Skip to main content
Log in

Recent advances in perovskite/organic integrated solar cells

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The integrated perovskite/organic solar cell (IPOSC) is widely concerned as an effective approach to broaden the spectrum of perovskite solar cell (PerSC) by utilizing near-infrared light of lower bandgap organic semiconductor. Compared to tandem solar cells, the IPOSCs eliminate the preparation of the intermediate layer and simplify the manufacturing process, but retain the advantages of wide light harvesting. Meanwhile, the IPOSCs can maintain the open-circuit voltage as high as PerSCs. This review summarizes the recent developments of perovskite materials and low-bandgap organic conjugated materials applied in solar cells. Then, the working mechanism of IPOSCs and the recent developments of IPOSCs based on low-bandgap donor and acceptor materials are highlighted. Besides, the study of charge dynamic in IPOSC is summarized. Finally, the potential of IPOSCs and approach to improve device performance are also envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reproduced with permission from Ref. [10]. Copyright 2020 WILEY–VCH. c Normalized absorption spectrum of perovskite layer and BHJ layer in IPOSCs. Reproduced with permission from Ref. [7]. Copyright 2019 WILEY–VCH

Fig. 2

Reproduced with permission from Ref. [16]. Copyright 2014 Macmillan Publishers Limited. b UV–Vis spectra for APbI3 perovskites formed, where Position A is either cesium (Cs), methylammonium (MA) or formamidinium (FA). Reproduced with permission from Ref. [20]. Copyright 2014 The Royal Society of Chemistry

Fig. 3

Reproduced with permission from Ref. [25]. Copyright 2014 American Chemical Society. c Absorption spectra and d normalized PL spectra of (FASnI3)1-x(MAPbI3)x perovskites with x = 0, 0.2, 0.4, 0.6, 0.9, and 1.0. Reproduced with permission from Ref. [24]. Copyright 2016 American Chemical Society

Fig. 4
Fig. 5

Reproduced with permission from Ref. [5]. Copyright 2015 The Royal Society of Chemistry. c J-V and d EQE curves for PDPP3T:PCBM OSCs, PerSCs and CH3NH3PbI3/PDPP3T:PC61BM IPOSCs. Reproduced with permission from Ref. [46]. Copyright 2015 Elsevier. e J-V, f EQE curves and integrated Jsc for perovskite/PCBM PerSCs and perovskite/PDPP3T:PC61BM IPOSCs. Reproduced with permission from Ref. [47]. Copyright 2015 Science China Press and Springer-Verlag Berlin Heidelberg. g J-V curves, h EQE and absorption spectra for PerSCs with PBDTT-SeDPP HTL and IPOSCs with PBDTT-SeDPP:PC71BM. Reproduced with permission from Ref. [6]. Copyright 2015 American Chemical Society. i J-V and j IPCE curves of IPOSCs containing M3:PC70BM or M4:PC70BM BHJ HTLs. Reproduced with permission from Ref. [48]. Copyright 2016 American Chemical Society. k J-V and l EQE curves of optimized PerSCs (PC61BM) and IPOSCs incorporating CB, CB:DPE, and CB:DPE:N2200 processed BHJ films. Reproduced with permission from Ref. [49]. Copyright 2016 WILEY–VCH; m J-V and n EQE curves for CH3NH3PbI3/PCBM PerSCs and CH3NH3PbI3/TT:PCBM:N2200 IPOSCs. Reproduced with permission from Ref. [50]. Copyright 2020 WILEY–VCH. o J-V and p EQE curves of optimized IPOSCs with 110-nm-thick DPPZnP-TSEH:PC61BM film and optimized PerSC with Spiro-OMeTAD as HTL. Reproduced with permission from Ref. [50]. Copyright 2020 WILEY–VCH

