Skip to main content
Log in

Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The stoichiometric LaCoO3 and nonstoichiometric LaCo1.2O3 perovskite catalysts were prepared by citric acid sol–gel method, and then, LaCoO3 perovskite was etched with nitric acid. The structure, surface composition and reducibility of the catalyst were studied by X-ray diffraction (XRD), nitrogen desorption, transmission electron microscope (TEM), temperature program reduction of H2 (H2-TPR) and X-ray photoelectron spectroscopy (XPS). It was found that nitric acid etching did not change the crystal structure and the overall morphology of the LaCoO3 catalyst, but it can cause the exposure of B-site Co metal to the surface of the catalyst. As a result, after acid etching, the reducibility of the LaCoO3 catalyst was improved, leading to the improvement in the catalytic activity of the LaCoO3 catalyst for CO oxidation and C3H8 combustion. Moreover, the catalytic activity of the LaCoO3 catalyst after acid etching was higher than that of LaCo1.2O3 and CoOx/LaCoO3 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martin AG, Anita HB, Henry JS. The emergence of perovskite solar cells. Nat Photonics. 2014;8(7):506.

    Google Scholar 

  2. Zhu JJ, Li HL, Zhong LY, Zhao Z, Li J. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 2014;4(9):2917.

    CAS  Google Scholar 

  3. Manjunath BB, Madhu C, Tobias G, Sandeep K, Patrick MC, Manivannan V. Synthesis and measurement of structural and magnetic properties of K-doped LaCoO3 perovskite materials. Rare Met. 2010;29(5):491.

    Google Scholar 

  4. Mao GP, Wang W, Shao S, Sun XJ, Chen SA, Li MH, Li HM. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018;37(2):95.

    CAS  Google Scholar 

  5. Pérez-Camacho MN, Abu-Dahrieh J, Goguet A, Sun KN, Rooney D. Self-cleaning perovskite type catalysts for the dry reforming of methane. Chin J Catal. 2014;35(8):1337.

    Google Scholar 

  6. John H, Oscar S, Maura CD, Lorenzo MG. Hydrogen storage in a rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 for battery applications. Rare Met. 2018;37(12):1003.

    Google Scholar 

  7. Arandiyan H, Chang HZ, Liu CX, Peng Y, Li JH. Dextrose-aided hydrothermal preparation with large surface area on 1D single-crystalline perovskite La0.5Sr0.5CoO3 nanowires without template: highly catalytic activity for methane combustion. J Mol Catal A. 2013;378:299.

    CAS  Google Scholar 

  8. Seiyama T. Total oxidation of hydrocarbons on perovskite oxides. Catal Rev Sci Eng. 1992;34(4):2.

    Google Scholar 

  9. Hirohisa T, Makoto M. Advances in designing perovskite catalysts. Curr Opin Solid State Mater Sci. 2001;5(5):381.

    Google Scholar 

  10. Zhan WC, Yang SZ, Zhang PF, Guo YL, Lu GZ, Matthew FC, Dai S. Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry. Chem Mater. 2017;29(17):7323.

    CAS  Google Scholar 

  11. Zhan WC, Guo Y, Gong XQ, Guo YL, Wang YQ, Lu GZ. Recent Advances of lanthanum-based perovskite oxides for catalysis. Chin J Catal. 2014;35(8):1238.

    CAS  Google Scholar 

  12. Zhu HY, Zhang PF, Dai S. Recent Advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 2015;5(11):6370.

    CAS  Google Scholar 

  13. Zheng XJ, Li HJ, Li Y, Shen WJ. Structural properties and catalytic activity of Sr-substituted LaFeO3 perovskite. Chin J Catal. 2012;33(7):1109.

    Google Scholar 

  14. Wang HH, Zhang YW, Geng Z, Zhang QF, Gai YQ, Ding WZ. SrCo0.7Fe0.2Nb0.1O3−δ perovskite stabilized by niobium for oxygen permeation. Rare Met. 2012;31(4):392.

    CAS  Google Scholar 

  15. Shah A, Mohd I. Structural stability improvement, Williamson Hall analysis and band-gap tailoring through A-site Sr doping in rare earth based double perovskite La2NiMnO6. Rare Met. 2019;38(9):805.

    Google Scholar 

  16. Huang HF, Sun Z, Lu HF, Shen LQ, Chen YF. Study on the poisoning tolerance and stability of perovskite catalysts for catalytic combustion of volatile organic compounds. React Kinet Mech Catal. 2010;101(2):417.

    CAS  Google Scholar 

  17. Che X, Wang W, Shang Z, Wang L, Guo Y, Lu GZ. Catalytic performances of La0.9Rb0.1Co1−xFexO3−δ perovskite-type catalysts for NOx-assisted soot combustion. Chin J Rare Met. 2018;42(6):650.

