho CS, Fernandes MN (2006) Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 251:109–117. https://doi.org/10.1016/j.aquaculture.2005.05.018

    Article  CAS  Google Scholar 

  12. Cerezuela R, Guardiola FA, González P, Meseguer J, Esteban MÁ (2012) Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immunol 33(2):342–349. https://doi.org/10.1016/j.fsi.2012.05.004

    Article  PubMed  Google Scholar 

  13. Chen S, Cao Y, Ferguson LR, Shu Q, Garg S (2013) Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria. J Microencapsul 30:103–115. https://doi.org/10.3109/02652048.2012.700959

    Article  CAS  PubMed  Google Scholar 

  14. Choi SH, Yoon TJ (2008) Non-specific immune response of rainbow trout (Oncorhynchus mykiss) by dietary heat-inactivated potential probiotics. Immune Netw 8:67–74

    Article  Google Scholar 

  15. Dalmo RA, Ingebrigtsen K, Bøgwald J (1997) Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J Fish Dis 20(4):241–273. https://doi.org/10.1046/j.1365-2761.1997.00302.x

    Article  CAS  Google Scholar 

  16. Díaz-Rosales P, Arijo S, Chabrillón M, Alarcón F, Tapia-Paniagua S, Martínez-Manzanares E, Balebona MC, Moriñigo MA (2009) Effects of two closely related probiotics on respiratory burst activity of Senegalese sole (Solea senegalensis, Kaup) phagocytes, and protection against Photobacterium damselae subsp. Piscicida. Aquaculture 293:16–21. https://doi.org/10.1016/j.aquaculture.2009.03.050

    Article  Google Scholar 

  17. Dotta BT, Buckner CA, Cameron D, Lafrenie RM, Persinger MA (2011) Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys 30(3):301–309. https://doi.org/10.4149/gpb_2011_03_301

    Article  CAS  PubMed  Google Scholar 

  18. Feldman BF, Zinkl JG, Jain NC (2000) Schalm’s veterinary hematology, 5th edn. Lippincott Williams and Wilkins, New York, pp 1120–1124

    Google Scholar 

  19. Garcia EF, Luciano WA, Xavier DE, da Costa WC, de Sousa Oliveira K, Franco OL, de Morais Júnior MA, Lucena BT, Picão RC, Magnani M, Saarela M (2016) Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains. Front Microbiol 7:1371. https://doi.org/10.3389/fmicb.2016.01371

    Article  PubMed  PubMed Central  Google Scholar 

  20. Geng X, Dong XH, Tan BP, Yang QH, Chi SY, Liu HY, Liu XQ (2012) Effects of dietary probiotic on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Aquac Nutr 18(1):46–55. https://doi.org/10.1111/j.1365-2095.2011.00875.x

    Article  CAS  Google Scholar 

  21. Gonçalves AT, Maita M, Futami K, Endo M, Katagiri T (2011) Effects of a probiotic bacterial Lactobacillus rhamnosus dietary supplement on the crowding stress response of juvenile Nile tilapia Oreochromis niloticus. Fish Sci 77(4):633–642. https://doi.org/10.1007/s12562-011-0367-2

    Article  CAS  Google Scholar 

  22. Gupta A, Gupta P, Dhawan A (2014) Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry. Fish Shellfish Immunol 41(2):113–119. https://doi.org/10.1016/j.fsi.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  23. Halttunen T (2008) Removal of cadmium, lead and arsenic from water by lactic acid bacteria. Dissertation, University of Turku

  24. Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35. https://doi.org/10.1016/j.ijfoodmicro.2006.10.040

    Article  CAS  PubMed  Google Scholar 

  25. Harvey RW, Leckie JO (1985) Sorption of lead to two gram-negative marine bacteria in seawater. Mar Chem 15(4):333–344. https://doi.org/10.1016/0304-4203(85)90044-1

    Article  CAS  Google Scholar 

  26. Hotel ACP, Cordoba A (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5(1):1–10

    Google Scholar 

  27. Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342. https://doi.org/10.1046/j.1365-2761.2002.00375.x

    Article  CAS  Google Scholar 

  28. Jacob B, Ritz B, Heinrich J, Hoelscher B, Wichmann HE (2000) The effect of low-level blood lead on hematologic parameters in children. Environ Res 82(2):150–159. https://doi.org/10.1006/enrs.1999.4011

    Article  CAS  PubMed  Google Scholar 

  29. Kajita Y, Sakai M, Atsuta S, Kobayashi M (1990) The immunomodulatory effects of levamisole on rainbow trout, Oncorhynchus mykiss. Fish Pathol 25(2):93–98. https://doi.org/10.3147/jsfp.25.93

