Skip to main content

Advertisement

Log in

The stellate cell system (vitamin A-storing cell system)

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50–80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Senoo et al. (2010) (editor’s special 70th birthday edition)

Fig. 2

Reproduced, with permission, from Higashi and Senoo (2003), Wiley-Liss, Inc.

Fig. 3
Fig. 4

Reproduced, with permission, from Higashi and Senoo (2003), Wiley-Liss, Inc.

Fig. 5

Senoo et al. (2012), Wiley-Liss, Inc.

Fig. 6

Miura et al. (1997)

Fig. 7

Miura et al. (1997)

Fig. 8

Senoo et al. (2010) (editor’s special 70th birthday edition)

Fig. 9

Senoo et al. (2010) (editor’s special 70th birthday edition)

Fig. 10

Senoo (2004)

Similar content being viewed by others

References

  • Adachi M, Brenner DA (2008) High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 47:677–685

    Article  CAS  PubMed  Google Scholar 

  • Adachi M, Osawa Y, Uchinami H, Kitamura T, Accili D, Brenner DA (2007) The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology 132:1434–1446

    Article  CAS  PubMed  Google Scholar 

  • Aimed Q, Hines JE, Harrison D, Burt AD (1991) Expression of muscle-associated cytoskeletal proteins by human sinusoidal liver cells. In: Wisse E, Knook DL, McCuskey RS (eds) Cells of the hepatic sinusoid, vol 3. Kupffer Cell Foundation, Leiden, pp 203–206

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell, 6th edn. Garland Science, New York

    Google Scholar 

  • Anan A, Baskin-Bey ES, Bronk SF, Werneburg NW, Shah VH, Gores GJ (2006) Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology 43:335–344

    Article  CAS  PubMed  Google Scholar 

  • Andersen KB, Nilsson A, Blomhoff HK, Øyen TB, Gabrielsen OS, Norum KR, Blomhoff R (1992) Direct mobilization of retinol from hepatic perisinusoidal stellate cells to plasma. J Biol Chem 267:1340–1344

    CAS  PubMed  Google Scholar 

  • Andrade CMB, Trindade VMT, Cardoso CCA, Ziulkoski AL, Trugo LC, Guaragna RM, Borojevic R, Guma FCR (2003) Changes of sphingolipid species in the phenotype conversion from myofibroblasts to lipocytes in hepatic stellate cells. J Cell Biochem 88:533–544

    Article  CAS  PubMed  Google Scholar 

  • Ankoma-Sey V, Wang Y, Dai Z (2000) Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cell. Hepatology 31:141–148

    Article  CAS  PubMed  Google Scholar 

  • Antoine M, Wirz W, Tag CG, Gressner AM, Marvituna M, Wycislo M, Hellerbrand C, Kiefer P (2007) Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury. Biochem Biophys Res Commun 361:335–341

    Article  CAS  PubMed  Google Scholar 

  • Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, Pirola RC, Wilson JS (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA, Pirola RC, Wilson JS (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44:534–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arber N, Zajicek G, Ariel I (1988) The streaming liver II. Hepatocyte life history. Liver 8:80–87

    Article  CAS  PubMed  Google Scholar 

  • Arber N, Zajicek G, Shamir R, Kenet G, Raanani P, Nordenberg J, Sidi Y (1992) Bromobenzene accelerates hepatocyte streaming in rats. Hepatology 103:1273–1276

    CAS  Google Scholar 

  • Armendariz-Borunda J, Greenwel P, Rojkind M (1989) Kupffer cells from CCl4-treated rat livers induce skin fibroblast and liver fat-storing cell proliferation in culture. Matrix 9:150–158

    Article  CAS  PubMed  Google Scholar 

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237:268–275

    Article  CAS  PubMed  Google Scholar 

  • Arthur MJP (2000) Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 279:G245–G249

    CAS  PubMed  Google Scholar 

  • Arthur MJP (2002) Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122:1525–1528

    Article  PubMed  Google Scholar 

  • Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53:983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athari A, Hänecke K, Jungermann K (1994) Prostaglandin F2 and D2 release from primary Ito cell cultures after stimulation with noradrenaline and ATP but not adenosine. Hepatology 20:142–148

    CAS  PubMed  Google Scholar 

  • Baba S, Fujii H, Hirose T, Yasuchika K, Azuma H, Hoppo T, Naito M, Machimoto T, Ikai I (2004) Commitment of bone marrow cells to hepatic stellate cells in mouse. J Hepatol 40:255–260

    Article  PubMed  Google Scholar 

  • Bachem MG, Riess U, Melchior R, Sell K-M, Gressner AM (1989) Transforming growth factors (TGFa and TGFb1) stimulate chondroitin sulfate and hyaluronate synthesis in cultured rat liver fat storing cells. FEBS Lett 257:134–137

    Article  CAS  PubMed  Google Scholar 

  • Bachem MG, Schneider E, Groß H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grünert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432

    Article  CAS  PubMed  Google Scholar 

  • Bahr MJ, Vincent KJ, Arthur MJP, Fowler AV, Smart DE, Wright MC, Clark IM, Benyon RC, Iredale JP, Mann DA (1999) Control of the tissue inhibitor of metalloproteinases-1 promoter in culture-activated rat hepatic stellate cells: regulation by activator protein-1 DNA binding proteins. Hepatology 29:839–848

    Article  CAS  PubMed  Google Scholar 

  • Balabaud C, Bioulac-Sage P, Desmoulière A (2004) The role of hepatic stellate cells in liver regeneration. J Hepatol 40:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Ballardini G, Groff P, de Glorgi LB, Schuppan D, Bianchi FB (1994) Ito cell heterogeneity: desmin negative Ito cells in normal rat liver. Hepatology 19:440–446

    Article  CAS  PubMed  Google Scholar 

  • Balmer JE, Blomhoff R (2002) Gene expression regulation by retinoic acid. J Lipid Res 43:1773–1808

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  • Barrie LA, Gregor D, Hargrave B, Lake R, Muir D, Shearer R, Tracey B, Bidleman T (1992) Arctic contaminants: sources, occurrence and pathways. Sci Total Environ 122:1–74

    Article  CAS  PubMed  Google Scholar 

  • Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    Article  CAS  PubMed  Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bataller R, Paik Y-H, Lindquist JH, Lemasters JJ, Brenner DA (2004) Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology 126:529–540

    Article  CAS  PubMed  Google Scholar 

  • Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR, Bronson D, Possin D, Van Gelder RN, Baehr W, Palczewski K (2004) Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J Biol Chem 279:10422–10432

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Schuppan D (2001) TGFb1 in liver fibrosis: time to change paradigms? FEBS Lett 502:1–3

    Article  CAS  PubMed  Google Scholar 

  • Båvik CO, Eriksson U, Allen RA, Peterson PA (1991) Identification and partial characterization of a retinal pigment epithelial membrane receptor for plasma retinol-binding protein. J Biol Chem 266:14978–14985

    PubMed  Google Scholar 

  • Båvik CO, Busch C, Eriksson U (1992) Characterization of a plasma retinol-binding protein membrane receptor expressed in the retinal pigment epithelium. J Biol Chem 267:23035–23042

    PubMed  Google Scholar 

  • Båvik CO, Levy F, Hellman U, Wernstedt C, Eriksson U (1993) The retinal pigment epithelial membrane receptor for plasma retinol-binding protein. J Biol Chem 268:20540–20546

    PubMed  Google Scholar 

  • Beno DWA, Rapp UR, Davis BH (1994) Prostaglandin E suppression of platelet-derived-growth-factor-induced Ito cell mitogenesis occurs independent of raf perinuclear translocation and nuclear proto-oncogene expression. Biochim Biophys Acta Mol Cell Res 1222:292–300

    Article  CAS  Google Scholar 

  • Benyon RC, Arthur MJP (2001) Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 21:373–384

    Article  CAS  PubMed  Google Scholar 

  • Benyon RC, Iredale JP (2000) Is liver fibrosis reversible? Gut 46:443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkley HJ (1893) Studies in the histology of the liver. III. The perivascular cell of the rabbits liver. Anat Anz 8:787–792

    Google Scholar 

  • Biesalski HK, Frank J, Beck SC, Heinrich F, Illek B, Reifen R, Gollnick H, Seeliger MW, Wissinger B, Zrenner E (1999) Biochemical but not clinical vitamin A deficiency results from mutations in the gene for retinol binding protein. Am J Clin Nutr 69:931–936

    CAS  PubMed  Google Scholar 

  • Bioulac-Sage P, Lafon ME, Saric J, Balabaud C (1990) Nerves and perisinusoidal cells in human liver. J Hepatol 10:105–112

    Article  CAS  PubMed  Google Scholar 

  • Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C (1995) Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 36:1211–1226

    CAS  PubMed  Google Scholar 

  • Blaner WS (1989) Retinol-binding protein: the serum transport protein for vitamin A. Endocr Rev 10:308–316

    Article  CAS  PubMed  Google Scholar 

  • Blaner WS (2007) STRA6, a cell-surface receptor for retinol-binding protein: the plot thickens. Cell Metab 5:164–166

    Article  CAS  PubMed  Google Scholar 

  • Blaner WS, Hendriks HF, Brouwer A, de Leeuw AM, Knook DL, Goodman DS (1985) Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells. J Lipid Res 26:1241–1251

    CAS  PubMed  Google Scholar 

  • Blaner WS, Dixon JL, Moriwaki H, Martino RA, Stein O, Stein Y, Goodman DS (1987) Studies on the in vivo transfer of retinoids from parenchymal to stellate cells in rat liver. Eur J Biochem 164:301–307

    Article  CAS  PubMed  Google Scholar 

  • Blaner WS, van Bennekum AM, Brouwer A, Hendriks HFJ (1990) Distribution of lecithin-retinol acyltransferase activity in different types of rat liver cells and subcellular fractions. FEBS Lett 274:89–92

    Article  CAS  PubMed  Google Scholar 

  • Blaner WS, O’Byrne SM, Wongsiriroj N, Kluwe J, D’Ambrosio DM, Jiang H, Schwabe RF, Hillman EMC, Piantedosi R, Libien J (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta Mol Cell Biol Lipids 1791:467–473

