Skip to main content
Log in

Genetic Diversity and Population Genetic Structure of Korean Black Scraper Thamnaconus modestus in Korea and Japan Based on the mtDNA Marker

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Thamnaconus modestus is a commercially important species that is widely distributed in the Northwest Pacific region. To investigate the genetic diversity, demographic history, and population structure, 84 individuals were collected from two locations in Korea (Geomundo and Jumunjin) and one location in Japan (Wakasa Bay). Analysis of the mitochondrial DNA control region sequence of 373 base pairs from the 84 individuals revealed 39 haplotypes with 50 polymorphic sites. The haplotype diversity and nucleotide diversity of different populations ranged from 0.973 (0.018) to 0.981 (0.013) and from 0.020 (0.011) to 0.021 (0.011), respectively. Phylogenetic analysis revealed three distinct clades of which two were large (clade 1 and clade 2) and one was small clade (clade 3). However, there was no significant geographical clustering of the haplotypes according to the sampling locality. Demographic analysis suggested that both clades experienced Late Pleistocene population expansion. The pairwise FST and AMOVA analysis were insignificant among the populations investigated. This indicated high gene flow among the populations of Korea and Japan. The dispersal capacity of the larvae and juveniles by ocean currents and migration of adult individuals could explain the genetic homogeneity. Insufficient time to accumulate genetic variation might be another reason for the lack of genetic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An HS, Lee JW, Park JY, Jung HT (2013) Genetic structure of the Korean black scraper Thamnaconus modestus inferred from microsatellite marker analysis. Mol Biol Rep 40:3445–3456. https://doi.org/10.1007/s11033-012-2044-7

    Article  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history, and evolution. Chapman and Hall, New York, 511 p

    Book  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, 447 p

    Book  Google Scholar 

  • Baik CI, Park JH (1989) Fluctuation of fishing conditions of black scraper, Navodon modestus (GUNTHER), in relation to oceanographic characteristics in Korean waters. Bull Nat Fish Res Dev Agency 43:91–104

    Google Scholar 

  • Bekkevold D, Dahlgren TG, Clausen LA, Torstensen E, Mosegaard H, Carvalho GR, Christensen TB, Norlinder E, Ruzzante DE (2005) Environmental correlates of population differentiation in Atlantic herring. Evolution 59:2656–2668

    Article  Google Scholar 

  • Cha H, An H, Choi J, Kang S, Park J, Kim K (2010) Isolation and characterization of polymorphic microsatellite markers for genetic analysis of chub mackerel (Scomber japonicus). Conserv Genet Resour 2:7–9. https://doi.org/10.1007/s12686-009-9123-7

    Article  Google Scholar 

  • Chen CTA (2009) Chemical and physical fronts in the Bohai, Yellow, and East China seas. J Mar Syst 78:394–410

    Article  Google Scholar 

  • Cheng J, Han Z, Song N, Gao T, Yanagimoto T, Strussmann CA (2018) Effects of Pleistocene glaciation on the phylogeographic and demographic histories of chub mackerel Scomber japonicus in the north-western Pacific. Mar Freshw Res 69:514–524. https://doi.org/10.1071/MF17099

    Article  Google Scholar 

  • Choi Y, Kim JH, Park JY (2002) Marine fishes of Korea. Kyo- Hak, Seoul, 646 p

    Google Scholar 

  • Choi JH, Jeon BS, Kim JW, Lee JH, Im YJ, Lee HW (2020) Maturation and spawning of the filefish Thamnaconus modestus in coastal waters of Korea. Korean J Fish Aquat Sci 53:27–35

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge, p 618

    Book  Google Scholar 

  • Friess C, Sedberry GR (2011) Genetic evidence for a single stock of the deep-sea teleost Beryx decadactylus in the North Atlantic Ocean as inferred from mtDNA control region analysis. J Fish Biol 78:466–478. https://doi.org/10.1111/j.1095-8649.2010.02857.x

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    Article  Google Scholar 

  • Grant WAS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426. https://doi.org/10.1093/jhered/89.5.415

