Skip to main content
Log in

Three-dimensional graphene and its composite for gas sensors

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a two-dimensional (2D) material, graphene shows excellent advantages in the field of gas sensors due to its inherent large specific surface area and unique electrical properties. However, in the practical application of gas detection, graphene sheet is easy to form irreversible agglomeration and has some limitations such as low sensitivity, long response time and slow recovery speed, which greatly reduce its gas sensing performance. As a gas sensing material, three-dimensional (3D) porous graphene has been extensively studied in recent years owing to its larger specific surface area and stable structure. In order to synthesize graphene with different three-dimensional structures, many methods have been developed. Herein, the synthesis and assembly of three-dimensional graphene and its composites were reviewed, with emphasis on the application of three-dimensional graphene and its composites in the field of gas sensors. The challenges and development prospects of three-dimensional graphene materials in the application of gas sensors were briefly described.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Yang W, Li L. Efficiency evaluation of industrial waste gas control in China: a study based on data envelopment analysis (DEA) model. J Clean Prod. 2018;179:1.

    Article  Google Scholar 

  2. Xu X, Xu Z, Chen L, Li C. How does industrial waste gas emission affect health care expenditure in different regions of China: an application of Bayesian Quantile Regression. Int J Environ Res Public Health. 2019;16(15):2748.

    Article  Google Scholar 

  3. Ghosh R, Gardner JW, Guha PK. Air pollution monitoring using near room temperature resistive gas sensors: a review. IEEE Trans Electron Devices. 2019;66(8):3254.

    Article  CAS  Google Scholar 

  4. Zhang X, Wang Y, Luo G, Xing M. Two-dimensional graphene family material: assembly, biocompatibility and sensors applications. Sensors (Basel). 2019;19(13):2966.

    Article  CAS  Google Scholar 

  5. Ugale AD, Umarji GG, Jung SH, Deshpande NG, Lee W, Cho HK, Yoo JB. ZnO decorated flexible and strong graphene fibers for sensing NO2 and H2S at room temperature. Sens Actuat B Chem. 2020;308:127690.

    Article  CAS  Google Scholar 

  6. Kumar R, Kumar A, Singh R, Kashyap R, Kumar R, Kumar D, Kumar M. Selective room temperature ammonia gas detection using 2-amino pyridine functionalized graphene oxide. Mater Sci Semicond Process. 2020;110:104920.

    Article  CAS  Google Scholar 

  7. Matsuyama S, Sugiyama T, Ikoma T, Cross JS. Fabrication of 3D graphene and 3D graphene oxide devices for sensing VOCs. MRS Adv. 2016;1(19):1359.

    Article  CAS  Google Scholar 

  8. He L, Gao C, Yang L, Zhang K, Chu X, Liang S, Zeng D. Facile synthesis of MgGa2O4/graphene composites for room temperature acetic acid gas sensing. Sens Actuat B Chem. 2020;306:127453.

    Article  CAS  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  CAS  Google Scholar 

  10. Zhou L, Qian R, Zhuo S, Chen Q, Wen Z, Li G. Oximation reaction induced reduced graphene oxide gas sensor for formaldehyde detection. J Saudi Chem Soc. 2020;24(4):364.

    Article  CAS  Google Scholar 

  11. Hosseingholipourasl A, Hafizah Syed Ariffin S, Al-Otaibi YD, Akbari E, Hamid FK, Koloor SSR, Petru M. Analytical approach to study sensing properties of graphene based gas sensor. Sensors (Basel). 2020;20(5):1506.

    Article  CAS  Google Scholar 

  12. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110(1):132.

    Article  CAS  Google Scholar 

  13. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192.

    Article  CAS  Google Scholar 

  14. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385.

    Article  CAS  Google Scholar 

  15. Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci Adv. 2015;1(6):e1500222.

    Article  Google Scholar 

  16. Wang X, Dai H. Etching and narrowing of graphene from the edges. Nat Chem. 2010;2(8):661.

    Article  CAS  Google Scholar 

  17. Shi Q, Cha Y, Song Y, Lee JI, Zhu C, Li X, Song MK, Du D, Lin Y. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale. 2016;8(34):15414.