Fig. 6

Reproduced with permission from Ref. [52]. Copyright 2018 The Royal Society of Chemistry. c J-V and d EQE curves for CH3NH3PbI3/PBDB-T:IEICO IPOSCs with different weight ratios of PBDB-T and IEICO. Reproduced with permission from Ref. [53]. Copyright 2019 The Royal Society of Chemistry. e J-V, f EQE curves (inset being J-V curves obtained in dark environment of OSCs (pink), PerSCs (red) and IPOSCs (blue)) and integrated Jsc for PBDTTT-E-T:IEICO OSCs (pink), CsPbI2Br/spiro-OMeTAD PerSCs (red) and CsPbI2/PBDTTT-E-T:IEICO IPOSCs (blue). Reproduced with permission from Ref. [54]. Copyright 2019 American Chemical Society; g J-V curves of CsPbBr3/J61:ITIC and Cs0.91Rb0.09PbBr3/J61:ITIC IPOSCs, h IPCE of CsPbBr3 PerSCs and CsPbBr3/J61:ITIC IPOSCs. Reproduced with permission from Ref. [55]. Copyright 2019 Elsevier. i J-V and j EQE spectra of (FAPbI3)0.85(MAPbBr3)0.15 PerSCs using a bare PCBM ETL and IPOSCs with optimized T-PCE13 ETL. Reproduced with permission from Ref. [56]. Copyright 2019 WILEY–VCH. k J-V curves of device based on different active layers and l EQE curves and calculated JSC curves of perovskite/PTB7-Th (black), perovskite/PTB7-Th:PCBM (blue), perovskite/PTB7-Th:F8IC (red), and PTB7-Th:F8IC (green). Reproduced with permission from Ref. [57]. Copyright 2020 WILEY–VCH. m J-V and n EQE curves for perovskite/PCBM PerSCs and perovskite/Y6:PCBM:S1 IPOSCs. Reproduced with permission from Ref. [13]. Copyright 2019 American Chemical Society. o J-V and p EQE curves for perovskite/PCBM PerSCs and perovskite/Y6:PCBM:S2 IPOSCs. Reproduced with permission from Ref. [58]. Copyright 2019 Science China Press

Fig. 7

Reproduced with permission from Ref. [46]. Copyright 2015 Elsevier

Fig. 8

Reproduced with permission from Ref. [12]. Copyright 2017 American Chemical Society

Fig. 9

Reproduced with permission from Ref. [12]. Copyright 2017 American Chemical Society

Fig. 10

Reproduced with permission from Ref. [54]. Copyright 2019 American Chemical Society. c TAS of films at pump-probe delay of 2 ps and d kinetic traces of perovskite with and without BHJ and perovskite/spiro-OMeTAD at wavelength of 750 nm; e magnified view of c; f kinetic traces of ground state bleaching below bandgap of perovskite. Reproduced with permission from Ref. [51]. Copyright 2017 WILEY–VCH. g TAS kinetics of perovskite, BHJ, perovskite/BHJ layers with excitation at 550 nm, where TAS signal of TT are probed at a laser wavelength of 840 nm. Reproduced with permission from Ref. [50]. Copyright 2020 WILEY–VCH. (OD representing optical density; ΔA and ΔOD representing change in optical density; ΔmOD = ΔOD/1000)

Similar content being viewed by others

References

  1. Green M-A, Dunlop E-D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 56). Prog Photovolt Res Appl. 2020;28(7):629.

    Article  Google Scholar 

  2. Shi Z, Bai Y, Chen X, Zeng R, Tan ZA. Tandem structure: a breakthrough in power conversion efficiency for highly efficient polymer solar cells. Sus Energy Fuels. 2019;3(4):910.

    Article  CAS  Google Scholar 

  3. Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat Photonics. 2017;11(2):85.

    Article  CAS  Google Scholar 

  4. Forgacs D, Gilescrig L, Perezdelrey D, Momblona C, Werner J, Niesen B, Ballif C, Sessolo M, Bolink HJ. Efficient monolithic perovskite/perovskite tandem solar cells. Adv Energy Mater. 2017;7(8):1602121.

    Article  Google Scholar 

  5. Ding L, Zuo C. Bulk-heterojunction pushes photoresponse of perovskite solar cells to 970 nm. J Mater Chem A. 2014;3(17):9063.

