Skip to main content

Advertisement

Log in

Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: a Critical Review

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The purpose of this review is to highlight the importance of whey as a source of new-generation functional ingredients. Particular interest is given to probiotic growth in the presence of whey derivatives such as lactulose, a lactose derivative, which is a highly sought-after prebiotic in functional feeding. The role of sugar/nitrogen interactions in the formation of Maillard products is also highlighted. These compounds are known for their antioxidant power. The role of bioactive peptides from whey is also discussed in this study. Finally, the importance of an integrated valuation of whey is discussed with an emphasis on functional nutrition and the role of probiotics in the development of novel foods such as synbiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morelli L, Callegari ML, Patrone V (2018) Chapter 17—prebiotics, probiotics, and synbiotics: a bifidobacterial view. In: Mattarelli P, Biavati B, Holzapfel WH, Wood BJB (eds) The bifidobacteria and related organisms. Academic Press, Cambridge, pp 271–293. https://doi.org/10.1016/B978-0-12-805060-6.00017-X

    Chapter  Google Scholar 

  2. Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241. https://doi.org/10.1016/j.jff.2014.04.030

    Article  CAS  Google Scholar 

  3. Romano N, Tymczyszyn E, Mobili A, Gómez-Zavaglia A (2015) Prebiotics as protectants of lactic acid bacteria. In: Bioactive foods in promoting health: probiotics, prebiotics, and synbiotics, part 1: prebiotics in health promotion. Academic Press, Elsevier, pp 155–164

  4. Aider M, Gimenez-Vidal M (2012) Lactulose synthesis by electro-isomerization of lactose: effect of lactose concentration and electric current density. Innovative Food Sci Emerg Technol 16:163–170. https://doi.org/10.1016/j.ifset.2012.05.007

    Article  CAS  Google Scholar 

  5. Sitanggang AB, Drews A, Kraume M (2016) Recent advances on prebiotic lactulose production. World J Microbiol Biotechnol 32:154–164. https://doi.org/10.1007/s11274-016-2103-7

    Article  CAS  PubMed  Google Scholar 

  6. Bigliardi B, Galati F (2013) Innovation trends in the food industry: the case of functional foods. Trends Food Sci Technol 31:118–129. https://doi.org/10.1016/j.tifs.2013.03.006

    Article  CAS  Google Scholar 

  7. Stanton C, Ross RP, Fitzgerald GF, Van Sinderen D (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol 16:198–203

    Article  CAS  PubMed  Google Scholar 

  8. Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JA (2010) Functional foods and nondairy probiotic food development: trends, concepts, and products. Compr Rev Food Sci Food Saf 9:292–302

    Article  CAS  Google Scholar 

  9. Anukam KC, Reid G (2007) Probiotics: 100 years (1907-2007) after Elie Metchnikoff’s observation. Commun Curr Res Educ Topics Trends Appl Microbiol 1:466–474

    Google Scholar 

  10. Fuller R, Gibson GR (1997) Modification of the intestinal microflora using probiotics and prebiotics. Scand J Gastroenterol 32:28–31

    Article  Google Scholar 

  11. Kumar H, Salminen S, Verhagen H, Rowland I, Heimbach J, Bañares S, Young T, Nomoto K, Lalonde M (2015) Novel probiotics and prebiotics: road to the market. Curr Opin Biotechnol 32:99–103. https://doi.org/10.1016/j.copbio.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  12. Kumar M, Nagpal R, Hemalatha R, Yadav H, Marotta F (2016) Probiotics and prebiotics for promoting health: through gut microbiota. Probiotics, prebiotics, and synbiotics. Bioact Foods Health Prom 897–908

  13. Mortazavian AM, Mohammadi R, Sohrabvandi S (2012) Delivery of probiotic microorganisms into gastrointestinal tract by food products. INTECH Open Access Publisher

  14. Vesterlund S, Vankerckhoven V, Saxelin M, Goossens H, Salminen S, Ouwehand AC (2007) Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. Int J Food Microbiol 116:325–331

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez-Hernandez O, Muthaiyan A, Moreno FJ, Montilla A, Sanz ML, Ricke S (2012) Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiol 30:355–361

    Article  CAS  PubMed  Google Scholar 

  16. Charteris W, Kelly P, Morelli L, Collins J (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768

    Article  CAS  PubMed  Google Scholar 

  17. Sumeri I, Arike L, Adamberg K, Paalme T (2008) Single bioreactor gastrointestinal tract simulator for study of survival of probiotic bacteria. Appl Microbiol Biotechnol 80:317–324

