Skip to main content
Log in

Non-isothermal degradation kinetics and morphology of PP/TiO2 nanocomposites using titanium n-butoxide precursor

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

This study investigates the influence of the addition of TiO2, obtained by hydrolysis–condensation reaction of titanium dioxide precursors, on the kinetics of polypropylene (PP) Non-Isothermal Degradation. The dispersion of nanoparticle and its relation to the degree of crystallinity by XRD also was investigated. The results indicated that the addition of the TiO2 increased the degree of crystallinity of PP and there was an increase of the E ad which may be associated with an increase in thermal stability. As could be seen the TEM micrographs showed nanoparticles of TiO2 with regions homogeneously distributed and some also aggregated. In degradation kinetics, the nanocomposites could demonstrate an increase in the thermal stability of PP in the initial mass loss stages, so that, the PP/TiO2b1,5 nanocomposites were the sample that showed better influence the thermal stability 100 °C in T onset . The nanoparticles by presenting a good dispersion in the PP matrix may difficult the volatile products diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zammarano M, Maupin PH, Sung LP, Gilman JW, McCarthy ED, Kim YS, Fox DM (2011) Revealing the interface in polymer nanocomposites. ACS Nano. doi:10.1021/nn102951n

    Google Scholar 

  2. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci. doi:10.1016/j.progpolymsci.2008.07.008

    Google Scholar 

  3. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci. doi:10.1016/j.progpolymsci.2010.03.001

    Google Scholar 

  4. Mirigul A, Huseyin Y (2011) Uysal A Tensile properties of polypropylene/metal oxide nano composites. Online J Sci Technol 1:25–30

    Google Scholar 

  5. Wacharawichanant S, Thongyai S, Siripattanasak T, Tipsri T (2009) Effect of mixing conditions and particle sizes of titanium dioxide on mechanical and morphological properties of polypropylene/titanium dioxide composites. Iran Polyn J 18:607–616

    CAS  Google Scholar 

  6. Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y (2007) Isothermal crystallization kinetics of polypropylene with silane functionalized multi-walled carbon nanotubes. J Polym Sci Polym Phys 45:1616–1624. doi:10.1002/polb.21128

    Article  CAS  Google Scholar 

  7. Wu N, Xia X, Wei Q, Huang F (2010) Preparation and Properties of Organic/Inorganic Hybrid Nanofibres. Fibres Text East Eur 18:21–23

    CAS  Google Scholar 

  8. Esthappan SK, Kuttappan SK, Joseph R (2012) Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des 37:537–542. doi:10.1016/j.matdes.2012.01.038

    Article  CAS  Google Scholar 

  9. Mina MF, Seema S, Matin R, Rahaman MJ, Sarker RB, Gafur MA, Bhuiyan MAH (2009) Improved performance of isotactic polypropylene/titanium dioxide composites: effect of processing conditions and filler content. Polym Degrad Stab. doi:10.1016/j.polymdegradstab.2008.11.006

    Google Scholar 

  10. Esthappan SK, Kuttappan SK, Joseph R (2012) Effect of titanium dioxide on the thermal ageing of polypropylene. Polym Degrad Stab 97:615–620. doi:10.1016/j.polymdegradstab.2012.01.006

    Article  CAS  Google Scholar 

  11. Nayak SK, Samal SK, Mohanty S (2008) Polypropylene nanocomposites: effect of organo-modified layered silicates on mechanical, thermal & morphological performance. J Thermoplast Compos Mater 21:243–263. doi:10.1177/0892705708089476

    Article  Google Scholar 

  12. Liang JZ (2010) Effects of diatomite on extrudate swell behavior of polypropylene composite melts. J Appl Polym Sci 118:385–389. doi:10.1002/app.32435

    Article  CAS  Google Scholar 

  13. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J Nat Sci 42:357–361

    Google Scholar 

  14. Bahloul W, Mélis F, Bounor LV, Cassagnau P (2012) Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol–gel method. Mater Chem Phys 134:399–406

    Article  CAS  Google Scholar 

  15. Barlier V, Bounor LV, Boiteux G, Davenas J, Léonard D (2008) Hydrolysis–condensation reactions of titanium alkoxides in thin films: a study of the steric hindrance effect by X-ray photoelectron spectroscopy. Appl Surf Sci 254:5408–5412. doi:10.1016/j.apsusc.2008.02.076

    Article  CAS  Google Scholar 

  16. Lecouvet B, Bourbigot S, Sclavons M, Bailly C (2012) Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites. Polym Degrad Stab 97:1745–1754. doi:10.1016/j.polymdegradstab.2012.06.022