    Google Scholar 

  6. Liu Y, Hong Z, Chen Q, Chang W, Zhou H, Song TB, Young E, Yang Y, You J, Li G, Yang Y. Integrated perovskite/bulk-heterojunction toward efficient solar cells. Nano Lett. 2015;15(1):662.

    Article  CAS  Google Scholar 

  7. Liu Y, Chen Y. Integrated perovskite/bulk-heterojunction organic solar cells. Adv Mater. 2020;32(3):1805843.

    Article  CAS  Google Scholar 

  8. Cui Y, Yang C, Yao H, Zhu J, Wang Y, Jia G, Gao F, Hou J. Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor. Adv Mater. 2017;29(43):1703080.

    Article  Google Scholar 

  9. Chen S, Yao H, Hu B, Zhang G, Arunagiri L, Ma LK, Huang J, Zhang J, Zhu Z, Bai F, Ma W, Yan H. A nonfullerene semitransparent tandem organic solar cell with 10.5% power conversion efficiency. Adv Energy Mater. 2018;8(31):1800529.

    Article  Google Scholar 

  10. Bai Y, Lang K, Zhao C, Guo Q, Zeng R, Wang J, Hayat T, Alsaedi A, Tan ZA. Strategies toward extending the near-infrared photovoltaic response of perovskite solar cells. Solar RRL. 2020;4(2):1900280.

    Article  CAS  Google Scholar 

  11. Wang P, Zhao Y, Wang T. Recent progress and prospects of integrated perovskite/organic solar cells. Appl Phys Rev. 2020;7(3):031303.

    Article  CAS  Google Scholar 

  12. Dong S, Liu Y, Hong Z, Yao E, Sun P, Meng L, Lin Y, Huang J, Li G, Yang Y. Unraveling the high open circuit voltage and high performance of integrated perovskite/organic bulk-heterojunction solar cells. Nano Lett. 2017;17(8):5140.

    Article  CAS  Google Scholar 

  13. Chen W, Sun H, Hu Q, Djurišić AB, Russell TP, Guo X, He Z. High short-circuit current density via integrating the perovskite and ternary organic bulk heterojunction. ACS Energy Lett. 2019;4(10):2535.

    Article  CAS  Google Scholar 

  14. Liang X, Chen X, Zhao H, Yang Z, Wei F, Tu H. Preparation methods of nano-TiO2 electron transport layers and properties for perovskite solar cells. Chin J Rare Met. 2019;43(2):164.

    Google Scholar 

  15. Yang L, Barrows AT, Lidzey DG, Wang T. Recent progress and challenges of organometal halide perovskite solar cells. Rep Prog Phys. 2016;79(2):026501.

    Article  Google Scholar 

  16. Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics. 2014;8(7):506.

    Article  CAS  Google Scholar 

  17. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.

    Article  CAS  Google Scholar 

  18. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012;2(1):591.

    Article  Google Scholar 

  19. Park JS, Choi S, Yan Y, Yang Y, Luther JM, Wei SH, Parilla P, Zhu K. Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal. J Phys Chem Lett. 2015;6(21):4304.

    Article  CAS  Google Scholar 

  20. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci. 2014;7(3):982.

    Article  CAS  Google Scholar 

  21. Gu SL, Lin R, Han Q, Gao Y, Tan H, Zhu J. Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv Mater. 2020;32(27):1907392.

    Article  CAS  Google Scholar 

  22. Liu X, Yang Z, Chueh C, Rajagopal A, Williams ST, Sun Y, Jen AKY. Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J Mater Chem A. 2016;4(46):17939.

    Article  CAS  Google Scholar 

  23. Yang Z, Rajagopal A, Chueh C, Jo SB, Liu B, Zhao T, Jen AKY. Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv Mater. 2016;28(40):8990.

    Article  CAS  Google Scholar 

  24. Liao W, Zhao D, Yu Y, Shrestha N, Ghimire K, Grice CR, Wang C, Xiao Y, Cimaroli AJ, Ellingson RJ. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc. 2016;138(38):12360.

    Article  CAS  Google Scholar 

  25. Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc. 2014;136(22):8094.