    Article  CAS  Google Scholar 

  18. Guo Z, Zhang D, Gong X-G. Thermal conductivity of graphene nanoribbons. Appl Phys Lett. 2009;95(16):163103.

    Article  Google Scholar 

  19. Song S, Chen Q, Jin L, Sun F. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale. 2013;5(20):9615.

    Article  CAS  Google Scholar 

  20. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652.

    Article  CAS  Google Scholar 

  21. Yuan W, Shi G. Graphene-based gas sensors. J Mater Chem A. 2013;1(35):10078.

    Article  CAS  Google Scholar 

  22. Choi H, Choi JS, Kim JS, Choe JH, Chung KH, Shin JW, Kim JT, Youn DH, Kim KC, Lee JI, Choi SY, Kim P, Choi CG, Yu YJ. Flexible electronics: flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers (Small 18/2014). Small. 2014;10(18):3812.

    Article  CAS  Google Scholar 

  23. Wehling TO, Katsnelson MI, Lichtenstein AI. Adsorbates on graphene: impurity states and electron scattering. Chem Phys Lett. 2009;476(4):125.

    Article  CAS  Google Scholar 

  24. Bi H, Yin K, Xie X, Ji J, Wan S, Sun L, Terrones M, Dresselhaus MS. Ultrahigh humidity sensitivity of graphene oxide. Sci Rep. 2013;3:2714.

    Article  Google Scholar 

  25. Levesque PL, Sabri SS, Aguirre CM, Guillemette J, Siaj M, Desjardins P, Szkopek T, Martel R. Probing charge transfer at surfaces using graphene transistors. Nano Lett. 2011;11(1):132.

    Article  CAS  Google Scholar 

  26. Park HY, Yoon JS, Jeon J, Kim J, Jo SH, Yu HY, Lee S, Park JH. Controllable and air-stable graphene n-type doping on phosphosilicate glass for intrinsic graphene. Org Electron. 2015;22:117.

    Article  CAS  Google Scholar 

  27. Randeniya LK, Shi H, Barnard AS, Fang J, Martin PJ, Ostrikov K. Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small. 2013;9(23):3993.

    Article  CAS  Google Scholar 

  28. Shin DW, Lee HM, Yu SM, Lim KS, Jung JH, Kim MK, Kim SW, Han JH, Ruoff RS, Yoo JB. A facile route to recover intrinsic graphene over large scale. ACS Nano. 2012;6(9):7781.

    Article  CAS  Google Scholar 

  29. Hill EW, Vijayaragahvan A, Novoselov K. Graphene sensors. IEEE Sens J. 2011;11(12):3161.

    Article  CAS  Google Scholar 

  30. Wu J, Li Z, Xie X, Tao K, Liu C, Khor KA, Miao J, Norford LK. 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity. J Mater Chem A. 2018;6(2):478.

    Article  CAS  Google Scholar 

  31. Choi YR, Yoon YG, Choi KS, Kang JH, Shim YS, Kim YH, Chang HJ, Lee JH, Park CR, Kim SY, Jang HW. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon. 2015;91:178.

    Article  CAS  Google Scholar 

  32. Khurshid F, Jeyavelan M, Hussain T, Hudson MSL, Nagarajan S. Ammonia gas adsorption study on graphene oxide based sensing device under different humidity conditions. Mater Chem Phys. 2020;242:122485.

    Article  CAS  Google Scholar 

  33. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett. 2008;8(10):3137.

    Article  CAS  Google Scholar 

  34. Ma Y, Chen Y. Three-dimensional graphene networks: synthesis, properties and applications. Natl Sci Rev. 2015;2(1):40.

    Article  CAS  Google Scholar 

  35. Jiang L, Fan Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale. 2014;6(4):1922.

    Article  CAS  Google Scholar 

  36. Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y. Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces. 2014;6(18):16312.

    Article  CAS  Google Scholar 

  37. Zhao J, Ren W, Cheng HM. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem. 2012;22(38):20197.

    Article  CAS  Google Scholar 

  38. Xu X, Sun Z, Chua DH, Pan L. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Sci Rep. 2015;5(1):1.

    Google Scholar 

  39. Xu X, Pan L, Liu Y, Lu T, Sun Z, Chua DH. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci Rep. 2015;5:8458.

    Article  CAS  Google Scholar 

  40. Chu Z, Shi L, Jin W. 3D graphene nano-grid as a homogeneous protein distributor for ultrasensitive biosensors. Biosens Bioelectron. 2014;61:422.