    Article  CAS  Google Scholar 

  17. Aboulkas A, El harfi K, El Bouadili A (2010) Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag 51:1363–1369

    Article  CAS  Google Scholar 

  18. Jeffery DP, Sergey V, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene) macromol. Chem Phys 202:775–784. doi:10.1002/1521-3935(20010301)202:6<775:AID-MACP775>3.0.CO;2-G

    Google Scholar 

  19. Georgieva V, Vlaev L, Gyurova K (2013) Non-isothermal degradation kinetics of CaCO3 from different origin. J Chem 2013:1–13. doi:10.1155/2013/872981

    Article  Google Scholar 

  20. Budrugeac P, Segal E (2008) Application of isoconversional and multivariate non-linear regression methods for evaluation of the degradation mechanism and kinetic parameters of an epoxy resin. Polym Degrad Stab 93:1073–1080. doi:10.1016/j.polymdegradstab.2008.03.017

    Article  CAS  Google Scholar 

  21. Kanny K, Moodley VK (2007) Characterization of polypropylene nanocomposite structures. J Eng Mater Technol 129:105–112. doi:10.1115/1.2400264

    Article  CAS  Google Scholar 

  22. Bahloul W, Oddes O, Legaré VB, Mélis F, Cassagnau P, Vergnes B (2011) Reactive extrusion processing of polypropylene/TiO2 nanocomposites by in situ synthesis of the nanofillers: experiments and modeling. AIChE J 57(8):2174–2184

    Article  CAS  Google Scholar 

  23. Bahloul W, Bounor LV, Seytre G, Cassagnau P (2011) Influence of a non-polar medium (alkane and molten polypropylene) on the titanium n-butoxide hydrolysis-condensation reactions. J Sol-Gel Sci Technol 57:86–94

    Article  CAS  Google Scholar 

  24. Bahloul W, Bounor-Legaré V, David L, Cassagnau P (2010) Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in situ sol–gel method. J Polym Sci Part B Polym Phys 48:1213–1222

    Article  CAS  Google Scholar 

  25. Dou Q, Zhu X, Peter K, Demco D, Möller M, Melian C (2008) Polymer morphology: principles, characterization, and processing. J Sol-Gel Sci Technol 48:51–60

    Article  CAS  Google Scholar 

  26. Spencer MW, Hunter DL, Knesek BW, Paul DR (2011) Morphology and properties of polypropylene nanocomposites based on a silanized organoclay. Polymer 52:5369–5377. doi:10.1016/j.polymer.2011.09.034

    Article  CAS  Google Scholar 

  27. Ou B, Li D, Liu Y (2009) Compatibilizing effect of maleated polypropylene on the mechanical properties of injection molded polypropylene/polyamide 6/functionalized-TiO2 nanocomposites. Compos Sci Technol. doi:10.1016/j.compscitech.2008.11.010

    Google Scholar 

  28. Vyazovkin S (2006) Sbirrazzuoli N isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532. doi:10.1002/marc.200600404

    Article  CAS  Google Scholar 

  29. Sánchez JPE, Pérez MLA, Perejón A, Criado JM (2010) Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab 95:2079–2085. doi:10.1016/j.polymdegradstab.2009.07.006

    Google Scholar 

  30. Pistor V, Zattera AJ (2012) Degradation kinetics of ethylene propylene diene terpolymer residues devulcanized by microwaves. J Elastom Plast 46:69–83. doi:10.1177/0095244312462159

    Article  Google Scholar 

  31. Turmanova S, Genieva S, Vlaev L (2011) Kinetics of nonisothermal degradation of some polymer composites: change of entropy at the formation of the activated complex from the reagents. J Therm 2011:1–10. doi:10.1155/2011/605712

    Google Scholar 

  32. Sánchez JPE, Pérez LA, Perejón A, Criado JM (2009) An improved model for the kinetic description of the thermal degradation of cellulose. Polym Degrad Stab 18:1487–1498. doi:10.1007/s10570-011-96023

    Google Scholar 

  33. Bianchi O, Repenning GB, Canto LB, Mauler RS, Oliveira RVB (2013) Kinetics of thermo-oxidative degradation of PS-POSS hybrid nanocomposite Pol. Test 32:794–801. doi:10.1016/j.polymertesting.2013.03.007