    Article  CAS  PubMed  Google Scholar 

  18. Ouwehand AC, Salminen S (2003) In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb Ecol Health Dis 15:175–184

    Article  Google Scholar 

  19. Saad N, Delattre C, Urdaci M, Schmitter J-M, Bressollier P (2013) An overview of the last advances in probiotic and prebiotic field. LWT-Food Sci Technol 50:1–16

    Article  CAS  Google Scholar 

  20. Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66

    Article  CAS  PubMed  Google Scholar 

  21. Gardner-Fortier C, St-Gelais D, Champagne CP, Vuillemard J-C (2013) Determination of optimal conditions for γ-aminobutyric acid production by Lactococcus lactis ssp. lactis. Int Dairy J 32:136–143

    Article  CAS  Google Scholar 

  22. O’Toole PW, Cooney JC (2008) Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 1:9–19

    Google Scholar 

  23. Sarkar A, Mandal S (2016) Bifidobacteria—insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 192:159–171

    Article  PubMed  Google Scholar 

  24. Vazquez-Gutierrez P, Lacroix C, Jaeggi T, Zeder C, Zimmerman MB, Chassard C (2015) Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron. BMC Microbiol 15:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yasmin A, Butt MS, Afzaal M, van Baak M, Nadeem MT, Shahid MZ (2015) Prebiotics, gut microbiota and metabolic risks: unveiling the relationship. J Funct Foods 17:189–201. https://doi.org/10.1016/j.jff.2015.05.004

    Article  CAS  Google Scholar 

  26. Gayathri D, Rashmi BS (2017) Mechanism of development of depression and probiotics as adjuvant therapy for its prevention and management. Mental Health Prev 5:40–51. https://doi.org/10.1016/j.mhp.2017.01.003

    Article  Google Scholar 

  27. Bermudez-Brito M, Sahasrabudhe NM, Rösch C, Schols HA, Faas MM, Vos P (2015) The impact of dietary fibers on dendritic cell responses in vitro is dependent on the differential effects of the fibers on intestinal epithelial cells. Mol Nutr Food Res 59:698–710

    Article  CAS  PubMed  Google Scholar 

  28. Agarwal S, Misra R, Vishvkarma P, Saxena A (2016) Probiotics—a novel approach for health benefits. World J Pharm Pharm Sci 5:455–475

    CAS  Google Scholar 

  29. Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185

    Article  CAS  Google Scholar 

  30. Szajewska H, Skorka A, Ruszczyński M, Gieruszczak-Białek D (2013) Meta-analysis: Lactobacillus GG for treating acute gastroenteritis in children—updated analysis of randomised controlled trials. Aliment Pharmacol Ther 38:467–476

    Article  CAS  PubMed  Google Scholar 

  31. Doege K, Grajecki D, Zyriax B-C, Detinkina E, zu Eulenburg C, Buhling KJ (2012) Impact of maternal supplementation with probiotics during pregnancy on atopic eczema in childhood—a meta-analysis. Br J Nutr 107(01):1–6

    Article  CAS  PubMed  Google Scholar 

  32. Anderson JL, Miles C, Tierney AC (2017) Effect of probiotics on respiratory, gastrointestinal and nutritional outcomes in patients with cystic fibrosis: a systematic review. J Cyst Fibros 16:186–197. https://doi.org/10.1016/j.jcf.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  33. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2016) Probiotics, gut microbiota and their influence on host health and disease. Mol Nutr Food Res 61:2–15

    Google Scholar 

  34. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, Gänzle M, Kort R, Pasin G, Pihlanto A (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102

    Article  CAS  PubMed  Google Scholar 

  35. Mortazavian A, Ghorbanipour S, Mohammadifar M, Mohammadi M (2011) Biochemical properties and viable probiotic population of yogurt at different bacterial inoculation rates and incubation temperatures. Philipp Agric Scientist 94:111–116

    Google Scholar 

  36. Lee YK, Salminen S (2009) Handbook of probiotics and prebiotics. John Wiley & Sons

  37. Talwalkar A, Kailasapathy K (2004) A review of oxygen toxicity in probiotic yogurts: influence on the survival of probiotic bacteria and protective techniques. Compr Rev Food Sci Food Saf 3:117–124

    Article  CAS  Google Scholar 

  38. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2013) Prebiotics as functional foods: a review. J Funct Foods 5:1542–1553

