Skip to main content
Log in

Heat Adaptation Improved Cell Viability of Probiotic Enterococcus faecium HL7 upon Various Environmental Stresses

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The production of viable functional probiotics presupposes stability of strain features in the final product. In previous studies, Enterococcus faecium HL7 was found to have relatively higher cell viability after freeze-drying and the long-lasting resistance to heat (60 °C) as well as higher antimicrobial activities against some of fish and human pathogens among isolated strains. For heat adaptation, E. faecium HL7 cells were exposed to 52 °C for 15 min. After adaption, slight decreases of unsaturated membrane fatty acid ratios were confirmed through fatty acid analysis. Upon subsequent exposure to various stress conditions such as H2O2 (0.01%), ethanol (20%), acid (pH 3), and alkali (pH 12), the survival rate of heat-adapted HL7 was 103–105-fold higher than that of non-adapted one. These results highlight the potential of preconditioning treatments for maximizing survival of probiotic bacteria during development of probiotic functional foods. The cross-protection afforded by acid against thermal stress may indicate that certain common protective mechanisms are induced by both heat and acid stress. These results can be applied to enhancing the cell viability during live cell formulation of E. faecium HL7 to be used as a potential probiotics in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beal C, Marin M, Fontaine E, Fonseca F, Obert JP (2008) Production et conservation des ferments lactiques et probiotiques. In: Corrieu G, Luquet FM (eds) Bacteries lactiques, de la genetique aux ferments. Tec & Doc Lavoisier, Paris, pp 661–785

    Google Scholar 

  2. Rault A, Bouix M, Beal C (2010) Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is influenced by the physiological state during fermentation. Int Dairy J 20:792–799

    Article  CAS  Google Scholar 

  3. Streit F, Corrieu G, Beal C (2008a) Effect of centrifugation conditions on the cryotolerance of Lactobacillus bulgaricus CFL1. Food Bioprocess Technol 3:36–42

    Article  Google Scholar 

  4. Streit F, Delettre J, Corrieu G, Beal C (2008b) Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appl Microbiol 105:1071–1080

    Article  CAS  PubMed  Google Scholar 

  5. Hardwood VJ, Whitlock J, Withighton V (2000) Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters. Appl Environ Microbiol 66:3698–3704

    Article  Google Scholar 

  6. Wilson IG, McAfee GG (2002) Vancomycin-resistant enterococci in shellfish, unchlorinated waters, and chicken. Int J Food Microbiol 79:143–151

    Article  CAS  PubMed  Google Scholar 

  7. Petersen A, Dalsgaard A (2003) Antimicrobial resistance of intestinal Aeromonas spp. and Enterococcus spp. in fish cultured in integrated broiler-fish farms in Thailand. Aquaculture 219:71–82

    Article  CAS  Google Scholar 

  8. Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods a conundrum for food safety. Int J Food Microbiol 88:105–122

    Article  CAS  Google Scholar 

  9. Ghazala S, Coxworthy D, Alkanani T (1995) Thermal kinetics of Streptococcus faecium in nutrient broth/sous vide products under pasteurization conditions. J Food Process Preserv 19:243–257

    Article  Google Scholar 

  10. Martínez S, López M, Bernardo A (2003) Thermal inactivation of Enterococcus faecium: effect of growth temperature and physiological state of microbial cells. Lett Appl Microbiol 37:475–481

    Article  PubMed  Google Scholar 

  11. Giraffa G, Carminati D, Neviani E (1997) Enterococci isolated from dairy products: a review of risks and potential technological use. J Food Prot 60:732–738

    Article  PubMed  Google Scholar 

  12. Tosun H, Gönü SA (2003) Acid adaptation protects Salmonella typhimurium from environmental stress. Turk J Biol 27:31–36

    CAS  Google Scholar 

  13. Álvarez-Ordóñez A, Fernández A, López M, Arenas R, Bernardo A (2008) Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int J Food Microbiol 123:212–219

    Article  CAS  PubMed  Google Scholar 

  14. Leyer GJ, Johnson EA (1993) Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol 59:1842–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryu JH, Beuchat LR (1998) Influence of acid tolerance responses on survival, growth, and thermal cross-protection of Escherichia coli O157:H7 in acidified media and fruit juices. Int J Food Microbiol 45:185–193

    Article  CAS  PubMed  Google Scholar 

  16. Kim WR, Kang CH, Gu T, Shin YJ, Jang S, Jung J, So JS (2016) Screening of lactic acid bacteria as potential probiotics in aquaculture and improvement of cell viability by heat adaptation. 2016 KSBB Spring Meeting and International Symposium, 182–182

  17. Hartke A, Bouche S, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr Microbiol 33:194–199

    Article  CAS  PubMed  Google Scholar 

  18. Beal C, Fonseca F, Corrieu G (2001) Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. J Dairy Sci 84:2347–2356

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Corrieu G, Beal C (2005) Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758. J Dairy Sci 88:21–29

    Article  CAS  PubMed  Google Scholar 

  20. Prescott LM, Harley JP, Klein DA (1990) Microbiology. Dubuque, IA

  21. Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajarvi I, Matto J (2004) Stationary phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J Appl Microbiol 96:1205–1214