    Article  CAS  Google Scholar 

  41. Basu J, RoyChaudhuri C. Attomolar sensitivity of FET biosensor based on smooth and reliable graphene nanogrids. IEEE Electron Device Lett. 2016;37(4):492.

    Article  CAS  Google Scholar 

  42. Li L, Peng J, Chu Z, Jiang D, Jin W. Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high electrocatalysis. Electrochim Acta. 2016;217:210.

    Article  CAS  Google Scholar 

  43. Zhao Z, Wang X, Qiu J, Lin J, Xu D, Zhang CA, Lv M, Yang X. Three-dimensional graphene-based hydrogel/aerogel materials. Rev Adv Mater Sci. 2014;36:137.

    CAS  Google Scholar 

  44. Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J, Truong VT, Li D. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv Mater. 2014;26(20):3333.

    Article  CAS  Google Scholar 

  45. Cong HP, Ren XC, Wang P, Yu SH. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano. 2012;6(3):2693.

    Article  CAS  Google Scholar 

  46. Chen T, Xue Y, Roy AK, Dai L. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano. 2014;8(1):1309.

    Article  Google Scholar 

  47. Li Z, Kinloch IA, Young RJ, Novoselov KS, Anagnostopoulos G, Parthenios J, Galiotis C, Papagelis K, Lu CY, Britnell L. Deformation of wrinkled graphene. ACS Nano. 2015;9(4):3917.

    Article  CAS  Google Scholar 

  48. Guo Y, Guo W. Electronic and field emission properties of wrinkled graphene. J Phys Chem C. 2013;117(1):692.

    Article  CAS  Google Scholar 

  49. Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep. 2011;1:166.

    Article  Google Scholar 

  50. Chen Z, Xu C, Ma C, Ren W, Cheng HM. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater. 2013;25(9):1296.

    Article  CAS  Google Scholar 

  51. Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater. 2013;25(4):591.

    Article  CAS  Google Scholar 

  52. Chen K, Chen L, Chen Y, Bai H, Li L. Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem. 2012;22(39):20968.

    Article  CAS  Google Scholar 

  53. Li L, He S, Liu M, Zhang C, Chen W. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem. 2015;87(3):1638.

    Article  CAS  Google Scholar 

  54. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424.

    Article  CAS  Google Scholar 

  55. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010;10(12):4863.

    Article  CAS  Google Scholar 

  56. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater. 2012;24(37):5130.

    Article  CAS  Google Scholar 

  57. Wang ZL, Xu D, Wang HG, Wu Z, Zhang XB. In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano. 2013;7(3):2422.

    Article  CAS  Google Scholar 

  58. Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Func Mater. 2012;22(21):4421.

    Article  CAS  Google Scholar 

  59. Chen W, Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale. 2011;3(8):3132.

    Article  CAS  Google Scholar 

  60. Chen W, Li S, Chen C, Yan L. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater. 2011;23(47):5679.

    Article  CAS  Google Scholar 

  61. Zhang Q, Zhang F, Medarametla SP, Li H, Zhou C, Lin D. 3D printing of graphene aerogels. Small. 2016;12(13):1702.

    Article  CAS  Google Scholar 

  62. Garcia-Tunon E, Barg S, Franco J, Bell R, Eslava S, D’Elia E, Maher RC, Guitian F, Saiz E. Printing in three dimensions with graphene. Adv Mater. 2015;27(10):1688.

    Article  CAS  Google Scholar 

  63. Sha J, Li Y, Villegas SR, Wang T, Dong P, Ji Y, Lee SK, Zhang C, Zhang J, Smith RH, Ajayan PM, Lou J, Zhao N, Tour JM. Three-dimensional printed graphene foams. ACS Nano. 2017;11(7):6860.

    Article  CAS  Google Scholar 

  64. Liu F, Song S, Xue D, Zhang H. Folded structured graphene paper for high performance electrode materials. Adv Mater. 2012;24(8):1089.

    Article  CAS  Google Scholar 

  65. Liu C, Wang K, Luo S, Tang Y, Chen L. Direct electrodeposition of graphene enabling the one-step synthesis of graphene–metal nanocomposite films. Small. 2011;7(9):1203.