    Article  CAS  Google Scholar 

  • Block GD, Locker J, Bowen WC, Peterson BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK (1996) Population expansion, clonal division, and specific differentiation patterns in primary cultures of hepatocytes by HGF/SF, EGF, and TGFα in a chemically defined (HGM) medium. J Cell Biol 132:1133–1149

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R (1987) Hepatic retinol metabolism: role of the various cell types. Nutr Rev 45:257–263

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R (1994) Vitamin A in health and disease. Marcel Dekker, New York

    Google Scholar 

  • Blomhoff R, Berg T (1990) Isolation and cultivation of rat liver stellate cells. Methods Enzymol 190:58–71

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66:606–630

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Wake K (1991) Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. FASEB J 5:271–277

    CAS  PubMed  Google Scholar 

  • Blomhoff R, Helgerud P, Rasmussen M, Berg T, Norum KR (1982) In vivo uptake of chylomicron [3H]retinyl ester by rat liver: evidence for retinol transfer from parenchymal to nonparenchymal cells. Proc Natl Acad Sci USA 79:7326–7330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomhoff R, Holte K, Naess L, Berg T (1984a) Newly administered [3H]retinol is transferred from hepatocytes to stellate cells in liver for storage. Exp Cell Res 150:186–193

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Smedsrød B, Eskild W, Granum PE, Berg T (1984b) Preparation of isolated liver endothelial cells and Kupffer cells in high yield by means of an enterotoxin. Exp Cell Res 150:194–204

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Norum KR, Berg T (1985a) Hepatic uptake of [3H]retinol bound to the serum retinol binding protein involves both parenchymal and perisinusoidal stellate cells. J Biol Chem 260:13571–13575

    CAS  PubMed  Google Scholar 

  • Blomhoff R, Rasmussen M, Nilsson A, Norum KR, Berg T, Blaner WS, Kato M, Mertz JR, Goodman DS, Eriksson U (1985b) Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells. J Biol Chem 260:13560–13565

    CAS  PubMed  Google Scholar 

  • Blomhoff R, Berg T, Norum KR (1988a) Newly administered [3H]retinol is transferred from hepatocytes to stellate cells in liver for storage. Exp Cell Res 150:186–193

    Article  Google Scholar 

  • Blomhoff R, Berg T, Norum KR (1988b) Distribution of retinol in rat liver cells: effect of age, sex and nutritional status. Br J Nutr 60:233–239

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Berg T, Norum KR (1988c) Transfer of retinol from parenchymal to stellate cells in liver is mediated by retinol-binding protein. Proc Natl Acad Sci USA 85:3455–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomhoff R, Green MH, Berg T, Norum KR (1990) Transport and storage of vitamin A. Science 250:399–404

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Green MH, Green JB, Berg T, Norum KR (1991) Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev 71:951–990

    CAS  PubMed  Google Scholar 

  • Blomhoff R, Green MH, Norum KR (1992a) Vitamin A: physiological and biochemical processing. Annu Rev Nutr 12:37–57

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Senoo H, Smeland S, Bjerknes T, Norum KR (1992b) Cellular uptake of vitamin A. J Nutr Sci Vitam 38:327–330

    Article  Google Scholar 

  • Bloom W, Fawcett DW (1994) A textbook of histology, 12th edn. Chapman and Hall, New York

    Google Scholar 

  • Blüher M, Tönjes A, Stumvoll M (2008) Does retinol-binding protein 4 cause or reflect fatty liver disease? Hepatology 48:4–6

    Article  PubMed  CAS  Google Scholar 

  • Bonis PAL, Friedman SL, Kaplan MM (2001) Is liver fibrosis reversible? New Engl J Med 344:452–454

    Article  CAS  PubMed  Google Scholar 

  • Braet F, Luo D, Spector I, Vermijlen D, Wisse E (2001) Endothelial and pit cells. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 437–453

    Google Scholar 

  • Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–2263

    CAS  PubMed  Google Scholar 

  • Bronfenmajer S, Schaffner F, Popper H (1966) Fat-storing cells (lipocytes) in human liver. Arch Pathol 82:447–453

    CAS  PubMed  Google Scholar 

  • Brouwer A, Barelds RJ, de Leeuw AM, Blauw E, Plas A, Yap SH, van den Broek AMWC, Knook DL (1988a) Isolation and culture of Kupffer cells from human liver. Ultrastructure, endocytosis and prostaglandin synthesis. J Hepatol 6:36–49

    Article  CAS  PubMed  Google Scholar 

  • Brouwer A, Wisse E, Knook DL (1988b) Sinusoidal endothelial cells and perisinusoidal fat-storing cells. In: Arias IM, Jakoby WB, Popper H, Schachter D, Sgfritz DA (eds) The liver: biology and pathobiology, 2nd edn. Raven, New York, pp 665–682

    Google Scholar 

  • Browicz T (1900) Ueber intravasculaere Zellen in den Blutcapillaren der Lberacini. Arch Mikr Anat 55:420–426

    Article  Google Scholar 

  • Brown DA (2001) Lipid droplets: proteins floating on a pool of fat. Curr Biol 11:R446–R449

    Article  CAS  PubMed  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leucocyte subpopulation that mediate tissue repair. Mol Med 1:71–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buniatian G, Gebhardt R, Schrenk D, Hamprecht B (1996) Colocalization of three types of intermediate filament proteins in perisinusoidal stellate cells: glial fibrillary acidic protein as a new cellular marker. Eur J Cell Biol 70:23–32

    CAS  PubMed  Google Scholar 

  • Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DFM, Redonett M, Phipps RP, Sime PJ (2005) PPARγ agonists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288:L1146–L1153

    Article  CAS  PubMed  Google Scholar 

  • Calvo M, Tebar F, Lopez-Iglesias I, Enrich C (2001) Morphologic and functional characterization of caveolae in rat liver hepatocytes. Hepatology 33:1259–1269

    Article  CAS  PubMed  Google Scholar 

  • Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ (2003) Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 83:655–663

    Article  CAS  PubMed  Google Scholar 

  • Carloni V, Ramanelli RG, Pinzani M, Laffi G, Gentilini P (1996) Expression and function of integrin receptors for collagen and laminin in cultured human hepatic stellate cells. Gastroenterology 110:1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Carlson BM (1999) Human embryology and developmental biology, 2nd edn. Mosby, St. Louis

    Google Scholar 

  • Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casini A, Ceni E, Salzano R, Schuppan D, Milani S, Pellegrini G, Surrenti C (1994) Regulation of undulin synthesis and gene expression in human fat-storing cells by acetaldehyde and transforming growth factor-b1: comparison with fibronectin. Biochem Biophys Res Commun 199:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Cassiman D, Roskams T (2002) Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. J Hepatol 37:527–535

    Article  PubMed  Google Scholar 

  • Cassiman D, van Pelt J, De Vos R, Van Lommel F, Desmet V, Yap S-H, Roskams T (1999) Synaptophysin: a novel marker for human and rat hepatic stellate cells. Am J Pathol 155:1831–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassiman D, Denef C, Desmet VJ, Roskams T (2001a) Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33:148–158

    Article  CAS  PubMed  Google Scholar 

  • Cassiman D, Roskams T, van Pelt J, Libbrecht L, Aertsen P, Crabbé T, Vankelecom H, Denef C (2001b) Alpha B-crystallin expression in human and rat hepatic stellate cells. J Hepatol 35:200–207

    Article  CAS  PubMed  Google Scholar 

  • Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T (2002) Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 36:200–209

    Article  PubMed  Google Scholar 

  • Cassiman D, Barlow A, Borght SV, Libbrecht L, Pachnis V (2006) Hepatic stellate cells do not derive from the neural crest. J Hepatol 44:1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Chang CS, Kokontis J, Liao ST (1988) Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240:324–326

    Article  CAS  PubMed  Google Scholar 

  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Davis BH (2000) The DNA binding protein BTEB mediates acetaldehyde-induced, jun N-terminal kinase-dependent α (I) collagen gene expression in rat hepatic stellate cells. Mol Cell Biol 20:2818–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PS, Zhai WR, Zhou XM, Zhang JS, Zhang YE, Ling YQ, Gu YH (2001) Effects of hypoxia, hyperoxia on the regulation of expression and activity of matrix metalloproteinase-2 in hepatic stellate cells. World J Gastroenterol 7:647–651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Zhang J, Li J, Huang J, Yang C, Huang G, Shi J (2004) Hydrodynamic-based in vivo transfection of retinoic X receptor-α gene can enhance vitamin A-induced attenuation of liver fibrosis in mice. Liver Int 24:679–686

    Article  CAS  PubMed  Google Scholar 

  • Chiang JY (2002) Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev 23:443–463

    Article  CAS  PubMed  Google Scholar 

  • Cho YM, Youn B-S, Lee H, Lee N, Min S-S, Kwak SH, Lee HK, Park KS (2006) Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care 29:2457–2461

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Lee YJ, Park YJ, Kim KW, Lee EJ, Lim S, Park DJ, Kim SE, Park KS, Jang HC, Cho BY (2008) Retinol binding protein-4 elevation is associated with serum thyroid-stimulating hormone level independently of obesity in elderly subjects with normal glucose tolerance. J Clin Endocr Metab 93:2313–2318

    Article  CAS  PubMed  Google Scholar 

  • Chytil F (1992) The lungs and vitamin A. Am J Physiol Lung Cell Mol Physiol 262:L517–L527

    CAS  Google Scholar 

  • Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:1995

    Article  Google Scholar 

  • Clement B, Grimaud JA, Campion JP, Deugnier Y, Guillouzo A (1986) Cell type involved in collagen and fibronectin production in normal and fibrotic human liver. Hepatology 6:225–234

    Article  CAS  PubMed  Google Scholar 

  • Cogger VC, Warren A, Fraser R, Ngu M, McLean AJ, Le Couteur DG (2003) Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp Gerontol 38:1101–1107