    Article  CAS  Google Scholar 

  30. Kanmani RS, Kumar N, Yuvaraj KA, Paari V, Pattukumar V, Arul (2011) Cryopreservation and microencapsulation of a probiotic in alginate-chitosan capsules improve survival in simulated gastrointestinal conditions. Biotechnol Bioprocess Eng 16:1106–1114. https://doi.org/10.1007/s12257-011-0068-9

    Article  CAS  Google Scholar 

  31. Kim DH, Austin B (2006) Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics. Vet Immunol Immunopathol 114(3–4):297–304. https://doi.org/10.1016/j.vetimm.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  32. Kim JH, Kang JC (2017) Toxic effects on bioaccumulation and hematological parameters of juvenile rockfish Sebastes schlegelii exposed to dietary lead (Pb) and ascorbic acid. Chemosphere 176:131–140. https://doi.org/10.1016/j.chemosphere.2017.02.097

    Article  CAS  PubMed  Google Scholar 

  33. Kinoshita H, Sohma Y, Ohtake F, Ishida M, Kawai Y, Kitazawa H, Saito T, Kimura K (2013) Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Res Microbiol 164(7):701–709. https://doi.org/10.1016/j.resmic.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  34. Krishnaveni R, Thambidurai S (2013) Industrial method of cotton fabric finishing with chitosan–ZnO composite for anti-bacterial and thermal stability. Ind Crop Prod 47:160–167. https://doi.org/10.1016/j.indcrop.2013.03.007

    Article  CAS  Google Scholar 

  35. Kumar R, Mukherjee SC, Ranjan R, Nayak SK (2008) Enhanced innate immune parameters in Labeo rohita (ham.) following oral administration of Bacillus subtilis. Fish Shellfish Immunol 24(2):168–172. https://doi.org/10.1016/j.fsi.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  36. Lasko CL, Hurst MP (1999) An investigation into the use of chitosan for the removal of soluble silver from industrial wastewater. Environ Sci Technol 33(20):3622–3626. https://doi.org/10.1021/es980443r

    Article  CAS  Google Scholar 

  37. Ma CW, Cho YS, Oh KH (2009) Removal of pathogenic bacteria and nitrogens by Lactobacillus spp. JK-8 and JK-11. Aquaculture 287(3):266–270. https://doi.org/10.1016/j.aquaculture.2008.10.061

    Article  CAS  Google Scholar 

  38. Maheswaran R, Devapanl A, Muralidharan S, Velmurugan B, Ignaeimuthu S (2008) Haematological studies of fresh water fish, Clarias batradrus (L) exposed to mercuric chloride. Int J Integr Biol 2:49–54

    CAS  Google Scholar 

  39. Marteua P, Ramboud JC (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Lett 12(1–3):207–220. https://doi.org/10.1016/0168-6445(93)90064-G

    Article  Google Scholar 

  40. Mazon A-F, Fernandes M-N (1999) Toxicity and differential tissue accumulation of copper in the tropical freshwater fish, Prochilodus scrofa (Prochilodontidae). Bull Environ Contam Toxicol 63:797–804. https://doi.org/10.1007/s001289901049

    Article  CAS  PubMed  Google Scholar 

  41. Mohammadian T, Alishahi M, Tabandeh M-R, Ghorbanpoor M, Gharibi D, Tollabi M, Rohanizade S (2016) Probiotic effects of Lactobacillus plantarum and L. delbrueckii subsp. bulguricus on some immune-related parameters in Barbus grypus. Aquac Int 24(1):225–242. https://doi.org/10.1007/s10499-015-9921-8

    Article  Google Scholar 

  42. Mohammadian T, Alishahi M, Tabandeh M-R, Ghorbanpoor M, Gharibi D (2017) Effect of Lactobacillus plantarum and Lactobacillus delbrueckii subsp. bulgaricus on growth performance, gut microbial flora and digestive enzymes activities in Tor grypus (Karaman, 1971). Iran J Fish Sci 16(1):296–317

    Google Scholar 

  43. Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics. Appl Environ Microbiol 78(18):6397–6404. https://doi.org/10.1128/AEM.01665-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mrvčić J, Stanzer D, Bacun-druzina V, Stehlik-Tomas V (2009) Copper binding by lactic acid bacteria (LAB). Biosci Microflora 28(1):1–6. https://doi.org/10.12938/bifidus.28.1

    Article  Google Scholar 

  45. Munir MB, Hashim R, Nor SAM, Marsh TL (2018) Effect of dietary prebiotics and probiotics on snakehead (Channa striata) health: haematology and disease resistance parameters against Aeromonas hydrophila. Fish Shellfish Immunol 75:99–108. https://doi.org/10.1016/j.fsi.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  46. NavinChandran M, Iyapparaj P, Moovendhan S, Ramasubburayan R, Prakash S, Immanuel G, Palavesam A (2014) Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon. Fish Shellfish Immunol 36(1):38–45. https://doi.org/10.1016/j.fsi.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  47. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  48. Nikoskelainen S, Ouwehand A, Bylund G, Salminen S, Lilius EM (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15(5):443–452. https://doi.org/10.1016/S1050-4648(03)00023-8