    Article  CAS  Google Scholar 

  66. Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Commun. 2013;4(1):1.

    Article  Google Scholar 

  67. Wu J, Feng S, Wei X, Shen J, Lu W, Shi H, Tao K, Lu S, Sun T, Yu L, Du C, Miao J, Norford LK. Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing. Adv Func Mater. 2016;26(41):7462.

    Article  CAS  Google Scholar 

  68. Wu J, Liu M, Sharma PP, Yadav RM, Ma L, Yang Y, Zou X, Zhou XD, Vajtai R, Yakobson BI. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 2016;16(1):466.

    Article  CAS  Google Scholar 

  69. Lusk MT, Carr LD. Nanoengineering defect structures on graphene. Phys Rev Lett. 2008;100(17):175503.

    Article  Google Scholar 

  70. Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y. Improving gas sensing properties of graphene by introducing dopants and defects: afirst-principles study. Nanotechnology. 2009;20(18):185504.

    Article  Google Scholar 

  71. Wang Z, Zhao C, Han T, Zhang Y, Liu S, Fei T, Lu G, Zhang T. High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens Actuat B Chem. 2017;242:269.

    Article  CAS  Google Scholar 

  72. Iamprasertkun P, Krittayavathananon A, Sawangphruk M. N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors. Carbon. 2016;102:455.

    Article  CAS  Google Scholar 

  73. Niu F, Liu JM, Tao LM, Wang W, Song WG. Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J Mater Chem A. 2013;1(20):6130.

    Article  CAS  Google Scholar 

  74. Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.

    Article  CAS  Google Scholar 

  75. Ao Z, Yang J, Li S, Jiang Q. Enhancement of CO detection in Al doped graphene. Chem Phys Lett. 2008;461(4–6):276.

    Article  CAS  Google Scholar 

  76. Zhang H, Wang Y, Zhang B, Yan Y, Xia J, Liu X, Qiu X, Tang Y. Construction of ultrasensitive ammonia sensor using ultrafine Ir decorated hollow graphene nanospheres. Electrochim Acta. 2019;304:109.

    Article  CAS  Google Scholar 

  77. Zhu J, Cho M, Li Y, Cho I, Suh JH, Orbe DD, Jeong Y, Ren TL, Park I. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl Mater Interfaces. 2019;11(27):24386.

    Article  CAS  Google Scholar 

  78. Wu J, Tao K, Zhang J, Guo Y, Miao J, Norford LK. Chemically functionalized 3D graphene hydrogel for high performance gas sensing. J Mater Chem A. 2016;4(21):8130.

    Article  CAS  Google Scholar 

  79. Zou B, Guo Y, Shen N, Xiao A, Li M, Zhu L, Wan P, Sun X. Sulfophenyl-functionalized reduced graphene oxide networks on electrospun 3D scaffold for ultrasensitive NO2 gas sensor. Sensors (Basel). 2017;17(12):2954.

    Article  Google Scholar 

  80. Chen XY, Wang XZ, Liu FJ, Zhang GS, Song XJ, Tian J, Cui HZ. Fabrication of porous Zn2TiO4–ZnO microtubes and analysis of their acetone gas sensing properties. Rare Met. 2020. https://link.springer.com/article/10.1007/s12598-020-01518-x.

  81. Song YG, Shim YS, Kim S, Han SD, Moon HG, Noh MS, Lee K, Lee HR, Kim JS, Ju BK. Downsizing gas sensors based on semiconducting metal oxide: effects of electrodes on gas sensing properties. Sens Actuat B Chem. 2017;248:949.

    Article  CAS  Google Scholar 

  82. Moseley PT. Progress in the development of semiconducting metal oxide gas sensors: a review. Meas Sci Technol. 2017;28(8):082001.

    Article  Google Scholar 

  83. Lahlalia A, Filipovic L, Selberherr S. Modeling and simulation of novel semiconducting metal oxide gas sensors for wearable devices. IEEE Sens J. 2018;18(5):1960.

    Article  CAS  Google Scholar 

  84. Fernandez AC, Sakthivel P, Jesudurai J. Semiconducting metal oxides for gas sensor applications. J Mater Sci Mater Electron. 2018;29(1):357.