    Article  Google Scholar 

  • Gwak WS, Roy A (2021) Genetic diversity and population structure of Pacific herring Clupea pallasii in the Northeast Asia inferred from mtDNA marker. Ecol Genet Genom 18:100076. https://doi.org/10.1016/j.egg.2020.100076

    Article  Google Scholar 

  • Gwak WS, Lee YD, Nakayama K (2014) Population structure and sequence divergence in the mitochondrial DNA control region of gizzard shad Konosirus punctatus in Korea and Japan. Ichthyol Res 62:379–385

    Article  Google Scholar 

  • Han Z, Yanagimoto T, Zhang Y, Gao T (2012) Phylogeography study of Ammodytes personatus in northwestern pacific: Pleistocene isolation, temperature and current conducted secondary contact. PLoS ONE 7:e37425. https://doi.org/10.1371/journal.pone.0037425

    Article  Google Scholar 

  • Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701–738. https://doi.org/10.1029/92PA02253

    Article  Google Scholar 

  • Jung S, Cha HK (2013) Fishing vs. climate change: an example of filefish (Thamnaconus modestus) in the northern East China Sea. J Mar Sci Technol 21:15–22. https://doi.org/10.6119/JMST-013-1219-3

    Article  Google Scholar 

  • Kawase H (1998) Reproductive behavior and evolution of triggerfish (Balistidae) and filefish (Monacanthidae). Jpn J Ichthyol 45:1–19. https://doi.org/10.11369/jji1950.45.1

    Article  Google Scholar 

  • Kawase H (2002) Simplicity and diversity in the reproductive ecology of triggerfish (Balistidae) and filefish (Monacanthidae). In: Proceedings of international commemorative symposium, 70th anniversary of the Japanese Society of Fisheries Science, pp 119–122

  • Kim IS, Choi Y, Lee CL, Lee YJ, Kim BJ, Kim JH (2005) Illustrated book of Korean fishes. Kyo-Hak Press, Seoul, 615 p

    Google Scholar 

  • Kim S, Zhang CI, Kim JY, Oh JH, Kang S, Lee JB (2007) Climate variability and its effects on major fisheries in Korea. Ocean Sci J 42:179–192

    Article  Google Scholar 

  • Kim HR, Choi JH, Park WG (2013) Vertical distribution and feeding ecology of the Black Scraper, Thamnaconus modestus, in the Southern Sea of Korea. Turk J Fish Aquat Sci 13:249–259. https://doi.org/10.4194/1303-2712-v13_2_07

    Article  Google Scholar 

  • Kim A, Bae HJ, Kim HG, Oh CW (2016) Age and growth of filefish, Thamnaconus modestus (günther, 1877) of the Jeju Island of Korea. Ocean Sci J 51:355–362

    Article  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. P Natl Acad Sci USA 86:6196–6200. https://doi.org/10.1073/pnas.86.16.6196

    Article  Google Scholar 

  • Kodama K, Oyama M, Lee JH, Kume G, Yamaguchi A, Shibata Y, Shiraishi H, Morita M, Shimizu M, Horiguchi T (2010) Drastic and synchronous changes in megabenthic community structure concurrent with environmental variations in a eutrophic coastal bay. Prog Oceanogr 87:157–167. https://doi.org/10.1016/j.pocean.2010.09.003

    Article  Google Scholar 

  • KOSIS (2019) Statistic database for fisheries production. Korean Statistical Information Service (KOSIS). http://kosis.kr/index/index.do Accessed 5 Dec 2019

  • Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206

    Article  Google Scholar 

  • Lee SJ, Lee SG, Gwak WS (2012) Population genetic structure and genetic variability of the marbled sole Pleuronectes yokohamae on the coast of Gyeongsangnam-do, Korea. Anim Cells Syst 16:498–505. https://doi.org/10.1080/19768354.2012.702683

