Skip to main content
Log in

First-principles calculations on spin-polarized transport properties of Mn4O4 cluster

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Taking the Mn4O4 cluster as a model system, the spin-polarized transport properties of the small cluster system were systematically probed. The theoretical investigations are based on density-functional theory and non-equilibrium Green’s functional method. The equilibrium transport mechanism is illustrated by the band structure of the electrode, the electronic structure of the Mn4O4 cluster and the coupling between the cluster and the electrodes. To well understand the non-equilibrium mechanisms, one straightforward and simple band-matching model was proposed. Moreover, such a band-matching model can be extended to well illustrate the transport properties of other nano-scale systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song H, Reed MA, Lee T. Single molecule electronic devices. Adv Mater. 2011;23(14):1583.

    Article  Google Scholar 

  2. Philip M. Nanostructured materials. Rep Prog Phys. 2001;64(3):297.

    Article  Google Scholar 

  3. Yu J, Chen X, Sanvito S. Electronic transport across S9 sulfur clusters. Phys Rev B. 2010;82(8):85415.

    Article  Google Scholar 

  4. Matsumoto T, Saito S. First-principles study of current–voltage characteristics of two-terminal carbon nanostructures. Phys E. 2005;29(3–4):560.

    Article  Google Scholar 

  5. Dai ZX, Shi XQ, Zheng XH, Zeng Z. Effect of gating on the transport properties of a Si4 cluster. Phys Rev B. 2006;73(4):45411.

    Article  Google Scholar 

  6. Dai ZX, Zheng XH, Shi XQ, Zeng Z. Effects of contact geometry on transport properties of a Si4 cluster. Phys Rev B. 2005;72(20):205408.

    Article  Google Scholar 

  7. Dai ZX, Shi XQ, Zheng XH, Zeng Z. Ab initio investigations of the transport properties of a Ge7 cluster. Phys Rev B. 2007;75(15):155402.

    Article  Google Scholar 

  8. Zheng X, Shi X, Dai Z, Zeng Z. Transport properties of the Au32 cluster with fullerene symmetry. Phys Rev B. 2006;74(8):85418.

    Article  Google Scholar 

  9. Rocha AR, Garcia-Suarez VM, Bailey SW, Lambert CJ, Ferrer J, Sanvito S. Towards molecular spintronics. Nat Mater. 2005;4(4):335.

    Article  Google Scholar 

  10. Tian HY, Wang J. Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction. Chin Phys B. 2012;21(1):017203.

    Article  Google Scholar 

  11. Urdampilleta M, Klyatskaya S, Cleuziou J, Ruben M, Wernsdorfer W. Supramolecular spin valves. Nat Mater. 2011;10(7):502.

    Article  Google Scholar 

  12. Lapo B, Wernsdorfer W. Molecular spintronics using single-molecule magnets single-molecule magnets. Nat Mater. 2008;7(3):179.

    Article  Google Scholar 

  13. Pederson MR, Khanna SN. Electronic structure and magnetism of Mn12O12 clusters. Phys Rev B. 1999;59(2):R693.

    Article  Google Scholar 

  14. Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B. 2001;63(24):245407.

    Google Scholar 

  15. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133.

    Article  Google Scholar 

  16. José MSEA. The SIESTA method for ab initio order- N materials simulation. J Phys Condens Matter. 2002;14(11):2745.

    Article  Google Scholar 

  17. Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B. 2001;63(24):245407.

    Article  Google Scholar 

  18. Brandbyge M, Mozos J, Ordejón P, Stokbro K. Density-functional method for nonequilibrium electron transport. Phys Rev B. 2002;65(16):165401.

    Article  Google Scholar 

  19. Lu X, Yavuz MS, Tuan H, Korgel BA, Xia Y. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine−AuCl complexes formed via aurophilic interaction. J Am Chem Soc. 2008;130(28):8900.

    Article  Google Scholar 

  20. Ganguly S, Kabir M, Sanyal B, Mookerjee A. Unusual structure and magnetism in manganese oxide nanoclusters. Phys Rev B. 2011;83(2):20411.

    Article  Google Scholar 

  21. Büttiker M, Imry Y, Landauer R, Pinhas S. Generalized many-channel conductance formula with application to small rings. Phys Rev B. 1985;31(10):6207.

    Article  Google Scholar 

  22. Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1991;43(3):1993.

    Article  Google Scholar 

  23. Artacho E, Sánchez-Portal D, Ordejón P, Garcia A, Soler JM. Linear-scaling ab initio calculations for large and complex systems. Phys Status Solidi (b). 1999;215(1):809.

    Article  Google Scholar 

  24. Zhang Y, Yang W. Comment on “generalized gradient approximation made simple”. Phys Rev Lett. 1998;80(4):890.

    Article  Google Scholar 

  25. Stokbro K, Taylor J, Brandbyge M, Mozos JL, Ordejon P. Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds. Comp Mater Sci. 2003;27(1–2):151.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 11204001, 10804110, and 11174004), Anhui University Scientific Research Fund (Nos. 06060283, 2009QN006A, and 32030028), “211 Project” of Anhui University, Anhui Provincial Natural Science Foundation (Nos. 1208085QA07 and 1308085MA04), the Major Project of Education Department in Anhui (No. 06070241), and the Educational Commission (No. KJ2013A031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Xiang Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, ZX., Zheng, GH., Wang, B. et al. First-principles calculations on spin-polarized transport properties of Mn4O4 cluster. Rare Met. 34, 45–50 (2015). https://doi.org/10.1007/s12598-013-0176-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0176-0

Keywords

Navigation