    Article  PubMed  Google Scholar 

  • Collardeau-Frachon S, Scoazec J-Y (2008) Vascular development and differentiation during human liver organogenesis. Anat Rec 291:614–627

    Article  Google Scholar 

  • Conneely OM, Sullivan WP, Toft DO, Birnbaumer M, Cook RG, Maxwell BL, Zarucki-Schulz T, Greene GL, Schrader WT, O’Malley BW (1986) Molecular cloning of the chicken progesterone receptor. Science 233:767–770

    Article  CAS  PubMed  Google Scholar 

  • Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C, Rosmorduc O (2002) Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 35:1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Critchley DR (2000) Focal adhesions-the cytoskeletal connection. Curr Opin Cell Biol 12:133–139

    Article  CAS  PubMed  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesion to the third dimension. Science 294:1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Da Silva Morais A, Abarca-Quinones J, Horsmans Y, Starkel P, Leclercq IA (2007) Peroxisome proliferated-activated receptor γ ligand, Pioglitazone, does not prevent hepatic fibrosis in mice. Int J Mol Med 19:105–112

    PubMed  Google Scholar 

  • Dack CL, Day CO, Johnson SJ, Burt AD (1997) Population kinetics of GFAP-positive cells following experimental acute liver injury. In: Wisse E, Knook DL, Balabaud C (eds) Cells of the hepatic sinusoid, vol 6. Kupffer Cell Foundation, Leiden, pp 59–61

    Google Scholar 

  • Davis BH (1988) Transforming growth factor β responsiveness is modulated by extracellular collagen matrix during hepatic Ito cell culture. J Cell Physiol 136:547–553

    Article  CAS  PubMed  Google Scholar 

  • Davis BH, Vucic A (1988) The effect of retinol on Ito cell proliferation in vitro. Hepatology 8:788–793

    Article  CAS  PubMed  Google Scholar 

  • Davis BH, Vucic A (1989) Modulation of vitamin A metabolism during hepatic and intestinal culture. Biochem Biophys Acta 1010:318–324

    Article  CAS  PubMed  Google Scholar 

  • Davis BH, Pratt BM, Madri JA (1987) Retinol and extracellular collagen matrices modulate hepatic Ito cell collagen phenotype and cellular retinol binding protein levels. J Biol Chem 262:10280–10286

    CAS  PubMed  Google Scholar 

  • Davis BH, Chen A, Beno DWA (1996) Raf and mitogen-activated protein kinase regulate stellate cell collagen gene expression. J Biol Chem 271:11039–11042

    Article  CAS  PubMed  Google Scholar 

  • de Leeuw AM, Barelds RJ, de Zanger R, Knook DL (1982) Primary culture of endothelial cells of the rat liver. A model for ultrastructural and functional studies. Cell Tissue Res 223:201–215

    Article  PubMed  Google Scholar 

  • de Leeuw AM, McCarthy SP, Geerts A, Knook DL (1984) Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 4:392–403

    Article  PubMed  Google Scholar 

  • De Minicis S, Brenner DA (2007) NOX in liver fibrosis. Arch Biochem Biophys 462:266–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Minicis S, Seki E, Uchinami H, Kluwe J, Zhang Y, Brenner DA, Schwabe R (2007) Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 132:1937–1946

    Article  PubMed  CAS  Google Scholar 

  • Desmoulière A (2007) Hepatic stellate cells: the only cells involved in liver fibrogenesis? A dogma challenged. Gastroenterology 132:2059–2062

    Article  PubMed  Google Scholar 

  • Desmoulière A, Xu G, Costa AMA, Yousef IM, Gabbiani G, Tuchweber B (1999) Effect of pentoxifylline on early proliferation and phenotypic modulation of fibrogenic cells in two rat models of liver fibrosis and on cultured hepatic stellate cells. J Hepatol 30:621–631

    Article  PubMed  Google Scholar 

  • Desmoulière A, Darby IA, Gabbiani G (2003) Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 83:1689–1707

    Article  PubMed  Google Scholar 

  • Dewailly E, Nantel A, Weber J-P, Meyer F (1989) High levels of PCBs in breast milk of Inuit women from arctic Quebec. Bull Environ Contam Toxicol 43:641–646

    Article  CAS  PubMed  Google Scholar 

  • Dirami G, Massaro GD, Clerch LB, Ryan US, Reczek PR, Massaro D (2004) Lung retinol storing cells synthesize and secrete retinoic acid, an inducer of alveolus formation. Am J Physiol Cell Mol Physiol 286:L249–L256

    Article  CAS  Google Scholar 

  • Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274:23695–23698

    Article  CAS  PubMed  Google Scholar 

  • Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Dijke PT, Gressner AM (2003) Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125:178–191

    Article  CAS  PubMed  Google Scholar 

  • Drummond JC, Bell ME (1935) Observation of the absorption of carotene and vitamin A. Br Med J 1:1208–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Bois AM (1968) The embryonic liver. In: Rouiller CH (ed) The liver, vol 1. Academic, New York, pp 1–39

    Google Scholar 

  • Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • During A, Harrison EH (2007) Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. J Lipid Res 48:2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Elias H (1955) Origin and early development of the liver in various vertebrates. Acta Hepatol 3:1–56

    Google Scholar 

  • Elices MJ, Hemler ME (1989) The human integrin VLA-2 is a collagen receptor on some cells and a collagen/laminin receptor on others. Proc Natl Acad Sci USA 86:9906–9910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsharkawy AM, Wright MC, Hay RT, Arthur MJ, Hughes T, Bahr MJ, Degitz K, Mann DA (1999) Persistent activation of nuclear factor-B in cultured rat hepatic stellate cells involves the induction of potentially novel rel-like factors and prolonged changes in the expression of IB family proteins. Hepatology 30:761–769

    Article  CAS  PubMed  Google Scholar 

  • Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC (2000) Structural basis of collagen recognition by integrin α2β1. Cell 101:47–56

    Article  CAS  PubMed  Google Scholar 

  • Enzan H, Himeno H, Iwamura S, Onishi S, Saibara T, Yamamoto Y, Hara H (1994a) α-Smooth muscle actin-positive perisinusoidal stromal cells in human hepatocellular carcinoma. Hepatology 19:895–903

    CAS  PubMed  Google Scholar 

  • Enzan H, Himeno H, Iwamura S, Saibara T, Onishi S, Yamamoto Y, Hara H (1994b) Immunohistochemical identification of Ito cells and their myofibroblastic transformation in adult human liver. Virchows Arch 424:249–256

    Article  CAS  PubMed  Google Scholar 

  • Enzan H, Himeno H, Hiroi M, Kiyoku H, Saibara T, Onishi S (1997) Development of hepatic sinusoidal structure with special reference to the Ito cells. Microsc Res Tech 39:336–349

    Article  CAS  PubMed  Google Scholar 

  • Erickson N, Mohanty SK, Shivakumar P, Sabla G, Chakraborty R, Bezerra JA (2008) Temporal-spatial activation of apoptosis and epithelial injury in murine experimental biliary atresia. Hepatology 47:1567–1577

    Article  CAS  PubMed  Google Scholar 

  • Eriksson U, Das K, Busch C, Nordlinder H, Rask L, Sundelin J, Sallstrom J, Peterson PA (1984) Cellular retinol-binding protein. Quantitation and distribution. J Biol Chem 259:13464–13470

    CAS  PubMed  Google Scholar 

  • Everett L, Galli A, Crabb D (2000) The role of hepatic peroxisome proliferator-activated receptors (PPARs) in health and disease. Liver 20:191–199

    Article  CAS  PubMed  Google Scholar 

  • Fallowfield JA, Iredale JP (2003) Reversal of liver fibrosis and cirrhosis—an emerging reality. Scott Med J 49:3–6

    Article  Google Scholar 

  • Fawcett DW (1986) Bloom and Fawcett: a textbook of histology, 11th edn. W. B. Saunders, Philadelphia

    Google Scholar 

  • Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fennekohl A, Schieferdecker HL, Jungermann K, Püschel GP (1999) Differential expression of prostanoid receptors in hepatocytes, Kupffer cells, sinusoidal endothelial cells and stellate cells of rat liver. J Hepatol 30:38–47

    Article  CAS  PubMed  Google Scholar 

  • Fimmel CJ, Brown KE, O’Neill R, Kladney RD (1996) Complement C4 protein expression by rat hepatic stellate cells. J Immunol 157:2601–2609

    CAS  PubMed  Google Scholar 

  • Fiorucci S, Antonelli E, Distrutti E, Severino B, Fiorentina R, Baldoni M, Caliendo G, Santagada V, Morelli A, Cirino G (2004a) PAR1 antagonism protects against experimental liver fibrosis. Role of proteinase receptors in stellate cell activation. Hepatology 39:365–375

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pellicciari R, Morelli A (2004b) The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127:1497–1512

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, Morelli A, Pruzanski M, Pellicciari R (2005a) Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor γ contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis. J Pharmacol Exp Ther 315:58–68

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pruzanski M, Morelli A, Pellicciari R (2005b) A farnesoid x receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J Pharmacol Exp Ther 314:584–595

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Cariers A, Reinehr R, Håussinger D (2002) Caspase 9-dependent killing of hepatic stellate cells by activated Kupffer cells. Gastroenterology 123:845–861

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Reinehr R, Lu TP, Schönicke A, Warskulat U, Dienes HP, Häussinger D (2005) Intercellular communication via gap junctions in activated rat hepatic stellate cells. Gastroenterology 128:433–448

    Article  CAS  PubMed  Google Scholar 

  • Fortuna VA, Trugo LC, Borojevic R (2001) Acyl-CoA:retinol acyltransferase (ARAT) and lecithin:retinol acyltransferase (LRAT) activation during the lipocyte phenotype induction in hepatic stellate cells. J Nutr Biochem 12:610–621

    Article  CAS  PubMed  Google Scholar 

  • Friedamn SL, Arthur MJP (1989) Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. J Clin Invest 84:1780–1785