    Article  CAS  Google Scholar 

  39. Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12:303–310

    Article  CAS  PubMed  Google Scholar 

  40. Rastall RA, Gibson GR (2015) Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 32:42–46

    Article  CAS  PubMed  Google Scholar 

  41. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G, Goh YJ, Hamaker B, Martens EC, Mills DA, Rastal RA (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol 37:1–7

    Article  CAS  PubMed  Google Scholar 

  42. Fu L, Wang Y (2013) Sources and production of prebiotics. Probiotics and prebiotics in food. Nutr Health 50

  43. Michalak M, Mikkelsen JD, Jonsson GE, Pinelo M (2014) Enzymatic production and purification of prebiotic oligosaccharides by chromatography and membrane systems. Technical University of Denmark, Department of Systems Biology

  44. Charalampopoulos D, Rastall RA (2012) Prebiotics in foods. Curr Opin Biotechnol 23:187–191. https://doi.org/10.1016/j.copbio.2011.12.028

    Article  CAS  PubMed  Google Scholar 

  45. Verspreet J, Damen B, Broekaert WF, Verbeke K, Delcour JA, Courtin CM (2016) A critical look at prebiotics within the dietary fiber concept. Annu Rev Food Sci Technol 7:167–190

    Article  CAS  PubMed  Google Scholar 

  46. Rastall RA, Gibson GR, Gill HS, Guarner F, Klaenhammer TR, Pot B, Reid G, Rowland IR, Sanders ME (2005) Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol 52:145–152

    Article  CAS  PubMed  Google Scholar 

  47. Tuohy K (2008) Commentary on prebiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 101:631–632

    Article  CAS  PubMed  Google Scholar 

  48. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM (2009) Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 90:1236–1243

    Article  CAS  PubMed  Google Scholar 

  49. Karimi R, Azizi MH, Ghasemlou M, Vaziri M (2015) Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review. Carbohydr Polym 119:85–100

    Article  CAS  PubMed  Google Scholar 

  50. Bali V, Panesar PS, Bera MB, Panesar R (2015) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 55:1475–1490

    Article  CAS  PubMed  Google Scholar 

  51. Otieno DO, Ahring BK (2012) The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr Res 360:84–92

    Article  CAS  PubMed  Google Scholar 

  52. Xue Z, Yu J, Zhao M, Kang W, Ma Z (2017) Effects of synbiotics on intestinal mucosal barrier in rat model. Clin Nutr Exp 13:12–21. https://doi.org/10.1016/j.yclnex.2017.02.001

    Article  Google Scholar 

  53. Yu T, Zheng Y-P, Tan J-C, Xiong W-J, Wang Y, Lin L (2017) Effects of prebiotics and synbiotics on functional constipation. Am J Med Sci 353:282–292. https://doi.org/10.1016/j.amjms.2016.09.014

    Article  PubMed  Google Scholar 

  54. Mohammadi R, Mortazavian A (2011) Review article: technological aspects of prebiotics in probiotic fermented milks. Food Rev Int 27:192–212

    Article  Google Scholar 

  55. Oliveira RPS, Perego P, MNd O, Converti A (2011) Effect of inulin as prebiotic and synbiotic interactions between probiotics to improve fermented milk firmness. J Food Eng 107:36–40. https://doi.org/10.1016/j.jfoodeng.2011.06.005

    Article  CAS  Google Scholar 

  56. Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2006) Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int Dairy J 16:1181–1189. https://doi.org/10.1016/j.idairyj.2005.10.008

    Article  CAS  Google Scholar 

  57. Parussolo G, Busatto RT, Schmitt J, Pauletto R, Schons PF, Ries EF (2017) Synbiotic ice cream containing yacon flour and Lactobacillus acidophylus NCFM. LWT-Food Sci Technol 82:192–198. https://doi.org/10.1016/j.lwt.2017.04.049

    Article  CAS  Google Scholar 

  58. Angiolillo L, Conte A, Faccia M, Zambrini AV, Del Nobile MA (2014) A new method to produce synbiotic fiordilatte cheese. Innovative Food Sci Emerg Technol 22:180–187. https://doi.org/10.1016/j.ifset.2013.09.010

    Article  CAS  Google Scholar 

  59. Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 446:385–396. https://doi.org/10.1016/j.scitotenv.2012.12.038