    Article  CAS  PubMed  Google Scholar 

  22. Kloss WE (1998) Staphylococcus. In: Collier L, Balows A, Sussman M (eds) Topley & Wilson’s microbiology and microbial infections, 9th edn. Arnold (Hodder Headline Group), London, pp 577–632

    Google Scholar 

  23. Wade JJ (1997) Enterococcus faecium in hospitals. Eur J Clin Microbiol Infect Dis 16:113–119

    Article  CAS  PubMed  Google Scholar 

  24. Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  CAS  PubMed  Google Scholar 

  25. Laport MS, da Silva MR, Silva CC, de Freire Bastos MC, Giambiagi-deMarval M (2003) Heat-resistance and heat-shock response in the nosocomial pathogen Enterococcus faecium. Curr Microbiol 46:313–317

    Article  CAS  Google Scholar 

  26. Kim JH, Lee SY, Chang CE, Kim SC, Yun HS, So JS (2001) Effect of cold adaptation on the improved viability of Lactobacillus crispatus KLB46. Korean J Biotechnol Bioeng 16:626–631

    Google Scholar 

  27. Sörqvist S (2003) Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Vet Scand 44:1–19

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goldstein JN, Pollitt S, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A 87:283–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin J, Smith MP, Chapin KC, Baik HS, Bennet GN, Foster JW (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62:3094–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sampathkumar B, Khachatourians GG, Korber DR (2004) Treatment of Salmonella enterica serovar Enteritidis with a sublethal concentration of trisodium phosphate or alkaline pH induces thermotolerance. Appl Environ Microbiol 70:4613–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Álvarez-Ordóñez A, Fernández A, López M, Bernardo A (2009) Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384. Food Microbiol 26:347–353

    Article  CAS  PubMed  Google Scholar 

  32. Annous BA, Kozempel MF, Kurantz MJ (1999) Changes in membrane fatty acid composition of Pediococcus sp. strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance. Appl Environ Microbiol 65:2857–2862

    CAS  PubMed  PubMed Central  Google Scholar 

  33. De Vries W, Stouthamer AH (1969) Factors determining the degree of anaerobiosis of Bifidobacterium strains. Arch Mikrobiol 65:275–287

    Article  PubMed  Google Scholar 

  34. Dukan SAM, Touati D (1996) Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178:6145–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23:302–315

    Article  CAS  PubMed  Google Scholar 

  36. Quivey RG Jr, Faustoferri R, Monahan K, Marquis R (2000) Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiol Lett 189:89–92

    Article  CAS  PubMed  Google Scholar 

  37. Presser KA, Ratkowsky DA, Ross T (1997) Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 63:2355–2360

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zotta T, Ricciardi A, Ciocia F, Rossano R, Parente E (2008) Diversity of stress responses in dairy thermophilic streptococci. Int J Food Microbiol 124:34–42

    Article  CAS  PubMed  Google Scholar 

  39. Serrazanetti D, Guerzoni ME, Corsetti A, Vogel R (2009) Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol 26:700–711

    Article  CAS  PubMed  Google Scholar 

  40. Ferrando V, Quiberoni A, Reinheimer J, Suárez V (2015) Resistance of functional Lactobacillus plantarum strains against food stress conditions. Food Microbiol 48:63–71

    Article  CAS  PubMed  Google Scholar 

  41. Pichereau V, Hartke A, Auffray Y (2000) Starvation and osmotic induced multiresistances: influence of extracellular compounds. Int J Food Microbiol 55:19–25

    Article  CAS  PubMed  Google Scholar 

  42. Mackay BM, Derrick CM (1996) Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. J Appl Bacteriol 61:389–393

    Article  Google Scholar 

  43. Teixeira P, Castro H, Kirby R (1994) Inducible thermotolerance in Lactobacillus bulgaricus. Lett Appl Microbiol 18:218–221

    Article  Google Scholar 

  44. Heunis T, Deane S, Smit S, Dicks L (2014) Proteomic profiling of the acid stress response in Lactobacillus plantarum 423. J Proteome Res 13:4028–4039

    Article  CAS  PubMed  Google Scholar 

  45. Lorca GL, de Valdez GF (1999) The effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress. Cryobiology 39:44–149

    Article  Google Scholar 

  46. Wang YC, Yu RC, Chou CC (2004) Viability of lactic acid bacteria and Bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int J Food Microbiol 93:209–217

    Article  CAS  PubMed  Google Scholar 

  47. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Castro HP, Teixeira PM, Kirby R (1997) Evidence of membrane damage in Lactobacillus bulgaricus during storage following freeze-drying. J Appl Microbiol 82:87–94

    Article  CAS  Google Scholar 

  49. Tsvetkov T, Brankova R (1983) Viability of micrococci and lactobacilli upon freezing and freeze-drying in the presence of different cryoprotectants. Cryobiology 20:318–323

    Article  CAS  PubMed  Google Scholar 

  50. Fonseca F, Beal C, Corrieu G (2000) Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. J Dairy Res 67:83–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by INHA UNIVERSITY RESEARCH grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seong So.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y., Kang, CH., Kim, W. et al. Heat Adaptation Improved Cell Viability of Probiotic Enterococcus faecium HL7 upon Various Environmental Stresses. Probiotics & Antimicro. Prot. 11, 618–626 (2019). https://doi.org/10.1007/s12602-018-9400-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9400-4

Keywords

Navigation