    Article  CAS  PubMed  Google Scholar 

  49. Nwachukwu MA, Feng H, Alinnor J (2010) Assessment of heavy metal pollution in soil and their implications within and around mechanic villages. Int J Environ Sci Technol 7(2):347–358. https://doi.org/10.1007/BF03326144

    Article  CAS  Google Scholar 

  50. Ouwerx C, Velings N, Mestdagh MM, Axelos MV (1998) Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym Gels Networks 6:393–408. https://doi.org/10.1016/S0966-7822(98)00035-5

    Article  CAS  Google Scholar 

  51. Panigrahi A, Kiron V, Satoh S, Hirono I, Kobayashi T, Sugita H, Puangkaew J, Aoki T (2007) Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Dev Comp Immunol 31(4):372–382. https://doi.org/10.1016/j.dci.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  52. Picchietti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F, Scapigliati G, Abelli L (2009) Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shellfish Immunol 26(3):368–376. https://doi.org/10.1016/j.fsi.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  53. Pirarat K, Pinpimai C, Rodkhum N, Chansue EL, Ooi T, Katagiri M, Maita (2015) Viability and morphological evaluation of alginate-encapsulated Lactobacillus rhamnosus GG under simulated tilapia gastrointestinal conditions and its effect on growth performance, intestinal morphology and protection against Streptococcus agalactiae. Anim Feed Sci Technol 207:93–103. https://doi.org/10.1016/j.anifeedsci.2015.03.002

    Article  CAS  Google Scholar 

  54. Planas M, Vázquez JA, Marqués J, Pérez-Lomba R, González M, Murado M (2004) Enhancement of rotifer (Brachionus plicatilis) growth by using terrestrial lactic acid bacteria. Aquaculture 240(1–4):313–329. https://doi.org/10.1016/j.aquaculture.2004.12.008

    Article  Google Scholar 

  55. Rayes AA (2012) Field studies on the removal of lead, cadmium, and copper by the use of probiotic lactic acid bacteria from the water for culturing marine tilapia T. spilurus. N Y Sci J 5(11):74–82

    Google Scholar 

  56. Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P (2000) Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191(4):271–288. https://doi.org/10.1016/S0044-8486(00)00440-3

    Article  CAS  Google Scholar 

  57. Røed KH, Fevolden SE, Fjalestad KT (2002) Disease resistance and immune characteristics in rainbow trout (Oncorhynchus mykiss) selected for lysozyme activity. Aquaculture 209(1):91–101. https://doi.org/10.1016/S0044-8486(01)00810-9

    Article  Google Scholar 

  58. Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231(1):1–12. https://doi.org/10.1007/s00217-010-1246-2

    Article  CAS  Google Scholar 

  59. Salinas I, Díaz-Rosales P, Cuesta A, Meseguer J, Chabrillón M, Morinigo MA, Esteban MA (2006) Effect of heat-inactivated fish and non fish derived probiotics on the innate immune parameters of a teleost fish (Sparus auratus L.). Vet Immunol Immunopathol 111(3–4):279–286. https://doi.org/10.1016/j.vetimm.2006.01.020

    Article  CAS  PubMed  Google Scholar 

  60. Salinas I, Abelli L, Bertoni F, Picchietti S, Roque A, Furones D, Cuesta A, Meseguer J, Esteban MA (2008) Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 25(1–2):114–123. https://doi.org/10.1016/j.fsi.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  61. Salminen S, Ouwehand A, Benno Y, Lee Y-K (1999) Probiotics: how should they be defined? Trends Food Sci Technol 10(3):107–110. https://doi.org/10.1016/S0924-2244(99)00027-8

    Article  CAS  Google Scholar 

  62. Sampath K, James R, Ali KA (1998) Effects of copper and zinc on blood parameters and prediction of their recovery in Oreochromis mossambicus (pisces). Indian J Fish 45(2):129–139

    Google Scholar 

  63. Saurabh S, Sahoo PK (2008) Lysozyme: an important defense molecule of the fish innate immune system. Aquac Res 39(3):223–239. https://doi.org/10.1111/j.1365-2109.2007.01883.x

    Article  CAS  Google Scholar 

  64. Saxena G, Flora S (2004) Lead-induced oxidative stress and hematological alterations and their response to combined administration of calcium disodium EDTA with a thiol chelator in rats. J Biochem Mol Toxicol 18:221–233. https://doi.org/10.1002/jbt.20027

    Article  CAS  PubMed  Google Scholar 

  65. Schäperclaus W (1992) Causes, development and prevention of fish disease. In: Schaperclaus W, Kulow H, Schreckenback K (eds) Fish disease, 5th edn. AA Balkema Publisher, Rotterdam, pp 3–42