    Article  Google Scholar 

  • Friedman SL (1993) The cellular basis of hepatic fibrosis–Mechanisms and treatment strategies. New Engl J Med 328:1828–1835

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2003) Liver fibrosis—from bench to bedside. J Hepatol 38:S38–S53

    Article  PubMed  Google Scholar 

  • Friedman SL (2004) Stellate cells: a moving target in hepatic fibrogenesis. Hepatology 40:1041–1043

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2006) Transcriptional regulation of stellate cell activation. J Gastroenterol Hepatol 21:S79–S83

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2008a) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman SL (2008b) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman SL, Arthur MJP (2002) Reversing hepatic fibrosis. Sci Med 8:194–205

    CAS  Google Scholar 

  • Friedman SL, Bansal MB (2006) Reversal of hepatic fibrosis—fact or fantasy? Hepatology 43:S82–S88

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL, Roll FJ, Boyles J, Bissell DM (1985) Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci USA 82:8681–8685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman SL, Roll FJ, Boyles J, Arenson DM, Bissell DM (1989a) Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J Biol Chem 264:10756–10762

    CAS  PubMed  Google Scholar 

  • Friedman SL, Roll FJ, Bissell DM (1989b) Autocrine regulation of lipocyte matrix production: activation by extracellular matrix. In: Wisse E, Knook DL, Decker K (eds) Cells of the hepatic sinusoid, vol 2. Kupffer Cell Foundation, Rijswijk, pp 61–63

    Google Scholar 

  • Friedman SL, Rockey DC, McGuire RF, Maher JJ, Boyles JK, Yamasaki G (1992) Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology 15:234

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL, Wei S, Blaner WS (1993) Retinol release by activated rat hepatic lipocytes: regulation by Kupffer cell-conditioned medium and PDGF. Am J Physiol Gastrointest Liver Physiol 264:G947–G952

    CAS  Google Scholar 

  • Fuja TJ, Prost-Fuja MN, Titze IR (2005) Transdifferentiation of vocal-fold stellate cells and all-trans retinol-induced deactivation. Cell Tissue Res 322:417–424

    Article  CAS  PubMed  Google Scholar 

  • Fuja TJ, Probst-Fuja MN, Titze IR (2006) Changes in expression of extracellular matrix genes, fibrogenic factors, and actin cytoskeletal organization in retinol treated and untreated vocal fold stellate cells. Matrix Biol 25:59–67

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Ohsaki Y (2006) Cytoplasmic lipid droplets: rediscovery of an old structure as a unique platform. Ann NY Acad Sci 1086:104–115

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130:263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisawa G, Muto S, Okada K, Kusano E, Ishibashi S (2006) Mineralocorticoid receptor antagonist spironolactone prevents pig serum-induced hepatic fibrosis in rats. Transl Res 148:149–156

    Article  CAS  PubMed  Google Scholar 

  • Fukuda-Taira S (1981) Hepatic induction in the avian embryo: specificity of reactive endoderm and inductive mesoderm. J Embryol Exp Morphol 63:111–125

    CAS  PubMed  Google Scholar 

  • Fukushima M, Enjoji M, Kohjima M, Sugimoto R, Ohta S, Kotoh K, Kuniyoshi M, Kobayashi K, Imamura M, Inoguchi T, Nakamuta M, Nawata H (2005) Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell Dev Biol Anim 41:321–324

    Article  CAS  PubMed  Google Scholar 

  • Gäbele E, Reif S, Tsukada S, Bataller R, Yata Y, Morris T, Schrum LW, Brenner DA, Rippe RA (2005) The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem 280:13374–13382

    Article  PubMed  CAS  Google Scholar 

  • Galli A, Crabb D, Price D, Ceni E, Salzano R, Surrenti C, Casini A (2000) Peroxisome proliferator-activated receptor γ transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology 31:101–108

    Article  CAS  PubMed  Google Scholar 

  • Galli A, Crabb DW, Ceni E, Salzano R, Mello T, Svegliati-Baroni G, Ridolfi F, Trozzi L, Surrenti C, Casini A (2002) Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 122:1924–1940

    Article  CAS  PubMed  Google Scholar 

  • Gallois C, Habib A, Tao J, Moulin S, Maclouf J, Mallat A, Lotersztajn S (1998) Role of NFκB in the antiproliferative effect of endothelin-1 and tumor necrosis factor-α in human hepatic stellate cells. J Biol Chem 273:23183–23190

    Article  CAS  PubMed  Google Scholar 

  • Gao JG, Simon M (2006) Molecular screening for GS2 lipase regulators: inhibition of keratinocyte retinylester hydrolysis by TIP47. J Invest Dermatol 126:2087–2095

    Article  CAS  PubMed  Google Scholar 

  • Gard AL, White FP, Dutton GR (1985) Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J Neuroimmunol 8:359–375

    Article  CAS  PubMed  Google Scholar 

  • Gascon-Barre M, Demers C, Mirshahi A, Neron S, Zalzal S, Nanci A (2003) The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 37:1034–1042

    Article  CAS  PubMed  Google Scholar 

  • Geerts A (2004) On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal? J Hepatol 40:331–334

    Article  PubMed  Google Scholar 

  • Geerts A, Geuze HJ, Slot JW, Voss B, Schuppan D, Schellinck P, Wisse E (1986) Immunogold localization of procollagen III, fibronectin and heparan sulfate proteoglycan on ultrathin frozen sections of the normal rat liver. Histochemistry 84:355–362

    Article  CAS  PubMed  Google Scholar 

  • Geerts A, Bouwens L, Wisse E (1990a) Ultrastructure and function of hepatic fat-storing and pit cells. J Electron Microsc Tech 14:247–256

    Article  CAS  PubMed  Google Scholar 

  • Geerts A, Schuppan D, Lazeroms S, De Zanger R, Wisse E (1990b) Collagen type I and III occur together in hybrid fibrils in the space of Disse of normal rat liver. Hepatology 12:233–241

    Article  CAS  PubMed  Google Scholar 

  • Geerts A, Bleser PD, Hautekeete ML, Niki T, Wisse E (1994) Fat-storing (Ito) cell biology. In: Arias IA, Boyer JL, Fausto N, Jakoby WB, Schachter DA, Shafritz DA (eds) The liver: biology and pathobiology. Raven, New York, pp 819–838

    Google Scholar 

  • Ghany MG, Hoofnagle JH (2015) Harrison’s principles of internal medicine, 19th edn. McGraw-Hill Education, New York, pp 1989–1995

    Google Scholar 

  • Ghyselinck NB, Båvik C, Sapin V, Mark M, Bonnier D, Hindelang C, Dierich A, Nilsson CB, Håkansson H, Sauvant P, Azaïs-Braesco V, Frasson M, Picaud S, Chambon P (1999) Cellular retinol-binding protein I is essential for vitamin A homeostasis. EMBO J 18:4903–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giancotti FG (2000) Complexity and specificity of integrin signaling. Nat Cell Biol 2:E13–E14

    Article  CAS  PubMed  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  CAS  PubMed  Google Scholar 

  • Gjøen T, Bjerkelund T, Blomhoff HK, Norum KR, Berg T, Blomhoff R (1987) Liver takes up retinol-binding protein from plasma. J Biol Chem 262:10926–10930

    PubMed  Google Scholar 

  • Gnainsky Y, Spira G, Paizi M, Bruck R, Nagler A, Abu-Amara SN, Geiger B, Genina O, Monsonego-Ornan E, Pines M (2004) Halofuginone, an inhibitor of collagen synthesis by rat stellate cells, stimulates insulin-like growth factor binding protein-1 synthesis by hepatocytes. J Hepatol 40:269–277

    Article  CAS  PubMed  Google Scholar 

  • Goodman DW (1984) Plasma retinol-binding protein. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids, vol 2. Academic, New York, pp 41–88

    Chapter  Google Scholar 

  • Goodman DS, Blomstrand R, Werner B, Huang HS, Shiratori T (1966) The intestinal absorption and metabolism of vitamin A and β-carotene in man. J Clin Invest 45:1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grab B, Miles AJ, Furcht LT, Fields GB (1996) Promotion of fibroblast adhesion by triple-helical peptide models of type I collagen-derived sequences. J Biol Chem 271:12234–12240

    Article  CAS  PubMed  Google Scholar 

  • Graham TE, Yang Q, Blüher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson P-A, Smith U, Kahn BB (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. New Engl J Med 354:2552–2563

    Article  CAS  PubMed  Google Scholar 

  • Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P (1986) Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320:134–139

    Article  CAS  PubMed  Google Scholar 

  • Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346

    CAS  PubMed  Google Scholar 

  • Greenberg AS, Egan JJ, Wek SA, Moos MC Jr, Londos C, Kimmel AR (1993) Isolation of cDNAs for perilipins A and B: sequence and expression of lipid droplet-associated proteins of adipocytes. Proc Natl Acad Sci USA 90:12035–12039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150–1154

    Article  CAS  PubMed  Google Scholar 

  • Greenwel P, Rubin J, Schwartz M, Hertzberg EL, Rojkind M (1993) Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Lab Invest 69:210–216

    CAS  PubMed  Google Scholar 

  • Greenwel P, Geerts A, Ogata I, Solis-Herruzo JA, Rojkind M (1994) Liver fibrosis. In: Arias IA, Boyer JL, Fausto N, Jakoby WB, Schachter DA, Shafritz DA (eds) The liver: biology and pathobiology. Raven, New York, pp 1367–1380

    Google Scholar 

  • Gressner AM, Bachem MG (1990) Cellular sources of noncollagenous matrix proteins: role of fat-storing cells in fibrogenesis. Semin Liver Dis 10:30–46

    Article  CAS  PubMed  Google Scholar 

  • Gressner AM, Bachem MG (1995) Molecular mechanisms of liver fibrogenesis-A homage to the role of activated fat-storing cells. Digestion 56:335–346

    Article  CAS  PubMed  Google Scholar 

  • Gressner AM, Krul N, Bachem MG (1994) Regulation of proteoglycan expression in fibrotic liver and cultured fat-storing cells. Pathol Res Pract 190:864–882