    Article  Google Scholar 

  • Lee EA, Kim SY, Min HS (2019) Climatological descriptions on regional circulation around the Korean Peninsula. Tellus A 71:1. https://doi.org/10.1080/16000870.2019.1604058

    Article  Google Scholar 

  • Li Y, Chen G, Yu J, Wu S, Xiong D, Li X, Cui K, Li Y (2016) Population genetics of Thamnaconus hypargyreus (Tetraodontiformes: Monacanthidae) in the South China Sea. Mitochondr DNA 27:798–805. https://doi.org/10.3109/19401736.2014.919451

    Article  Google Scholar 

  • Liu JX, Gao TX, Yokogawa K, Zhang YP (2006) Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol Phylogenet Evol 39:799–811. https://doi.org/10.1016/j.ympev.2006.01.009

    Article  Google Scholar 

  • Liu JX, Gao TX, Wu SF, Zhang YP (2007) Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel, 1845). Mol Ecol 16:275–288. https://doi.org/10.1111/j.1365-294X.2006.03140.x

    Article  Google Scholar 

  • Machado RC, Silva MCC, Proietti MC, Haimovici M (2020) Genetic connectivity of black drum (Pogonias courbina) stocks in the southwestern Atlantic Ocean. Environ Biol Fish 103:913–926. https://doi.org/10.1007/s10641-020-00993-6

    Article  Google Scholar 

  • Maekawa C (1989) Relationship between water temperature and catch quantity of filefish Thamnaconus modestus. Bull Kanagawa Prefect Fish Exp Stn 89:27–30

    Google Scholar 

  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553

    Article  Google Scholar 

  • Miyajima TY, Masuda R, Yamashita Y (2017) Feeding capability of black scraper Thamnaconus modestus on giant jellyfish Nemopilema nomurai evaluated through field observations and tank experiments. Environ Biol Fish 100:1237–1249. https://doi.org/10.1007/s10641-017-0639-5

    Article  Google Scholar 

  • Murakami Y, Onbe T (1967) Fisheries in Hashiri-Shima-II. Spawning of a File-Fish, Navodon modestus (GUNTHER). J Fac Fish Ani Husb Hiroshima Univ 7:63–75

    Google Scholar 

  • Nam KM, Yoo JT, Kim JW, Park JH, Baeck GW (2018) Maturation and spawning of female black scraper, Thamnaconus modestus in the coastal waters off Middle East Sea, Korea. J Korean Soc Fish Ocean Technol 54:89–95. https://doi.org/10.3796/KSFOT.2018.54.1.089

    Article  Google Scholar 

  • NFRDI (2009) Research on actual fisheries state and biological characteristic of Thamnaconus modestus. National Fisheries Research and Development Institute (NFRDI), Research Paper, 100 p

  • Park BH (1985) Studies on the fishery biology of filefish Navodon modestus in the Korean waters. PhD Thesis, Pukyong National University, Korea, 64 p

  • Park SC, Yoo DG, Lee CW, Lee EI (2000) Last glacial sea-level changes and paleogeography of the Korea (Tsushima) Strait. Geo Mar Lett 20:64–71

    Article  Google Scholar 

  • Parker PG, Snow AA, Schug MD, Booton GC, Fuerst PA (1998) What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79:361–382. https://doi.org/10.2307/176939

    Article  Google Scholar 

  • Qian S (1998) The biological characteristics and resource status of the Yellow-fin Filefish in the East China Sea. J Fish Sci China 5:25–29

    Google Scholar 

  • Reeb CA, Arcangeli L, Block BA (2000) Structure and migration corridors in Pacific populations of the swordfish Xiphius gladius, as inferred through analyses of mitochondrial DNA. Mar Biol 136:1123–1131

    Article  Google Scholar 

  • Safran P (1990) Drifting seaweed and associated ichthyofauna: floating nursery in Tohoku waters. La Mer 28:225–239

    Google Scholar 

  • Safran P, Omori M (1990) Some ecological observations on fishes associated with drifting seaweed off Tohoku coast, Japan. Mar Biol 105:395–402