    Article  CAS  Google Scholar 

  26. Voznyy O. Realizing ultra-pure red emission with Sn-based lead-free perovskites. Rare Met. 2020;39(4):330.

    Article  CAS  Google Scholar 

  27. Li G, Chang W, Yang Y. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat Rev Mater. 2017;2(8):17043.

    Article  CAS  Google Scholar 

  28. Muhlbacher D, Scharber MC, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec CJ. High photovoltaic performance of a low-bandgap polymer. Adv Mater. 2006;18(21):2884.

    Article  Google Scholar 

  29. Peet J, Kim JY, Coates NE, Ma W, Moses D, Heeger AJ, Bazan GC. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater. 2007;6(7):497.

    Article  CAS  Google Scholar 

  30. Dou L, Chen CC, Yoshimura K, Ohya K, Chang WH, Gao J, Liu Y, Richard E, Yang Y. Synthesis of 5H-dithieno[3,2-b:2′,3′-d]pyran as an electron-rich building block for donor–acceptor type low-bandgap polymers. Macromolecules. 2013;46(11):3384.

    Article  CAS  Google Scholar 

  31. Hendriks KHK, Heintges GG, Gevaerts VV, Wienk MMM, Janssen RR. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem. 2013;52(32):8341.

    Article  CAS  Google Scholar 

  32. Meager I, Ashraf RS, Mollinger S, Schroeder BC, Bronstein H, Beatrup D, Vezie MS, Kirchartz T, Salleo A, Nelson J, McCulloch I. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J Am Chem Soc. 2013;135(31):11537.

    Article  CAS  Google Scholar 

  33. Ashraf RS, Meager I, Nikolka M, Kirkus M, Planells M, Schroeder BC, Holliday S, Hurhangee M, Nielsen CB, Sirringhaus H, McCulloch I. Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. J Am Chem Soc. 2015;137(3):1314.

    Article  CAS  Google Scholar 

  34. Oklem G, Song X, Toppare L, Baran D, Gunbas G. A new NIR absorbing DPP-based polymer for thick organic solar cells. J Mater Chem C. 2018;6(12):2957.

    Article  CAS  Google Scholar 

  35. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang SF, Zhang X, Ding L. 18% efficiency organic solar cells. Sci Bull. 2020;65(4):272.

    Article  CAS  Google Scholar 

  36. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science. 2018;361(6407):1094.

    Article  CAS  Google Scholar 

  37. Hou J, Inganas O, Friend RH, Gao F. Organic solar cells based on non-fullerene acceptors. Nat Mater. 2018;17(2):119.

    Article  CAS  Google Scholar 

  38. Lin Y, Wang J, Zhang Z, Bai H, Li Y, Zhu D, Zhan X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater. 2015;27(7):1170.

    Article  CAS  Google Scholar 

  39. Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv Mater. 2016;28(37):8283.

    Article  CAS  Google Scholar 

  40. Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew Chem Int Ed. 2017;56(11):3045.

    Article  CAS  Google Scholar 

  41. Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell T, Ding L. 26 mA·cm-2Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Sci Bull. 2017;62(22):1494.

    Article  CAS  Google Scholar 

  42. Xiao Z, Jia X, Ding L. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull. 2017;62(23):1562.

    Article  CAS  Google Scholar 

  43. Li Y, Lin JD, Che X, Qu Y, Liu F, Liao LS, Forrest SR. High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J Am Chem Soc. 2017;139(47):17114.

    Article  CAS  Google Scholar 

  44. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule. 2019;3(4):1140.

    Article  CAS  Google Scholar 

  45. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater. 2020;32(19):1908205.

    Article  CAS  Google Scholar 

  46. Zhang Y, Yu W, Qin W, Yang Z, Yang D, Xing Y, Liu S, Li C. Perovskite as an effective Voc switcher for high efficiency polymer solar cells. Nano Energy. 2016;20:126.

    Article  Google Scholar 

  47. Ye L, Fan B, Zhang S, Li S, Yang B, Qin Y, Zhang H, Hou J. Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Sci China Mater. 2015;58(12):953.