    Article  CAS  Google Scholar 

  60. Oriach CS, Robertson RC, Stanton C, Cryan JF, Dinan TG (2016) Food for thought: the role of nutrition in the microbiota-gut–brain axis. Clin Nutr Exp 6:25–38. https://doi.org/10.1016/j.yclnex.2016.01.003

    Article  Google Scholar 

  61. Chandrapala J, Chen GQ, Kezia K, Bowman EG, Vasiljevic T, Kentish SE (2016) Removal of lactate from acid whey using nanofiltration. J Food Eng 177:59–64. https://doi.org/10.1016/j.jfoodeng.2015.12.019

    Article  CAS  Google Scholar 

  62. Lievore P, Simões DRS, Silva KM, Drunkler NL, Barana AC, Nogueira A, Demiate IM (2015) Chemical characterisation and application of acid whey in fermented milk. J Food Sci Technol 52:2083–2092. https://doi.org/10.1007/s13197-013-1244-z

    Article  CAS  PubMed  Google Scholar 

  63. Gänzle MG (2011) Lactose and oligosaccharides lactose derivatives A2 - Fuquay, John W. In: Encyclopedia of dairy sciences, 2nd edn. Academic Press, San Diego, pp 202–208. https://doi.org/10.1016/B978-0-12-374407-4.00275-2

    Chapter  Google Scholar 

  64. Nath A, Chakraborty S, Bhattacharjee C, Chowdhury R (2015) Studies on the separation of proteins and lactose from casein whey by cross-flow ultrafiltration. Desalin Water Treat 54:481–501. https://doi.org/10.1080/19443994.2014.888685

    Article  CAS  Google Scholar 

  65. Playne M, Crittenden R (2009) Galacto-oligosaccharides and other products derived from lactose. In: Advanced dairy chemistry. Springer, pp 121–201

  66. Yu J, Zhang W, Zhang R, Ruan X, Ren P, Lu B (2015) Lactulose accelerates liver regeneration in rats by inducing hydrogen. J Surg Res 195:128–135. https://doi.org/10.1016/j.jss.2015.01.034

    Article  CAS  PubMed  Google Scholar 

  67. Aider M, Halleux D (2007) Isomerization of lactose and lactulose production: review. Trends Food Sci Technol 18:356–364. https://doi.org/10.1016/j.tifs.2007.03.005

    Article  CAS  Google Scholar 

  68. Kuschel B, Claaßen W, Mu W, Jiang B, Stressler T, Fischer L (2016) Reaction investigation of lactulose-producing cellobiose 2-epimerases under operational relevant conditions. J Mol Catal B Enzym 133:S80–S87. https://doi.org/10.1016/j.molcatb.2016.11.022

    Article  CAS  Google Scholar 

  69. Sitanggang AB, Drews A, Kraume M (2014) Continuous synthesis of lactulose in an enzymatic membrane reactor reduces lactulose secondary hydrolysis. Bioresour Technol 167:108–115. https://doi.org/10.1016/j.biortech.2014.05.124

    Article  CAS  PubMed  Google Scholar 

  70. Cardelle-Cobas A, Olano A, Irazoqui G, Giacomini C, Batista-Viera F, Corzo N, Corzo-Martínez M (2016) Synthesis of oligosaccharides derived from lactulose (OsLu) using soluble and immobilized Aspergillus oryzae β-galactosidase. Front Bioeng Biotechnol 21:1–10. https://doi.org/10.3389/fbioe.2016.00021

    Article  Google Scholar 

  71. Silvério SC, Macedo EA, Teixeira JA, Rodrigues LR (2016) Biocatalytic approaches using lactulose: end product compared with substrate. Compr Rev Food Sci Food Saf 15:878–896. https://doi.org/10.1111/1541-4337.12215

    Article  CAS  Google Scholar 

  72. Aider M, Gnatko E, Benali M, Plutakhin G, Kastyuchik A (2012) Electro-activated aqueous solutions: theory and application in the food industry and biotechnology. Innovative Food Sci Emerg Technol 15:38–49. https://doi.org/10.1016/j.ifset.2012.02.002

    Article  Google Scholar 

  73. Aït Aissa A, Aïder M (2013) Lactose isomerization into lactulose in an electro-activation reactor and high-performance liquid chromatography (HPLC) monitoring of the process. J Food Eng 119:115–124. https://doi.org/10.1016/j.jfoodeng.2013.05.011