    Article  CAS  PubMed  Google Scholar 

  • Grinnell F, Ho CH, Tamariz E, Lee DJ, Skuta G (2003) Dendritic fibroblasts in three-dimensional collagen matrices. Mol Biol Cell 14:384–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grizzi F, Francescini B, Gagliano N, Moscheni C, Annoni G, Vdrgani C, Hermonat PL, Chiriva-Internati M, Dioguardi N (2003) Mast cell density, hepatic stellate cell activation and TGF-β1 transcripts in the aging Sprague-Dawley rat during early acute liver injury. Toxicol Pathol 31:173–178

    CAS  PubMed  Google Scholar 

  • Guimarães ELM, Franceschi MFS, Andrade CBM, Guaragna RM, Borojevic R, Margis R, Bernard EA, Guma FCR (2007) Hepatic stellate cell line modulates lipogenic transcription factors. Liver Int 27:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Guo YT, Leng XS, Li T, Peng JR, Song SH, Xiong LF, Qin ZZ (2005) Effect of ligand of peroxisome proliferator-activated receptor γ on the biological characters of hepatic stellate cells. World J Gastroenterol 11:4735–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, Desmoulière A (2006) Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol 38:135–151

    CAS  PubMed  Google Scholar 

  • Haber PS, Keogh GW, Apte MV, Moran CS, Stewart NL, Crawford DHG, Pirola RC, McCaughan GW, Ramm GA, Wilson JS (1999) Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol 155:1087–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammel P, Couvelard A, O’Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Levy P (2001) Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. New Engl J Med 344:418–423

    Article  CAS  PubMed  Google Scholar 

  • Hamy F, Verwaerde P, Helbecque N, Formstecher P, Henichart JP (1991) Nuclear targeting of a viral-cointernalized protein by a short signal sequence from human retinoic acid receptors. Bioconjug Chem 2:375–378

    Article  CAS  PubMed  Google Scholar 

  • Harada K, Sato Y, Isse K, Ikeda H, Nakanuma Y (2008) Induction of innate immune response and absence of subsequent tolerance to dsRNA in biliary epithelial cells relate to the pathogenesis of biliary atresia. Liver Int 28:614–621

    Article  CAS  PubMed  Google Scholar 

  • Hartland SN, Murphy F, Aucott RL, Abergel A, Zhou X, Waung J, Patel N, Bradshaw C, Collins J, Mann D, Benyon RC, Iredale JP (2009) Active matrix metalloproteinase-2 promotes apoptosis of hepatic stellate cells via the cleavage of cellular N-cadherin. Liver Int 29:966–978

    Article  CAS  PubMed  Google Scholar 

  • Hata R (1996) Where am I? How a cell recognizes its positional information during morphogenesis. Cell Biol Int 20:59–65

    Article  CAS  PubMed  Google Scholar 

  • Hata R, Nagai Y (1980) Differentiation of hepatocytes into type I collagen producing cells during primary culture in the presence of aphidicolin (inhibitor of DNA polymerase alpha). Biochem Int 1:567–573

    CAS  Google Scholar 

  • Hata R, Ninomiya Y (1984) Hepatocytes (hepatic parenchymal cells) produce a major part of liver collagen in vivo. Biochem Int 8:181–186

    CAS  PubMed  Google Scholar 

  • Hata R, Senoo H (1989) L-Ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissuelike substance by skin fibroblast. J Cell Physiol 138:8–16

    Article  CAS  PubMed  Google Scholar 

  • Hata R, Senoo H (1992) Extracellular matrix system regulates cell growth, tissue formation, and cellular functions. Tiss Cult Res Commun 11:337–343

    Google Scholar 

  • Hata R, Ninomiya Y, Nagai Y, Sakakibara K, Tsukada Y (1978) Active synthesis of collagen by albumin-producing liver parenchymal cell clones in culture. Proc Jpn Acad Ser B 54(7):391–396

    Article  CAS  Google Scholar 

  • Hata R, Ninomiya Y, Nagai Y, Tsukada Y (1980) Biosynthesis of interstitial type of collagen by albumin-producing rat liver parenchymal cell (hepatocyte) clones in culture. Biochemistry 19:169–176

    Article  CAS  PubMed  Google Scholar 

  • Haughton EL, Tucker SJ, Marek CJ, Durward E, Leel V, Bascal Z, Monaghan T, Koruth M, Collie-Duguid E, Mann DA, Trim JE, Wright MC (2006) Pregnane X receptor activators inhibit human hepatic stellate cell transdifferentiation in vitro. Gastroenterology 131:194–209

    Article  CAS  PubMed  Google Scholar 

  • Hazra S, Xiong S, Wang J, Rippe RA, Krishna V, Chatterjee K, Tsukamoto H (2004) Peroxisome proliferator-activated receptor γ induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem 279:11392–11401

    Article  CAS  PubMed  Google Scholar 

  • Hebiguchi T, Mezaki Y, Morii M, Watanabe R, Yoshikawa K, Miura M, Imai K, Senoo H, Yoshino H (2015) Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol binding protein II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats. Int J Mol Med 35:724–730

    CAS  PubMed  Google Scholar 

  • Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW (1998) Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 294:309–321

    Article  CAS  PubMed  Google Scholar 

  • Hellemans K, Grinko I, Rombouts K, Schuppan D, Geerts A (1999) All-trans and 9-cis retinoic acid alter rat hepatic stellate cell phenotype differentially. Gut 45:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellemans K, Michalik L, Dittie A, Knorr A, Rombouts K, De Jong J, Heirman C, Quartier E, Schuit F, Wahli W, Geerts A (2003a) Peroxisome proliferator-activated receptor-β signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology 124:184–201

    Article  CAS  PubMed  Google Scholar 

  • Hellemans K, Rombouts K, Quartier E, Dittie AS, Knorr A, Michalik L, Rogiers V, Schuit F, Wahli W, Geerts A (2003b) PPARβ regulates vitamin A metabolism-related gene expression in hepatic stellate cells undergoing activation. J Lipid Res 44:280–295

    Article  CAS  PubMed  Google Scholar 

  • Hellemans K, Verbuyst P, Quartier E, Schuit F, Rombouts K, Chandraratna RA, Schuppan D, Geerts A (2004) Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids. Hepatology 39:97–108

    Article  CAS  PubMed  Google Scholar 

  • Hellerbrand C, Wang SC, Tsukamoto H, Brenner DA, Rippe R (1996) Expression of intercellular adhesion molecule 1 by activated hepatic stellate cells. Hepatology 24:670–676

    Article  CAS  PubMed  Google Scholar 

  • Hellerbrand C, Jobin C, Licato LL, Sartor RB, Brenner DA (1998) Cytokines induce NF-κB in activated but not in quiescent rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 275:G269–G278

    CAS  Google Scholar 

  • Hendriks HFJ, Verhoofstad WAMM, Brouwer A, de Leeuw AM, Knook DL (1985) Perisinusoidal fat-storing cells are the main vitamin A storing sites in rat liver. Exp Cell Res 160:138–149

    Article  CAS  PubMed  Google Scholar 

  • Hendriks HFJ, Brouwer A, Knook DL (1987) The role of hepatic fat-storing (stellate) cells in retinoid metabolism. Hepatology 7:1368–1371

    Article  CAS  PubMed  Google Scholar 

  • Hendriks HFJ, Blaner WS, Wennekers HM, Piantedosi R, Brouwer A, de Leeuw AM, Goodman DS, Knook DL (1988) Distribution of retinoids, retinoid-binding proteins and related parameters in different types of liver cells isolated from young and old rats. Eur J Biochem 171:237–244

    Article  CAS  PubMed  Google Scholar 

  • Hendriks HFJ, Brouwer A, Knook DL (1990) Isolation, purification, and characterization of liver cell types. Methods Enzymol 190:49–58

    Article  CAS  PubMed  Google Scholar 

  • Hepatic stellate cell nomenclature (letter) (1996) Hepatology 23:193

  • Higashi N, Senoo H (2003) Distribution of vitamin A-storing lipid droplets in hepatic stellate cells in liver lobules—a comparative study. Anat Rec Part A 271:240–248

    Article  CAS  Google Scholar 

  • Higashi N, Kojima N, Miura M, Imai K, Sato M, Senoo H (2004) Cell–cell junctions between mammalian (human and rat) hepatic stellate cells. Cell Tissue Res 317:35–43

    Article  CAS  PubMed  Google Scholar 

  • Higashi N, Sato M, Kojima N, Irie T, Kawamura K, Mabuchi A, Senoo H (2005a) Vitamin A storage in hepatic stellate cells in the regenerating rat liver with special reference to zonal heterogeneity. Anat Rec 286A:899–907

    Article  CAS  Google Scholar 

  • Higashi N, Wake K, Sato M, Kojima N, Imai K, Senoo H (2005b) Degradation of extracellular matrix by extrahepatic stellate cells in the intestine of the lamprey, Lampetra japonica. Anat Rec 285A:668–675

    Article  Google Scholar 

  • Higashiyama R, Inagaki Y, Hong YY, Kushida M, Nakao S, Niioka M, Watanabe T, Okano H, Matsuzaki Y, Shiota G, Okazaki I (2007) Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology 45:213–222

    Article  CAS  PubMed  Google Scholar 

  • Hirosawa K (1977) A note on autoradiography; an introduction of vitamin A-storing cells. Acta Histochem Cytochem 10:253–259

    Article  CAS  Google Scholar 

  • Hirosawa K, Yamada E (1973) The localization of the vitamin A in the mouse liver as revealed by electron microscope radioautography. J Electron Microsc 22:337–346

    CAS  Google Scholar 

  • Hirosawa K, Kokubo Y, Kitamura M, Shiraishi T (1988) Fine structure of intestinal fibroblasts: autoradiographic and three-dimensional studies. J Electron Microsc 37:219–228

    CAS  Google Scholar 

  • Holden C (1998) Polar bears and PCBs. Science 280:2053

    Google Scholar 

  • Hollander D, Muralidhara KS (1977) Vitamin A1 intestinal absorption in vivo: influence of luminal factors on transport. Am J Physiol 232:F471–F477