    Google Scholar 

  18. Zhang GY, Tan DD, Meng QG, Weng XL, Wu ZB. Structural modification of LaCoO3 perovskite for oxidation reactions: the synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Appl Catal B. 2015;172:18.

    Google Scholar 

  19. Giroir-Fendler A, Gil S, Baylet A. (La0.8A0.2)MnO3 (A = Sr, K) perovskite catalysts for NO and C10H22 oxidation and selective reduction of NO by C10H22. Chin J Catal. 2014;35(8):1299.

    CAS  Google Scholar 

  20. Li CL, Lin YC. Methanol partial oxidation over palladium-, platinum-, and rhodium-integrated LaMnO3 perovskites. Appl Catal B. 2011;101(3–4):284.

    Google Scholar 

  21. Wu KY, Wan SL, Xu B, Liu SB, Zhao JJ, Lu Y. Magnetic entropy change and electrical transport properties of bilayered perovskite manganite La1.2−xTbxSr1.8Mn2O7(x = 0, 0.05). Chin J Rare Met. 2017;41(4):371.

    Google Scholar 

  22. Zhang CH, Wang C, Zahn WZ, Guo YL, Guo Y, Lu GZ, Baylet A, Giroir-Fendler A. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Appl Catal B. 2013;129:509.

    CAS  Google Scholar 

  23. Wang Y, Arandiyan H, Scott J, Akia M, Dai HX, Deng JG, Aguey-Zinsou K, Amal R. Performance Au–Pd supported on 3D hybrid strontium-substituted lanthanum manganite perovskite catalyst for methane combustion. ACS Catal. 2016;6(10):6935.

    CAS  Google Scholar 

  24. Zhang GZ, Zhao Z, Liu J, Jing YN, Duan AJ, Jiang GY. Macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3 for diesel soot combustion. J Rare Earths. 2009;27(6):955.

    Google Scholar 

  25. Arandiyana H, Dai HX, Deng JG, Wang Y, Xie SH, Li JH. Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane. Chem Commun. 2013;49(91):10748.

    Google Scholar 

  26. Arandiyan H, Jason S, Wang Y, Dai HX, Sun HY, Amal R. Meso-molding three-dimensional macroporous perovskites: a new approach to generate high-performance nanohybrid catalysts. ACS Appl Mater Interfaces. 2016;8(4):2457.

    CAS  Google Scholar 

  27. Arandiyan H, Wang Y, Scott J, Mesgari S, Dai HX, Amal R. In situ exsolution of bimetallic Rh–Ni nanoalloys: a highly efficient catalyst for CO2 methanation. ACS Appl Mater Interfaces. 2018;10(19):16352.

    CAS  Google Scholar 

  28. Zhang CH, Wang C, Gil S, Boreave A, Retailleau L, Guo YL, Valverde JL, Giroir-Fendler A. Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts. Appl Catal B. 2017;201:552.

    CAS  Google Scholar 

  29. Zhang JY, Weng XL, Wu ZB, Liu Y, Wang HQ. Facile synthesis of highly active LaCoO3/MgO composite perovskite via simultaneous co-precipitation in supercritical water. Appl Catal B. 2012;126:231.

    CAS  Google Scholar 

  30. Carlos AC, Fabio ST, Robert Newton SH, Martin S. Alumina-supported LaCoO3 perovskite for selective CO oxidation (SELOX). Int J Hydrogen Energy. 2012;37(6):5022.

    Google Scholar 

  31. Si WZ, Wang Y, Peng Y, Li JH. Selective dissolution of A-site cations in ABO3 perovskites: a new path to high-performance catalysts. Angew Chem Int Ed. 2015;127(27):8065.

    Google Scholar 

  32. Huang KK, Chu XF, Yuan L, Feng WC, Feng WF, Wang XY, Feng SH. Engineering the surface of perovskite La0.5Sr0.5MnO3 for catalytic activity of CO oxidation. Chem Commun. 2014;50(65):9200.

    CAS  Google Scholar 

  33. Ding Y, Wang SH, Zhang L, Chen ZP, Wang MZ, Wang SD. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane. Catal Commun. 2017;97:88.

    CAS  Google Scholar 

  34. Luo YJ, Wang KC, Zuo JC, Qian QR, Xu YX, Liu XP, Xue H, Chen QH. Selective corrosion of LaCoO3 by NaOH: structural evolution and enhanced activity for benzene oxidation. Catal Sci Technol. 2017;7(2):496.

    CAS  Google Scholar 

  35. Peng Y, Si WZ, Luo JM, Su WK, Chang HZ, Li JH, Critenden J. Surface tuning of La0.5Sr0.5CoO3 perovskite catalysts by acetic acid for NOx storage and reduction. Environ Sci Technol. 2016;50(12):6442.