    Article  CAS  Google Scholar 

  74. Aït Aissa A, Aïder M (2014) Electro-catalytic isomerization of lactose into lactulose: the impact of the electric current, temperature and reactor configuration. Int Dairy J 34:213–219. https://doi.org/10.1016/j.idairyj.2013.08.010

    Article  CAS  Google Scholar 

  75. Gibson GR (2004) Fibre and effects on probiotics (the prebiotic concept). Clin Nutr 1:25–31. https://doi.org/10.1016/j.clnu.2004.09.005

    Article  Google Scholar 

  76. Zoumpopoulou G, Pot B, Tsakalidou E, Papadimitriou K (2017) Dairy probiotics: beyond the role of promoting gut and immune health. Int Dairy J 67:46–60. https://doi.org/10.1016/j.idairyj.2016.09.010

    Article  Google Scholar 

  77. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174

    Article  CAS  Google Scholar 

  78. Murata M, Wakabayashi H, Yamauchi K, Abe F (2013) Identification of milk proteins enhancing the antimicrobial activity of lactoferrin and lactoferricin. J Dairy Sci 96:4891–4898. https://doi.org/10.3168/jds.2013-6612

    Article  CAS  PubMed  Google Scholar 

  79. Rijkers GT, De Vos WM, Brummer R-J, Morelli L, Corthier G, Marteau P (2011) Health benefits and health claims of probiotics: bridging science and marketing. Br J Nutr 106:1291–1296

    Article  CAS  PubMed  Google Scholar 

  80. Sun J, Buys NJ (2016) Glucose-and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr 115:1167–1177

    Article  CAS  PubMed  Google Scholar 

  81. Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterol 126:1620–1633

    Article  Google Scholar 

  82. Petuely F (1957) The quantitative detection of Lactobacillus bifidus in the feces of infants. Zeitschrift fur Kinderheilkunde 79:180–184

    Article  CAS  PubMed  Google Scholar 

  83. Shaghaghi M, Pourahmad R, Mahdavi Adeli HR (2013) Synbiotic yogurt production by using prebiotic compounds and probiotic lactobacilli. Int Res J Appl Basic Sci 5:839–846

    Google Scholar 

  84. Brandelli A, Daroit DJ, Corrêa APF (2015) Whey as a source of peptides with remarkable biological activities. Food Res Int 73:149–161. https://doi.org/10.1016/j.foodres.2015.01.016

    Article  CAS  Google Scholar 

  85. Tavares TG, Malcata FX (2013) Whey proteins as source of bioactive peptides against hypertension. INTECH Open Access Publisher

  86. Madureira A, Tavares T, Gomes AMP, Pintado M, Malcata FX (2010) Invited review: physiological properties of bioactive peptides obtained from whey proteins. J Dairy Sci 93:437–455

    Article  CAS  PubMed  Google Scholar 

  87. Jakubowicz D, Froy O (2013) Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and type 2 diabetes. J Nutr Biochem 24:1–5

    Article  CAS  PubMed  Google Scholar 

  88. Lopez-Exposito I, Recio I (2008) Protective effect of milk peptides: antibacterial and antitumor properties. In: Bioactive components of milk. Springer, pp 271–294

  89. Mohanty D, Mohapatra S, Misra S, Sahu P (2016) Milk derived bioactive peptides and their impact on human health—a review. Saudi J Biol Sci 23:577–583

    Article  CAS  PubMed  Google Scholar 

  90. Akal C (2017) Chapter 28—benefits of whey proteins on human health A2 - Watson, Ronald Ross. In: Collier RJ, Preedy VR (eds) Dairy in human health and disease across the lifespan. Academic Press, pp 363–372. doi: https://doi.org/10.1016/B978-0-12-809868-4.00028-5

  91. de Castro RJS, Domingues MAF, Ohara A, Okuro PK, dos Santos JG, Brexó RP, Sato HH (2017) Whey protein as a key component in food systems: physicochemical properties, production technologies and applications. Food Struct 14:17–29. https://doi.org/10.1016/j.foostr.2017.05.004

    Article  Google Scholar 

  92. Nongonierma A, O’keeffe M, FitzGerald R (2016) Milk protein hydrolysates and bioactive peptides. Adv Dairy Chem Springer, pp 417–482

  93. Park YW, Nam MS (2015) Bioactive peptides in milk and dairy products: a review. Korean J Food Sci Anim Resour 35:831–840

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pihlanto-Leppälä A (2000) Bioactive peptides derived from bovine whey proteins: opioid and ACE-inhibitory peptides. Trends Food Sci Technol 11:347–356