    Google Scholar 

  • Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318:635–641

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Tuyama A, Lee TF, Loke J, Agarwal R, Cheng X, Garg A, Fiel MI, Schwartz M, Walewski J, Branch A, Schecter AD, Bansal MB (2009) Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1a-mediated stellate cell activation. Hepatology 49:2055–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiuchi T (1960) Electron microscopic observation on the sinusoid of the normal rabbit liver. Kobe J Med Sci 6:185–210

    Google Scholar 

  • Hruban Z, Russell, RM, Boyer JL, Glagov S, Bagheri SA (1974) Ultrastructural changes in livers of two patients with hypervitaminosis A. Am J Pathol 76:451–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  CAS  PubMed  Google Scholar 

  • Igarashi M, Yogiashi Y, Mihara M, Takada I, Kitagawa H, Kato S (2007) Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 gene. Mol Cell Biol 27:7947–7954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda H, Fujiwara K (1995) Cyclosporin A and FK-506 in inhibition of rat Ito cell activation in vitro. Hepatology 21:1161–1166

    CAS  PubMed  Google Scholar 

  • Ikejima K, Takei Y, Honda H, Hirose M, Yoshikawa M, Zhang Y-J, Lang T, Fukuda T, Yamashina S, Kitamura T, Sato N (2002) Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology 122:1399–1410

    Article  CAS  PubMed  Google Scholar 

  • Imai K, Senoo H (1998) Morphology of sites of adhesion between hepatic stellate cells (vitamin A-storing cells) and a three-dimensional extracellular matrix. Anat Rec 250:430–437

    Article  CAS  PubMed  Google Scholar 

  • Imai K, Senoo H (2000) Morphology of sites of adhesion between extracellular matrix and hepatic stellate cells. Connect Tissue 32:395–400

    CAS  Google Scholar 

  • Imai K, Sato M, Kojima N, Miura M, Matano Y, Senoo H (1997) Three-dimensional morphological changes in cultured hepatic stellate cells by type I collagen fibers. In: Wisse E, Knook DL, Balabaud C (eds) Cells of the hepatic sinusoid, vol 6. Kupffer Cell Foundation, Leiden, pp 105–106

    Google Scholar 

  • Imai K, Sato M, Kojima N, Miura M, Sato T, Sugiyama T, Enomoto K, Senoo H (2000a) Storage of lipid droplets in and production of extracellular matrix by hepatic stellate cells (vitamin A-storing cells) in Long-Evans cinnamon-like colored (LEC) rats. Anat Rec 258:338–348

    Article  CAS  PubMed  Google Scholar 

  • Imai K, Sato T, Senoo H (2000b) Adhesion between cells and extracellular matrix with special reference to hepatic stellate cell adhesion to three-dimensional collagen fibers. Cell Struct Funct 25:329–336

    Article  CAS  PubMed  Google Scholar 

  • Imanishi Y, Batten ML, Piston DW, Baehr W, Palczewski K (2004) Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J Cell Biol 164:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki Y, Okazaki I (2007) Emerging insights into transforming growth factor β Smad signal in hepatic fibrogenesis. Gut 56:284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki Y, Higashi K, Kushida M, Hong YY, Nakao S, Higashiyama R, Moro T, Itoh J, Mikami T, Kimura T, Shiota G, Kuwabara I, Okazaki I (2008) Hepatocyte growth factor suppresses profibrogenic signal transduction via nuclear export of Smad3 with galectin-7. Gastroenterology 134:1180–1190

    Article  CAS  PubMed  Google Scholar 

  • Ip E, Farrell G, Hall P, Robertson G, Leclercq I (2004) Administration of the potent PPARα agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39:1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Iredale JP (1997) Tissue inhibitors of metalloproteinases in liver fibrosis. Int J Biochem Cell Biol 29:43–54

    Article  CAS  PubMed  Google Scholar 

  • Iredale JP (2003a) Regulating hepatic inflammation: pathogen-associated molecular patterns take their toll. Hepatology 37:979–982

    Article  PubMed  Google Scholar 

  • Iredale JP (2003b) Cirrhosis: new research provides a basis for rational and targeted treatments. Br Med J 327:143–147

    Article  Google Scholar 

  • Iredale JP (2007) Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 117:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ (1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irie T, Kajiwara S, Kojima N, Senoo H, Seki T (2004) Retinal is the essential form of retinoid for storage and transport in the adults of the ascidian Halocynthia roretzi. Comp Biochem Physiol Part B 139:597–606

    Article  CAS  Google Scholar 

  • Issa R, Williams E, Trim N, Kendall T, Arthur MJP, Reichen J, Benyon RC, Iredale JP (2001) Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 48:548–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itagaki T, Shimizu I, Cheng X, Yuan Y, Oshio A, Tamaki K, Fukuno H, Honda H, Okamura Y, Ito S (2005) Opposing effects of oestradiol and progesterone on intracellular pathways and activation processes in the oxidative stress induced activation of cultured rat hepatic stellate cells. Gut 54:1782–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T (1951) Cytological studies on stellate cells of Kupffer and fat-storing cells in the capillary wall of the human liver. Acta Anat Nippon 26:42

    Google Scholar 

  • Ito Y, Sørensen KK, Bethea NW, Svistounov D, McCuskey MK, Smedsrød B, McCuskey RS (2007) Age-related changes in the hepatic microcirculation of mice. Exp Gerontol 42:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi N, Mizuguchi S, Inagaki Y, Saika S, Kawada N, Nakajima Y, Inoue K, Suehiro S, Friedman SL, Ikeda K (2006) BMP-7 opposes TGF-β1-mediated collagen induction in mouse pulmonary myofibroblasts through Id2. Am J Physiol Lung Cell Mol Physiol 290:L120–L126

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Janoschek N, van de Leur E, Gressner AM, Weiskirchen R (2004) Induction of cell death in activated hepatic stellate cells by targeted gene expression of the thymidine kinase/ganciclovir system. Biochem Biophys Res Commun 316:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Jarman WM, Simon M, Norstrom RJ, Burns SA, Bacon CA, Simoneit BRT, Risebrough RW (1992) Global distribution of Tris(4-chlorophenyl)methanol in high trophic level birds and mammals. Environ Sci Technol 26:1770–1774

    Article  CAS  Google Scholar 

  • Jeong W, Osei-Hyiaman D, Park O, Liu J, Bátkai S, Mukhopadhyay P, Horiguchi N, Harvey-White J, Marsicano G, Lutz B, Gao B, Kunos G (2008) Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab 7:227–235

    Article  CAS  PubMed  Google Scholar 

  • Jiang HP, Serrero G (1992) Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc Natl Acad Sci USA 89:7856–7860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Parsons CJ, Tefanovic B (2006) Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway inactivation. J Hepatol 45:401–409

    Article  CAS  PubMed  Google Scholar 

  • Jones PL, Schmidhauser C, Bissell MJ (1993) Regulation of gene expression and cell function by extracellular matrix. Crit Rev Eukaryot Gene Express 3:137–154

    CAS  Google Scholar 

  • Kalinchenko VV, Bhattacharyya D, Zhou Y, Gussarova GA, Kim W, Shin B, Costa RH (2003) Foxf1+/− mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury. Hepatology 37:107–117

    Article  CAS  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai M, Raz A, Goodman DW (1968) Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest 47:2025–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaka-Gantenbein C, Margeli A, Pervanidou P, Sakka S, Mastorakos G, Chrousos GP, Papassotiriou I (2008) Retinol-binding protein 4 and lipocalin-2 in childhood and adolescent obesity: when children are not just “small adults”. Clin Chem 54:1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Kapanci Y, Ribaux C, Chaponnier C, Gabbiani G (1992) Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung. J Histochem Cytochem 40:1955–1963

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Kato K, Goodman DS (1984) Immunocytochemical studies on the localization of plasma and of cellular retinol-binding proteins and of transthyretin (prealbumin) in rat liver and kidney. J Cell Biol 98:1696–1704

    Article  CAS  PubMed  Google Scholar 

  • Kawada N, Klein H, Decker K (1992) Eicosanoid-mediated contractility of hepatic stellate cells. Biochem J 285:367–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawada N, Klein H, Decker K (1993a) Contraction and relaxation of hepatic stellate cells in culture. In: Knook DL, Wisse E (eds) Cells of the hepatic sinusoid, vol 4. Kupffer Cell Foundation, Leiden, pp 161–164

    Google Scholar 

  • Kawada N, Tran-Thi T-A, Klein H, Decker K (1993b) The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem 213:815–823

    Article  CAS  PubMed  Google Scholar 

  • Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, Yoshizato K (2001) Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem 276:25318–25323

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825

    Article  CAS  PubMed  Google Scholar 

  • Kida Y, Asahina K, Inoue K, Kawada N, Yoshizato K, Wake K, Sato T (2007) Characterization of vitamin A-storing cells in mouse fibrous kidneys using cygb/STAP as a marker of activated stellate cells. Arch Histol Cytol 70:95–106

    Article  CAS  PubMed  Google Scholar 

  • Kidd M, Modlin IM, Shapiro MD, Camp RL, Mane SM, Usinger W, Murren JR (2007) CTGF, intestinal stellate cells and carcinoid fibrogenesis. World J Gastroenterol 13:5208–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisseleva T, Brenner DA (2006) Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 21:S84–S87

    Article  CAS  PubMed  Google Scholar 

  • Kisseleva T, Brenner DA (2007) Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol 22:S73–S78

    Article  CAS  PubMed  Google Scholar 

  • Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamante O, Segovia JC, Schwabe RF, Brenner DA (2006) Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 45:429–438

    Article  CAS  PubMed  Google Scholar 

  • Klein I, Crispe IN (2006) Complete differentiation of CD8+ T cells activated locally within the transplanted liver. J Exp Med 203:437–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318