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  Google Scholar 

  • Sancetta C, Heusser L, Labeyarie L, Naidu AS, Robinson SW (1984) Wisconsin Holocene Paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and Clay minerals. Mar Geol 62:55–68

    Article  Google Scholar 

  • Senjyu T (1999) The Japan Sea intermediate water; its characteristics and circulation. J Oceanogr 55:111–122

    Article  Google Scholar 

  • Suda A, Nagata N, Sato A, Narimatsu Y, Nadiatul HH, Kawata M (2017) Genetic variation and local differences in Pacific cod Gadus macrocephalus around Japan. J Fish Biol 90:61–79

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  Google Scholar 

  • Teacher AGF, Griffiths DJ (2011) Hapstar: automated haplotype network layout and visualization. Mol Ecol Resour 11:151–153. https://doi.org/10.1111/j.1755-0998.2010.02890.x

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  Google Scholar 

  • Utter FM (1991) Biochemical genetics and fishery management: An historical perspective. J Fish Biol (Suppl A) 39:1–20. https://doi.org/10.1111/j.1095-8649.1991.tb05063.x

    Article  Google Scholar 

  • Wang PX (1999) Response of Western Pacific marginal seas to glacial cycles: aleoceangraphic and sedimentological features. Mar Geol 156:5–39. https://doi.org/10.1016/S0025-3227(98)00172-8

    Article  Google Scholar 

  • Wang M, Zhang X, Yang T, Han Z, Yanagimoto T, Gao T (2008) Genetic diversity in the mtDNA control region and population structure in the Sardinella zunasi Bleeker. Afr J Biotechnol 7:4384–4392

    Google Scholar 

  • Ware DM, Schweigert J (2001) Metapopulation structure and dynamics of BritishColumbia herring. DFO Canadian Science Advisory Secretariat, 2001/127, 27 p

  • Xu X, Oda M (1999) Surface-water evolution of the eastern East China Sea during the last 36,000 years. Mar Geol 156:285–304. https://doi.org/10.1016/S0025-3227(98)00183-2

    Article  Google Scholar 

  • Yang T, Wang Z, Liu Y, Gao T (2019) Population genetics and molecular phylogeography of Thamnaconus modestus (Tetraodontiformes, Monachanthidae) in Northwestern Pacific inferred from variation of the mtDNA control region. Aquat Living Resour 32:18. https://doi.org/10.1051/alr/2019015

    Article  Google Scholar 

  • Yoon M, Park W, Nam YK, Kim DS (2012) Shallow population genetic structures of Thread-sail Filefish (Stephanolepis cirrhifer) populations from korean coastal waters. Asian Austral J Anim 25:170–176. https://doi.org/10.5713/ajas.2011.11122

    Article  Google Scholar 

  • Yu HJ, Kim JK (2018) Upwelling and eddies affect connectivity among local populations of the goldeye ockfish, Sebastes thompsoni (Pisces, Scorpaenoidei). Ecol Evol 8:4387–4402. https://doi.org/10.1002/ece3.3993

    Article  Google Scholar 

  • Yun JY, Magaard L, Kim K, Shin CW, Kim C, Byun SK (2004) Spatial and temporal variability of the North Korean cold water leading to the near-bottom cold water intrusion in Korea Strait. Progr Oceanogr 60:99–131

    Article  Google Scholar 

  • Zhang H, Yanagimoto T, Zhang X, Song N, Gao T (2016) Lack of population genetic differentiation of a marine ovoviviparous fish Sebastes schlegelii in Northwestern Pacific. Mitochondr DNA 27:1748–1754. https://doi.org/10.3109/19401736.2014.963797

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012R1A1A2004830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Seok Gwak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwak, WS., Roy, A. Genetic Diversity and Population Genetic Structure of Korean Black Scraper Thamnaconus modestus in Korea and Japan Based on the mtDNA Marker. Ocean Sci. J. 56, 266–274 (2021). https://doi.org/10.1007/s12601-021-00017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-021-00017-z

Keywords

Navigation