    CAS  Google Scholar 

  36. Ghiasi E, Malekzadeh A, Ghiasi M. Moderate concentration of citric acid for the formation of LaMnO3 and LaCoO3 nano-perovskites. J Rare Earths. 2013;31(10):997.

    CAS  Google Scholar 

  37. Kwon JH, Choi WS, Kwon YK, Jung RJ, Zuo JM, Lee HN, Kim M. Nanoscale spin-state ordering in LaCoO3 epitaxial thin films. Chem Mater. 2014;26(8):2496.

    CAS  Google Scholar 

  38. Luo YJ, Wang KC, Zuo JCH, Qian QR, Xu YX, Liu XP, Xue H, Chen QH. Selective corrosion of LaCoO3 by NaOH: structural evolution and enhanced activity for benzene oxidation. Catal Sci Technol. 2017;7(2):496.

    CAS  Google Scholar 

  39. Jang JH, Kim YM, He Q, Mishra R, Qiao L, Biegalski MD, Lupini AR, Pantelides ST, Pennycook SJ, Kalinin SV, Borisevich AY. In situ observation of oxygen vacancy dynamics and ordering in the epitaxial LaCoO3 system. ACS Nano. 2017;11(7):6942.

    CAS  Google Scholar 

  40. Zhang L, Shi LY, Huang L, Zhang JP, Gao RH, Zhang DS. Rational design of high-performance DeNOx catalysts based on MnxCo3–xO4 nanocages derived from metal–organic fameworks. ACS Catal. 2014;4(6):1753.

    CAS  Google Scholar 

  41. Meng DM, Xu Q, Jiao YL, Guo YL, Wang L, Lu GZ, Zhan WZ. Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl Catal B. 2018;221:652.

    CAS  Google Scholar 

  42. Yang HG, Deng JG, Liu YX, Xie SHH, Xu P, Dai HX. Pt/Co3O4/3DOM Al2O3: highly effective catalysts for toluene combustion. Chin J Catal. 2016;37(6):934.

    CAS  Google Scholar 

  43. Xiao Z, Zhan WZ, Guo Y, Guo YL, Gong XQ, Lu GZ. The synthesis of Co-doped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen. Chin J Catal. 2016;37(2):273.

    CAS  Google Scholar 

  44. Wu MZ, Zhan WC, Guo YL, Guo Y, Wang YS, Wang L, Lu GZ. An effective Mn–Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Appl Catal A. 2016;523:97.

    CAS  Google Scholar 

  45. Xie XW, Li Y, Liu ZHQ, Haruta M, Shen WJ. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature. 2009;458(7239):746.

    CAS  Google Scholar 

  46. Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V. On the catalytic activity of Co3O4 in low-temperature CO oxidation. J Catal. 2002;211(2):387.

    CAS  Google Scholar 

  47. Tang XF, Li JH, Sun L, Hao JM. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Appl Catal B Environ. 2010;99(1):156.

    CAS  Google Scholar 

  48. Wang F, Dai HX, Deng JG, Xie ShH, Yang HG, Han W. Nanoplate-aggregate Co3O4 microspheres for toluene combustion. Chin J Catal. 2014;35(9):1475.

    Google Scholar 

  49. Hu Z, Qiu S, You Y, Guo Y, Guo YL, Wang L, Zhan WZ, Lu GZ. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Appl Catal B. 2018;225:110.

    CAS  Google Scholar 

  50. Meng DM, Zhan WC, Guo Y, Guo YL, Wang L, Lu GZ. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance. ACS Catal. 2015;5(10):5973.

    CAS  Google Scholar 

  51. Zhan WC, Wang JL, Wang HF, Zhang JS, Liu XF, Zhang PF, Chi MF, Guo YL, Guo Y, Lu GZ, Sun SH, Dai S, Zhu HY. Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J Am Chem Soc. 2017;139(26):8846.

    CAS  Google Scholar 

  52. Meng DM, Zhan WC, GuoY Guo YL, Wang YS, Wang L, Lu GZ. A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: effect of the calcination temperature. J Mol Catal A. 2016;420:272.

    CAS  Google Scholar 

  53. Tang WT, Wu XF, Li DY, Wang Z, Liu G, Liu HD, Chen YF. Oxalate route for promoting activity of manganese oxide catalysts in total VOCs oxidation: effect of calcination temperature and preparation method. J Mater Chem A. 2014;2(8):2544.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300) and China National Tobacco Corporation Major Projects (No. 110201501001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Jun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Lu, XB., Chu, GH. et al. Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance. Rare Met. 40, 555–562 (2021). https://doi.org/10.1007/s12598-019-01360-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01360-w

Keywords

Navigation