    CAS  Google Scholar 

  34. Bianchi O, Dal CC, Oliveira RVB, Bertuoli PT, Hillig E (2010) Avaliação da degradação não-isotérmica de madeira através de termogravimetria-TGA. Polímeros 20:395–400. doi:10.1590/S0104-14282010005000060

    Article  CAS  Google Scholar 

  35. Silva RP, Pistor V, Vaghetti JCP, Oliveira RVB (2016) Influence of TiO2 on the isothermal crystallization of polypropylene containing nanocomposites. Int J Plast Technol. doi:10.1007/2Fs12588-016-9137-4

    Google Scholar 

  36. Zapataa PA, Rabagliatia FM, Lieberwirthb I, Catalinac F, Corralesc T (2014) Study of the photodegradation of nanocomposites containing TiO2 nanoparticles dispersed in polyethylene and in poly(ethylene-co-octadecene). Polym Degrad Stab 109:106–114. doi:10.1016/j.polymdegradstab.2014.06.020

    Article  Google Scholar 

  37. Cheng HKF, Sahoo NG, Lu X, Li L (2012) Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. J Therm Anal Calorim 109:17–25. doi:10.1007/s10973-011-1498-5

    Article  CAS  Google Scholar 

  38. Dessouky HME, Lawrence Carl A (2011) Nanoparticles dispersion in processing functionalised PP/TiO2 nanocomposites: distribution and properties J. Nano Res 13:1115–1124. doi:10.1007/s11051-010-0100-6

    Article  Google Scholar 

  39. Chiu CW, Lin CA, Hong PD (2011) Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. J Polym Res 18:367–372. doi:10.1007/s10965-010-9426-0

    Article  CAS  Google Scholar 

  40. Paik P, Kar KK (2008) Kinetics of thermal degradation and estimation of lifetime for polypropylene particles: effects of particle size. Polym Degrad Stab 93:4–35. doi:10.1016/j.polymdegradstab.2007.11.001

    Article  Google Scholar 

  41. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. doi:10.1016/j.polymdegradstab.2007.10.012

    Article  CAS  Google Scholar 

  42. Day M, Cooney JD, MacKinnon M (1995) Degradation of contaminated plastics: a kinetic study. Polym Degrad Stab 48:341–349. doi:10.1016/0141-3910(95)00088-4

    Article  CAS  Google Scholar 

  43. Chan JH, Balke ST (1997) The thermal degradation kinetics of polypropylene: part I. molecular weight distribution. Polym Degrad Stab 57:113–125. doi:10.1016/S0141-3910(96)00158-9

    Article  CAS  Google Scholar 

  44. Bahloul Ou, Ou Y, Li D, Jing B, Gao Y, Zhou Z, Liu Q (2012) Isothermal crystallization and melting behaviors of nano TiO2-modified polypropylene/polyamide 6 blends. Polym Compos 33(7):1054–1063

    Article  Google Scholar 

  45. Yang G, Li X, Chen J, Yang J, Huang T, Liu X, Wang Y (2012) Crystallization behavior of isotactic polypropylene induced by competition action of β nucleating agent and high pressure. Colloid Polym Sci 290:531–540. doi:10.1007/s00396-011-2573-y

    Article  CAS  Google Scholar 

  46. Obadal M, Cermák R, Stoklasa K (2005) Tailoring of three-phase crystalline systems in isotactic poly(propylene). Macromol Rapid Commun 26:1253–1257. doi:10.1002/marc.200500272

    Article  CAS  Google Scholar 

  47. Lin F (2006) Preparation and characterization of polymer TiO2 nanocomposites via in-situ polymerization. University of Waterloo, Waterloo

    Google Scholar 

  48. Meng X, Wang H, Qian Z, Gao X, Yi Q, Zhang S, Yang M (2009) Preparation of photodegradable polypropylene/clay composites based on nanoscaled TiO2 immobilized organoclay. Polym Comp 30:543–549. doi:10.1002/pc.20584

    Article  CAS  Google Scholar 

  49. Burgt FPTJ (2002) Crystallization of isotactic polypropylene: the influence of stereo-defects. Dutch, Germany

    Google Scholar 

Download references

Acknowledgments

The authors thank CAPES and CNPQ for the financial support and Braskem S/A for supplying the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo P. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.P., Oliveira, R.V.B. Non-isothermal degradation kinetics and morphology of PP/TiO2 nanocomposites using titanium n-butoxide precursor. Int J Plast Technol 20, 364–377 (2016). https://doi.org/10.1007/s12588-016-9160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-016-9160-5

Keywords

Navigation