    Article  CAS  PubMed  Google Scholar 

  • Knight V, Tchongue J, Lourensz D, Tipping P, Sievert W (2012) Protease-activated receptor 2 promotes experimental liver fibrosis in mice and activates human hepatic stellate cells. Hepatology 55:879–887

    Article  CAS  PubMed  Google Scholar 

  • Knittel T, Aurisch S, Neubauer K, Eichhorst S, Ramadori G (1996) Cell-type-specific expression of neural cell adhesion molecule (N-CAM) in Ito cells of rat liver. Upregulation during in vitro activation and in hepatic tissue repair. Am J Pathol 149:449–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knittel T, Kobold D, Saile B, Grundmann A, Neubauer K, Piscaglia F, Ramadori G (1999) Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 117:1205–1221

    Article  CAS  PubMed  Google Scholar 

  • Knook DL, Blansjaar N, Sleyster EC (1977) Isolation and characterization of Kupffer and endothelial cells from the rat liver. Exp Cell Res 109:317–329

    Article  CAS  PubMed  Google Scholar 

  • Knook DL, Seffelaar AM, de Leeuw AM (1982) Fat-storing cells of the rat liver. Their isolation and purification. Preliminary notes. Exp Cell Res 139:468–471

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Takahashi Y (1971) Effect of the administration of large dose of vitamin A on the fine structure of rat liver with special reference to changes in the fat-storing cell. Arch Histol Jpn 33:421–443

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Takahashi Y, Shibasaki S (1973) Cytological studies of fat-storing cells in the liver of rats given large doses of vitamin A. Nat New Biol 243:186–188

    Article  CAS  PubMed  Google Scholar 

  • Koda H, Okuno M, Imai S, Moriwaki H, Muto Y, Kawada N, Kojima S (1996) Retinoic acid-stimulated liver stellate cells suppress the production of albumin from parenchymal cells via TGF-β. Biochem Biophys Res Commun 221:565–569

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Miura M, Matano Y, Imai K, Sato M, Senoo H, Hata R (1997) Reversible regulation of hepatic stellate cell functions by three-dimensional structure of extracellular matrix. In: Wisse E, Knook DL, Balabaud C (eds) Cells of the hepatic sinusoid, vol 6. Kupffer Cell Foundation, Leiden, pp 107–109

    Google Scholar 

  • Kojima N, Sato M, Imai K, Miura M, Senoo H (1998) Hepatic stellate cells (vitamin A-storing cells) change their cytoskeleton structure by extracellular matrix through signal transduction system. Histochem Cell Biol 110:121–128

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Sato M, Miura M, Imai K, Senoo H (1999) Alteration in distribution of focal adhesion components by signaling inhibitors in hepatic stellate cells and fibroblasts cultured on type I collagen gel. In: Wisse E, Knook DL, de Zanger R, Fraser R (eds) Cells of the hepatic sinusoid, vol 7. Kupffer Cell Foundation, Leiden, pp 24–25

    Google Scholar 

  • Kojima N, Sato M, Suzuki A, Sato T, Satoh S, Kato T, Senoo H (2001) Enhanced expression of B7-1, B7-2, and intercellular adhesion molecule 1 in sinusoidal endothelial cells by warm ischemia/reperfusion injury in rat liver. Hepatology 34:751–757

    Article  CAS  PubMed  Google Scholar 

  • Kon K, Ikejima K, Hirose M, Yoshikawa M, Enomoto N, Kitamura T, Takei Y, Sato N (2002) Pioglitazone prevents early-phase hepatic fibrogenesis caused by carbon tetrachloride. Biochem Biophys Res Commun 291:55–61

    Article  CAS  PubMed  Google Scholar 

  • Kornberg LJ, Earp HS, Tuener CE, Prockop C, Juliano RL (1991) Signal transduction by integrins: increased protein tyrosine-phosphorylation caused by clustering of β1 integrins. Proc Natl Acad Sci USA 88:8392–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115:887–903

    Article  CAS  PubMed  Google Scholar 

  • Kristensen DB, Kawada N, Imamura K, Miyamoto Y, Tateno C, Seki S, Kuroki T, Yoshizato K (2000) Proteome analysis of rat hepatic stellate cells. Hepatology 32:268–277

    Article  CAS  PubMed  Google Scholar 

  • Krust A, Green S, Argos P, Kumar V, Walter P, Bornert JM, Chambon P (1986) The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J 5:891–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Yao H-L, Reid LM (2007) Identification and characterization of vitamin A-storing cells in fetal liver: implications for functional importance of hepatic stellate cells in liver development and hematopoiesis. Stem Cells 25:2339–2349

    Article  CAS  PubMed  Google Scholar 

  • Kupffer CV (1876) Ueber Sternzellen der Leber. Briefliche Mitteilung an Prof. Waldeyer. Arch Mikr Anat 12:353–358

    Article  Google Scholar 

  • Kupffer CV (1898) Ueber Sternzellen der Leber. Verh anat Ges 12: Versammulung in Kiel, pp 80–86

  • Kupffer CV (1899) Ueber die sogenannten Sternzellen der Sugethierleber. Arch Mikr Anat 54:254–288

    Article  Google Scholar 

  • Kurata S, Senoo H, Hata R-I (1993) Transcriptional activation of type I collagen genes by ascorbic acid 2-phosphate in human skin fibroblasts and its failure in cells from a patient with α2(I)-chain-defective Ehlers–Danlos syndrome. Exp Cell Res 206:63–71

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto Y, Fujita T (1977) Vitamin A uptake cells distributed in the liver and other organs of the rat. Arch Histol Jpn 40:121–136

    Article  CAS  PubMed  Google Scholar 

  • Lang A, Schrum LW, Schoonhoven R, Tuvia S, Solís-Herruzo JA, Tsukamoto H, Brenner DA, Rippe RA (2000) Expression of small heat shock protein B-crystallin is induced after hepatic stellate cell activation. Am J Physiol Gastrointest Liver Physiol 279:G1333–G1342

    CAS  PubMed  Google Scholar 

  • Lawrence CW, Crain FD, Lotspeich FJ, Krause RF (1966) Absorption, transport, and storage of retinyl-15-14C palmitate-9,10-3H in the rat. J Lipid Res 7:226–229

    CAS  PubMed  Google Scholar 

  • Le Couteur DG, Warren A, Cogger VC, Smedsrød B, Sørensen KK, De Cabo R, Fraser R, McCuskey RS (2008) Old age and the hepatic sinusoid. Anat Rec 291:672–683

    Article  Google Scholar 

  • Leclercq IA, Sempoux C, Starkel P, Horsmans Y (2006) Limited therapeutic efficacy of pioglitazone on progression of hepatic fibrosis in rats. Gut 55:1020–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leo MA, Lieber CS (1983) Hepatic fibrosis after long-term administration of ethanol and moderate vitamin A supplementation in the rat. Hepatology 3:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lepreux S, Bioulac-Sage P, Gabbiani G, Sapin V, Housset C, Rosenbaum J, Balabaud C, Desmoulière A (2004) Cellular retinol-binding protein-1 expression in normal and fibrotic/cirrhotic human liver: different patterns of expression in hepatic stellate cells and (myo)fibroblast subpopulations. J Hepatol 40:774–780

    Article  CAS  PubMed  Google Scholar 

  • Levine D, Rockey DC, Milner TA, Breuss JM, Fallon JT, Schnapp LM (2000) Expression of the integrin α8β1. Am J Pathol 156:1927–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin MS (1993) Cellular retinol-binding proteins are determinants of retinol uptake and metabolism in stably transfected Caco-2 cells. J Biol Chem 268: 8267–8276

    CAS  PubMed  Google Scholar 

  • Li D, Friedman SL (2001) Hepatic stellate cells: Morphology, function, and regulation. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 455–468

    Google Scholar 

  • Li YL, Sato M, Kojima N, Miura M, Senoo H (1999) Regulatory role of extracellular matrix components in expression of matrix metalloproteases in cultured hepatic stellate cells. Cell Struct Funct 24:255–261

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Chen A (2008) Activation of peroxisome proliferator-activated receptor-γ by curcumin blocks the signaling pathways for PDGF and EGF in hepatic stellate cells. Lab Invest 88:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay CK, Thorgeirsson UP (1995) Localization of messenger RNA for tissue inhibitor of metalloproteinases-1 and type IV collagenases/gelatinases in monkey hepatocellular carcinomas. Clin Exp Metastasis 13:381–388

    Article  CAS  PubMed  Google Scholar 

  • Loreal O, Levavasseur F, Fromaget C, Gros D, Guillouzo A, Clement B (1993) Cooperation of Ito cells and hepatocytes in deposition of an extracellular matrix in vitro. Am J Pathol 143:538–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, Kimmel AR (2001) The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 12:741–749

    Article  CAS  PubMed  Google Scholar 

  • Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM (1988) Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240:327–330

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Svegliati-Baroni G, Poniachik J, Baraona E, Lieber CS (1997) Collagen synthesis by liver stellate cells is released from its normal feedback regulation by acetaldehyde-induced modification of the carboxyl-terminal propeptide of procollagen. Alcohol Clin Exp Res 21:1204–1211

    Article  CAS  PubMed  Google Scholar 

  • Mabuchi A, Mullaney I, Sheard PA, Hessian PA, Mallard BL, Tawadrous MN, Zimmermann A, Senoo H, Wheatley AM (2004) Role of hepatic stellate cells in the early phase of liver regeneration in rat: formation of tight adhesions to parenchymal cells. J Hepatol 40:910–916

    Article  CAS  PubMed  Google Scholar 

  • MacDonald PN, Ong DE (1988) A lecithin:retinol acyltransferase activity in human and rat liver. Biochem Biophys Res Commun 156:157–163

    Article  CAS  PubMed  Google Scholar 

  • Mackay IR (2002) Hepatoimmunology: a perspective. Immunol Cell Biol 80:36–44

    Article  PubMed  Google Scholar 

  • Maeda N, Kawada N, Seki S, Arakawa T, Ikeda K, Iwao H, Okuyama H, Hirabayashi J, Kasai K, Yoshizato K (2003) Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J Biol Chem 278:18938–18944