    Article  CAS  Google Scholar 

  48. Cheng M, Chen C, Aitola K, Zhang F, Hua Y, Boschloo G, Kloo L, Sun L. Highly efficient integrated perovskite solar cells containing a small molecule-PC70BM bulk heterojunction layer with an extended photovoltaic response up to 900 nm. Chem Mater. 2016;28(23):8631.

    Article  CAS  Google Scholar 

  49. Kim J, Kim G, Back H, Kong J, Hwang IW, Kim TK, Kwon S, Lee JH, Lee J, Yu K, Lee CL, Kang H, Lee K. High-performance integrated perovskite and organic solar cells with enhanced fill factors and near-infrared harvesting. Adv Mater. 2016;28(16):3159.

    Article  CAS  Google Scholar 

  50. Daboczi M, Kim J, Lee J, Kang H, Hamilton I, Lin CT, Dimitrov SD, McLachlan MA, Lee K, Durrant JR, Kim JS. Towards efficient integrated perovskite/organic bulk heterojunction solar cells: interfacial energetic requirement to reduce charge carrier recombination losses. Adv Funct Mater. 2020;30(25):2001482.

    Article  CAS  Google Scholar 

  51. Gao K, Zhu Z, Xu B, Jo SB, Kan Y, Peng X, Jen AKY. Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv Mater. 2017;29(47):1703980.

    Article  Google Scholar 

  52. Guo Q, Liu H, Shi Z, Wang F, Zhou E, Bian X, Zhang B, Alsaedi A, Hayat T, Tan ZA. Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50%. Nanoscale. 2018;10(7):3245.

    Article  CAS  Google Scholar 

  53. Wang C, Bai Y, Guo Q, Zhao C, Zhang J, Hu S, Hayat T, Alsaedi A, Tan ZA. Enhancing charge transport in an organic photoactive layer via vertical component engineering for efficient perovskite/organic integrated solar cells. Nanoscale. 2019;11(9):4035.

    Article  CAS  Google Scholar 

  54. Guo Q, Bai Y, Lang K, Yu Z, Hayat T, Alsaedi A, Zhou E, Tan ZA. Expanding the light harvesting of CsPbI2Br to NIR by integrating with organic bulk heterojunction for efficient and stable solar cells. ACS Appl Mater Interfaces. 2019;11(41):37991.

    Article  CAS  Google Scholar 

  55. Zhao Y, Xu H, Wang Y, Yang X, Duan J, Tang Q. 10.34%-efficient integrated CsPbBr 3/bulk-heterojunction solar cells. J Power Sources. 2019;440:227151.

    Article  CAS  Google Scholar 

  56. Chen CI, Wu S, Lu YA, Lee CC, Ho KC, Zhu Z, Chen WC, Chueh CC. Enhanced near-infrared photoresponse of inverted perovskite solar cells through rational design of bulk-heterojunction electron-transporting layers. Adv Sci. 2019;6(21):1901714.

    Article  CAS  Google Scholar 

  57. Zhang M, Li T, Yu J, Lu G, Zhou H, Zhan X. Integrated perovskite/organic photovoltaics with ultrahigh photocurrent and photoresponse approaching 1000 nm. Solar RRL. 2020;4(7):2000140.

    Article  CAS  Google Scholar 

  58. Liao Q, Sun H, Li B, Guo X. 26 mA·cm−2Jsc achieved in the integrated solar cells. Sci Bull. 2019;64(23):1747.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0202401), the National Natural Science Foundation of China (Nos. 51873007, 51961165102 and 21835006), the Fundamental Research Funds for the Central Universities in China (No. 2019MS025), the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No. LAPS20003) and the Outstanding Talent Research Fund of Zhengzhou University (No. 32340035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Ao Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Wang, CY., Hayat, T. et al. Recent advances in perovskite/organic integrated solar cells. Rare Met. 40, 2763–2777 (2021). https://doi.org/10.1007/s12598-020-01703-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01703-y

Keywords

Navigation