    Article  CAS  Google Scholar 

  85. Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuat A. 2017;267:242.

    Article  CAS  Google Scholar 

  86. Navaneethan M, Patil V, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil P, Hayakawa Y. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens Actuat B Chem. 2018;255:672.

    Article  Google Scholar 

  87. Rieu M, Camara M, Tournier G, Viricelle JP, Pijolat C, de Rooij NF, Briand D. Fully inkjet printed SnO2 gas sensor on plastic substrate. Sens Actuat B Chem. 2016;236:1091.

    Article  CAS  Google Scholar 

  88. Li Y, Chen N, Deng D, Xing X, Xiao X, Wang Y. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens Actuat B Chem. 2017;238:264.

    Article  CAS  Google Scholar 

  89. Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy L, Truchlý M, Ďurina P, Gregor M, Kúš P, Plecenik A. Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens Actuat B Chem. 2017;240:1058.

    Article  Google Scholar 

  90. Li F, Gao X, Wang R, Zhang T, Lu G. Study on TiO2–SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor. Sens Actuat B Chem. 2017;248:812.

    Article  CAS  Google Scholar 

  91. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2T nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuat B Chem. 2019;298:126874.

    Article  CAS  Google Scholar 

  92. Liu X, Li J, Sun J, Zhang X. 3D Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature. RSC Adv. 2015;5(90):73699.

    Article  CAS  Google Scholar 

  93. Wu J, Wu Z, Ding H, Wei Y, Huang W, Yang X, Li Z, Qiu L, Wang X. Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl Mater Interfaces. 2020;12(2):2634.

    Article  CAS  Google Scholar 

  94. Zou C, Hu J, Su Y, Zhou Z, Cai B, Tao Z, Huo T, Hu N, Zhang Y. Highly repeatable and sensitive three-dimensional γ-Fe2O3@reduced graphene oxide gas sensors by magnetic-field assisted assembly process. Sens Actuat B Chem. 2020;306:127546.

    Article  CAS  Google Scholar 

  95. Huang D, Yang Z, Li X, Zhang L, Hu J, Su Y, Hu N, Yin G, He D, Zhang Y. Three-dimensional conductive networks based on stacked SiO2@graphene frameworks for enhanced gas sensing. Nanoscale. 2017;9(1):109.

    Article  CAS  Google Scholar 

  96. Seekaew Y, Wisitsoraat A, Phokharatkul D, Wongchoosuk C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens Actuat B Chem. 2019;279:69.

    Article  CAS  Google Scholar 

  97. Liu X, Cui J, Sun J, Zhang X. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 2014;4(43):22601.

    Article  CAS  Google Scholar 

  98. Ma Z, Song P, Yang Z, Wang Q. Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Appl Surf Sci. 2019;465:625.

    Article  CAS  Google Scholar 

  99. Liu X, Sun J, Zhang X. Novel 3D graphene aerogel–ZnO composites as efficient detection for NO2 at room temperature. Sens Actuat B Chem. 2015;211:220.

    Article  CAS  Google Scholar 

  100. Ha NH, Thinh DD, Huong NT, Phuong NH, Thach PD, Hong HS. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl Surf Sci. 2018;434:1048.

    Article  Google Scholar 

  101. Zou C, Hu J, Su Y, Shao F, Tao Z, Huo T, Zhou Z, Hu N, Yang Z, Kong ESW, Zhang Y. Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors. Front Mater. 2019;6:195.

    Article  Google Scholar 

  102. Huang Q, Zeng D, Li H, Xie C. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale. 2012;4(18):5651.

    Article  CAS  Google Scholar 

  103. Yan H, Song P, Zhang S, Yang Z, Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J Alloys Compd. 2016;662:118.

    Article  CAS  Google Scholar 

  104. Kim HJ, Lee JH. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuat B Chem. 2014;192:607.

    Article  CAS  Google Scholar 

  105. Lee JH, Katoch A, Choi SW, Kim JH, Kim HW, Kim SS. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl Mater Interfaces. 2015;7(5):3101.

    Article  CAS  Google Scholar 

  106. Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces. 2015;7(5):3077.