    Google Scholar 

  66. Secombes CJ (1990) Isolation of salmonid macrophages and analysis of their killing activity. Tech Fish Immunol 1:137–154

    Google Scholar 

  67. Sharifuzzaman S, Austin B (2009) Influence of probiotic feeding duration on disease resistance and immune parameters in rainbow trout. Fish Shellfish Immunol 27(3):440–445. https://doi.org/10.1016/j.fsi.2009.06.010

    Article  CAS  PubMed  Google Scholar 

  68. Skjermo J, Storseth TR, Hansen K, Handa A, Oie G (2006) Evaluation of β-(1→ 3, 1→6)-glucans and high-M alginate used as an immunostimulatory dietary supplement during first feeding and weaning of Atlantic cod (Gadus morhua L.). Aquaculture 261(3):1088–1101. https://doi.org/10.1016/j.aquaculture.2006.07.035

    Article  CAS  Google Scholar 

  69. Song H, Yu W, Gao M, Liu X, Ma X (2013) Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydr Polym 96(1):181–189. https://doi.org/10.1016/j.carbpol.2013.03.068

    Article  CAS  PubMed  Google Scholar 

  70. Sun YZ, Yang HL, Ma RL, Lin WY (2009) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29:803–809. https://doi.org/10.1016/j.fsi.2010.07.018

    Article  Google Scholar 

  71. Teemu H, Seppo S, Jussi M, Raija T, Kalle L (2008) Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Int J Food Microbiol 125(2):170–175. https://doi.org/10.1016/j.ijfoodmicro.2008.03.041

    Article  CAS  PubMed  Google Scholar 

  72. Thrall MA (2004) Veterinary hematology and clinical chemistry. Lippincott Whiliams & Wilkins, New York, pp 277–288

    Google Scholar 

  73. Toplan S, Ozcelik D, Gulyasar T, Akyolcu MC (2004) Changes in hemorheological parameters due to lead exposure in female rats. J Trace Elem Med Biol 18:179–182. https://doi.org/10.1016/j.jtemb.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  74. Vine NG, Leukes WD, Kaiser H, Daya S, Baxter J, Hecht T (2004) Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. J Fish Dis 27(6):319–326. https://doi.org/10.1111/j.1365-2761.2004.00542.x

    Article  CAS  PubMed  Google Scholar 

  75. Won SH, Kim YR, Kim EY, Sungchul BC, Kong IS (2013) Effects of dietary probiotic, Lactococcus lactis subsp. lactis I2, supplementation on the growth and immune response of olive flounder (Paralichthys olivaceus). Aquaculture 376–379. https://doi.org/10.1016/j.aquaculture.2012.11.009

  76. Yin Y, Zhang P, Yue X, Du X, Li W, Yin Y, Yi C, Li Y (2018) Effect of sub-chronic exposure to lead (Pb) and Bacillus subtilis on Carassius auratus gibelio: bioaccumulation, antioxidant responses and immune responses. Ecotoxicol Environ Saf 161:755–762. https://doi.org/10.1016/j.ecoenv.2018.06.056

    Article  CAS  PubMed  Google Scholar 

  77. Zhai Q, Wang H, Tian F, Zhao J, Zhang H, Chen W (2017) Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquac Res 48(9):5094–5103. https://doi.org/10.1111/are.13326

    Article  CAS  Google Scholar 

  78. Zhou X, Tian Z, Wang Y, Li W (2010) Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol Biochem 36:501–509. https://doi.org/10.1007/s10695-009-9320-z

    Article  CAS  PubMed  Google Scholar 

  79. Zoghi A, Khosravi-Darani K, Sohrabvandi S (2014) Surface binding of toxins and heavy metals by probiotics. Mini-Rev Med Chem 14(1):84–98

    Article  CAS  PubMed  Google Scholar 

  80. Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to take them. In: Zuidam NJ, Nedovic V (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer-Verlag, New York, NY, pp 3–29

    Chapter  Google Scholar 

Download references

Funding

This investigation was funded by a Grant from the Shahid Chamran University of Ahvaz Research Council (Grant No. 27176, 1395.3.2). The authors of this study followed instructions of the university in Iran, and performed trials based on Ethical Guideline of laboratory animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takavar Mohammadian.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadian, T., Dezfuly, Z.T., Motlagh, R.G. et al. Effect of Encapsulated Lactobacillus bulgaricus on Innate Immune System and Hematological Parameters in Rainbow Trout (Oncorhynchus mykiss), Post-Administration of Pb. Probiotics & Antimicro. Prot. 12, 375–388 (2020). https://doi.org/10.1007/s12602-019-09544-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09544-7

Keywords

Navigation