    Article  Google Scholar 

  95. Demers-Mathieu V, Gauthier SF, Britten M, Fliss I, Robitaille G, Jean J (2013) Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration. Int Dairy J 28:94–101. https://doi.org/10.1016/j.idairyj.2012.09.003

    Article  CAS  Google Scholar 

  96. Sharma R, Rajput YS, Mann B (2013) Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: a review. Dairy Sci Technol 93:21–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Foegeding EA, Davis JP (2011) Food protein functionality: a comprehensive approach. Food Hydrocoll 25:1853–1864

    Article  CAS  Google Scholar 

  98. McCarthy R, Mills S, Ross R, Fitzgerald G, Stanton C (2014) Bioactive peptides from casein and whey proteins. Milk Dairy Products Funct Foods 2:23–54

    Article  Google Scholar 

  99. Gaudel C, Nongonierma AB, Maher S, Flynn S, Krause M, Murray BA, Kelly PM, Baird AW, FitzGerald RJ, Newsholme P (2013) A whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic β-cell line and enhances glycemic function in ob/ob mice. J Nutr 143:1109–1114

    Article  CAS  PubMed  Google Scholar 

  100. Ortiz-Chao P, Gómez-Ruiz JA, Rastall RA, Mills D, Cramer R, Pihlanto A, Korhonen H, Jauregi P (2009) Production of novel ACE inhibitory peptides from β-lactoglobulin using Protease N Amano. Int Dairy J 19:69–76

    Article  CAS  Google Scholar 

  101. Nongonierma AB, FitzGerald RJ (2015) Bioactive properties of milk proteins in humans: a review. Peptides 73:20–34

    Article  CAS  PubMed  Google Scholar 

  102. Hernández-Ledesma B, Ramos M, Recio I, Amigo L (2006) Effect of β-lactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides. J Chromatogr A 1116:31–37

    Article  CAS  PubMed  Google Scholar 

  103. Johnson DR, Decker EA (2015) The role of oxygen in lipid oxidation reactions: a review. Ann Rev Food Sci Technol 6:171–190

    Article  CAS  Google Scholar 

  104. Hernández-Ledesma B, Dávalos A, Bartolomé B, Amigo L (2005) Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem 53:588–593

    Article  CAS  PubMed  Google Scholar 

  105. Peñas E, Préstamo G, Baeza ML, Martínez-Molero MI, Gomez R (2006) Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. Int Dairy J 16:831–839

    Article  CAS  Google Scholar 

  106. Abd El-Salam MH, El-Shibiny S (2017) Chapter 12—separation of bioactive whey proteins and peptides A2 - Grumezescu, Alexandru Mihai. In: Holban AM (ed) Ingredients extraction by physicochemical methods in food. Academic Press, pp 463–494. https://doi.org/10.1016/B978-0-12-811521-3.00012-0

  107. Arihara K, Zhou L, Ohata M (2017) Bioactive properties of Maillard reaction products generated from food protein-derived peptides. Adv Food Nutr Res 81:161–185. https://doi.org/10.1016/bs.afnr.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  108. de Oliveira FC, Coimbra JS, de Oliveira EB, Zuniga AD, Rojas EE (2016) Food protein-polysaccharide conjugates obtained via the Maillard reaction: a review. Crit Rev Food Sci Nutr 56:1108–1125. https://doi.org/10.1080/10408398.2012.755669

    Article  CAS  PubMed  Google Scholar 

  109. Hodge JE (1953) Dehydrated foods, chemistry of browning reactions in model systems. J Agric Food Chem 1:928–943. https://doi.org/10.1021/jf60015a004

    Article  CAS  Google Scholar 

  110. Zhao C-B, Zhou L-Y, Liu J-Y, Zhang Y, Chen Y, Wu F (2016) Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of soy protein/sugar Maillard reaction products. J Food Sci Technol 53:2342–2351. https://doi.org/10.1007/s13197-016-2206-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of Fonds de Recherche du Quebec-Nature et Technologie (FRQNT), Grant No. 2014-PR-171844.

Funding

The work was supported by the financial support of Fonds de Recherche du Quebec-Nature et Technologie (FRQNT). Grant No. 2014-PR-171844.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Aïder.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

We state that this article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kareb, O., Aïder, M. Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: a Critical Review. Probiotics & Antimicro. Prot. 11, 348–369 (2019). https://doi.org/10.1007/s12602-018-9427-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9427-6

Keywords

Navigation