    Article  CAS  Google Scholar 

  107. Anand K, Singh O, Singh MP, Kaur J, Singh RC. Hydrogen sensor based on graphene/ZnO nanocomposite. Sens Actuat B Chem. 2014;195:409.

    Article  CAS  Google Scholar 

  108. Liu Z, Yu L, Guo F, Liu S, Qi L, Shan M, Fan X. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Appl Surf Sci. 2017;423:721.

    Article  CAS  Google Scholar 

  109. Zou R, He G, Xu K, Liu Q, Zhang Z, Hu J. ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J Mater Chem A. 2013;1(29):8445.

    Article  CAS  Google Scholar 

  110. Yang Y, Tian C, Wang J, Sun L, Shi K, Zhou W, Fu H. Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale. 2014;6(13):7369.

    Article  CAS  Google Scholar 

  111. Xia Y, Li R, Chen R, Wang J, Xiang L. 3D architectured graphene/metal oxide hybrids for gas sensors: a review. Sensors (Basel). 2018;18(5):1456.

    Article  Google Scholar 

  112. Shao G, Ovsianytskyi O, Bekheet MF, Gurlo A. On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing. Chem Commun (Camb). 2020;56(3):450.

    Article  CAS  Google Scholar 

  113. Pan QN, Yang ZM, Wang WW, Zhang DZ. Sulfur dioxide gas sensing at room temperature based on tin selenium/tin dioxide hybrid prepared via hydrothermal and surface oxidation treatment. Rare Met. 2020. https://link.springer.com/article/10.1007/s12598-020-01575-2.

  114. Zhang Y, Tang ZR, Fu X, Xu YJ. TiO2− graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2− graphene truly different from other TiO2− carbon composite materials. ACS Nano. 2010;4(12):7303.

    Article  CAS  Google Scholar 

  115. Esfandiar A, Ghasemi S, Irajizad A, Akhavan O, Gholami M. The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int J Hydrog Energy. 2012;37(20):15423.

    Article  CAS  Google Scholar 

  116. Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta. 2003;475(1–2):1.

    Article  CAS  Google Scholar 

  117. Virji S, Huang J, Kaner RB, Weiller BH. Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 2004;4(3):491.

    Article  CAS  Google Scholar 

  118. Agbor N, Petty M, Monkman A. Polyaniline thin films for gas sensing. Sens Actuat B Chem. 1995;28(3):173.

    Article  CAS  Google Scholar 

  119. Fratoddi I, Venditti I, Cametti C, Russo MV. Chemiresistive polyaniline-based gas sensors: a mini review. Sens Actuat B Chem. 2015;220:534.

    Article  CAS  Google Scholar 

  120. Sadek A, Wlodarski W, Kalantar-Zadeh K, Baker C, Kaner R. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sens Actuat A. 2007;139(1–2):53.

    Article  CAS  Google Scholar 

  121. Jin Z, Su Y, Duan Y. Development of a polyaniline-based optical ammonia sensor. Sens Actuat B Chem. 2001;72(1):75.

    Article  CAS  Google Scholar 

  122. Hosseini SH, Abdi OS, Entezami AA. Toxic gas and vapor detection by polyaniline gas sensors, 2005; 14(4): 333.

  123. Suri K, Annapoorni S, Sarkar A, Tandon R. Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sens Actuat B Chem. 2002;81(2–3):277.

    Article  CAS  Google Scholar 

  124. Kincal D, Kumar A, Child AD, Reynolds JR. Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synth Met. 1998;92(1):53.

    Article  CAS  Google Scholar 

  125. Bibi S, Ullah H, Ahmad SM, AliShah AUH, Bilal S, Tahir AA, Ayub K. Molecular and electronic structure elucidation of polypyrrole gas sensors. J Phys Chem C. 2015;119(28):15994.

    Article  CAS  Google Scholar 

  126. Sahiner N. Conductive polymer containing graphene aerogel composites as sensor for CO2. Polym Compos. 2018;40(S2):E1208.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Graduate Scientific Research and Innovation Foundation of Chongqing, China (No. CYS20001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, M., Zeng, W., Li, YQ. et al. Three-dimensional graphene and its composite for gas sensors. Rare Met. 40, 1494–1514 (2021). https://doi.org/10.1007/s12598-020-01633-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01633-9

Keywords

Navigation