    Article  CAS  PubMed  Google Scholar 

  • Magness ST, Bataller R, Yang L, Brenner DA (2004) A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology 40:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Majno G (1979) The story of the myofibroblasts. Am J Surg Pathol 6:535–542

    Article  Google Scholar 

  • Maksvytis HJ, Vaccaro C, Brody JS (1981) Isolation and characterization of the lipid-containing interstitial cell from the developing rat lung. Lab Invest 45:248–259

    CAS  PubMed  Google Scholar 

  • Maksvytis HJ, Niles RM, Simanovsky L, Minassian IA, Richardson LL, Hamosh M, Hamosh P, Brody JS (1984) In vitro characteristics of the lipid-filled interstitial cell associated with postnatal lung growth: evidence for fibroblast heterogeneity. J Cell Physiol 118:113–123

    Article  CAS  PubMed  Google Scholar 

  • Malaba L, Smeland S, Senoo H, Norum KR, Berg T, Blomhoff R, Kindberg GM (1995) Retinol-binding protein and asialo-orosomucoid are taken up by different pathways in liver cells. J Biol Chem 270:15686–15692

    Article  CAS  PubMed  Google Scholar 

  • Malhi H, Gores GJ (2008) Cellular and molecular mechanisms of liver injury. Gastroenterology 134:1641–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallat A, Preaux A-M, Blazejewski S, Rosenbaum J, Dhumeaux D, Mavier P (1995) Interferon alfa and gamma inhibit proliferation and collagen synthesis of human Ito cells in culture. Hepatology 21:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Mallat A, Gallois C, Tao J, Habib A, Maclouf J, Mavier P, Préaux A-M, Lotersztajn S (1998) Platelet-derived growth factor-BB and thrombin generate positive and negative signals for human hepatic stellate cell proliferation. J Biol Chem 273:27300–27305

    Article  CAS  PubMed  Google Scholar 

  • Mann DA, Smart DE (2002) Transcriptional regulation of hepatic stellate cell activation. Gut 50:891–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA (2007) Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ 14:275–285

    Article  CAS  PubMed  Google Scholar 

  • Marek CJ, Tucker SJ, Konstantinou DK, Elrick LJ, Haefner D, Sigalas C, Murray GI, Goodwin B, Wright MC (2005) Pregnenolone-16α-carbonitrile inhibits rodent liver fibrogenesis via PXR (pregnane X receptor)-dependent and PXR-independent mechanisms. Biochem J 387:601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margis R, Borojevic R (1989) Retinoid-mediated induction of the fat-storing phenotype in a liver connective tissue cell line (GRX). Biochim Biophys Acta Mol Cell Res 1011:1–5

    Article  CAS  Google Scholar 

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  CAS  PubMed  Google Scholar 

  • Marra F (2006) Thiazolidinediones and hepatic fibrosis: don’t wait too long. Gut 55:917–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marra F, Pinzani M, DeFranco R, Laffi G, Gentilini P (1995) Involvement of phosphatidylinositol 3-kinase in the activation of extracellular signal-regulated kinase by PDGF in hepatic stellate cells. FEBS Lett 376:141–145

    Article  CAS  PubMed  Google Scholar 

  • Marra F, Efsen E, Romanelli RG, Caligiuri A, Pastacaldi S, Batignani G, Bonacchi A, Caporale R, Laffi G, Pinzani M, Gentilini P (2000) Ligands of peroxisome proliferator-activated receptor γ modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology 119:466–478

    Article  CAS  PubMed  Google Scholar 

  • Marshall AHE (1956) An Outline of the Cytology and Pathology of the Reticular Tissue. Thomas, Springfield, Illinois

    Google Scholar 

  • Martin G, Sewell B, Yeomans ND, Smallwood RA (1992) Ageing has no effect on the volume density of hepatocytes, reticulo-endothelial cells or the extracellular space in livers of female Sprague-Dawley rats. Clin Exp Pharmacol Physiol 19:537–539

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Hernandez A (1984) The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver. Lab Invest 51:57–73

    CAS  PubMed  Google Scholar 

  • Martinez-Hernandez A, Amenta PS (1993a) The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch A Pathol Anat 423:1–11

    Article  CAS  Google Scholar 

  • Martinez-Hernandez A, Amenta PS (1993b) The hepatic extracellular matrix. II. Ontogenesis, regeneration and cirrhosis. Virchows Arch A Pathol Anat 423:77–84

    Article  CAS  Google Scholar 

  • Martinez-Hernandez A, Amenta PS (1995) The extracellular matrix in hepatic regeneration. FASEB J 9:1401–1410

    CAS  PubMed  Google Scholar 

  • Martucci EB, Ziulkoski AL, Fortuna VA, Guaragna AM, Guma FCR, Trugo LC, Borojevic R (2004) β-Carotene storage, conversion to retinoic acid, and induction of the lipocyte phenotype in hepatic stellate cells. J Cell Biochem 92:414–423

    Article  CAS  PubMed  Google Scholar 

  • Masamune A, Kikuta K, Satoh M, Sakai Y, Satoh A, Shimosegawa T (2002) Ligands of peroxisome proliferator-activated receptor-γ block activation of pancreatic stellate cells. J Biol Chem 277:141–147

    Article  CAS  PubMed  Google Scholar 

  • Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T (2008) Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 295:G709–G717

    Article  CAS  PubMed  Google Scholar 

  • Matano Y, Miura M, Kojima N, Sato M, Imai K, Senoo H (1999) Hepatic stellate cells and extrahepatic stellate cells (extrahepatic vitamin A-storing cells). In: Wisse E, Knook DL, de Zanger R, Fraser R (eds) Cells of the hepatic sinusoid, vol 7. Kupffer Cell Foundation, Leiden, pp 26–27

    Google Scholar 

  • Matsumoto E, Hirosawa K (1983) Some observations on the structure of Suncus liver with special reference to the vitamin A-storing cells. Am J Anat 167:193–204

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Itami S, Kuroda M, Yoshizato K, Kawada N, Murakami Y (2016) MiR-29a assists in preventing the activation of human stellate cells and promotes recovery from liver fibrosis in mice. Mol Ther. doi:10.1038/mt.127

    PubMed  Google Scholar 

  • Matsuura T, Nagamori S, Fujise K, Hasumura S, Homma S, Sujino H, Shimizu K, Niiya M, Kameda H, Hirosawa K (1989) Retinol transport in cultured fat-storing cells of rat liver. Quantitative analysis by anchored cell analysis and sorting system. Lab Invest 61:107–115

    CAS  PubMed  Google Scholar 

  • Matsuura T, Nagamori S, Hasumura S, Sujino H, Shimizu K, Niiya M, Hirosawa K (1993) Retinol transport in cultured stellate cells of rat liver: studies by light and electron microscope autoradiography. Exp Cell Res 206:111–118

    Article  CAS  PubMed  Google Scholar 

  • Matsuura T, Hasumura S, Nagamori S (1999) Retinol esterification activity contributes to retinol transport in stellate cells. Cell Struct Funct 24:111–116

    Article  CAS  PubMed  Google Scholar 

  • McCarroll JA, Phillips PA, Kjumar RK, Park S, Pirola RC, Wilson JS, Apte MV (2004) Pancreatic stellate cell migration: role of the phosphatidylinositol 3-kinase (PI3-kinase) pathway. Biochem Pharmacol 67:1215–1225

    Article  CAS  PubMed  Google Scholar 

  • McClain CJ, Van Thiel DH, Parker S, Badzin LK, Gilbert H (2008) Alterations in zinc, vitamin A, and retinol-binding protein in chronic alcoholics: a possible mechanism for night blindness and hypogonadism. Alcohol Clin Exp Res 3:135–141

    Article  Google Scholar 

  • McCuskey RS (2008) The hepatic microvascular system in health and its response to toxicants. Anat Rec 291:661–671

    Article  Google Scholar 

  • McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW (1987) Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235:1214–1217

    Article  CAS  PubMed  Google Scholar 

  • Melton AC, Datta A, Yee HF Jr (2006) [Ca2+]i-independent contractile force generation by rat hepatic stellate cells in response to endothelin-1. Am J Physiol Gastrointest Liver Physiol 290:G7–G13

    Article  CAS  PubMed  Google Scholar 

  • Menke A, Yamaguchi H, Gress TN, Adler G (1997) Extracellular matrix is reduced by inhibition of transforming growth factor beta1 in pancreatitis in the rat. Gastroenterology 113:295–303

    Article  CAS  PubMed  Google Scholar 

  • Mercier I, Lechaire JP, Desmoulière A, Gaill F, Aumailley M (1996) Interactions of human skin fibroblasts with monomeric or fibrillar collagens induce different organization of cytoskeleton. Exp Cell Res 225:245–256

    Article  CAS  PubMed  Google Scholar 

  • Messing A (1999) Nestin in the liver-Lessons from the brain. Hepatology 29:602–603

    Article  CAS  PubMed  Google Scholar 

  • Mezaki Y, Yoshikawa K, Yamaguchi N, Miura M, Imai K, Kato S, Senoo H (2007) Rat hepatic stellate cells acquire retinoid responsiveness after activation in vitro by post-transcriptional regulation of retinoic acid receptor alpha gene expression. Arch Biochem Biophys 465:370–379

    Article  CAS  PubMed  Google Scholar 

  • Mezaki Y, Yamaguchi N, Yoshikawa K, Miura M, Imai K, Itoh H, Senoo H (2009) Insoluble speckled cytosolic distribution of retinoic acid receptor alpha protein as a marker of hepatic stellate cell activation in vitro. J Histochem Cytochem 57:687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezaki M, Morii M, Yoshikawa K, Yamaguchi N, Miura M, Imai K, Yoshino H, Senoo H (2012a) Characterization of a cellular retinol binding protein from lamprey, Lethenteron japonicum. CBP Part B: Biochem Mol Biol 161:233–239

    CAS  Google Scholar 

  • Mezaki Y, Morii M, Yoshikawa K, Yamaguchi N, Satoyoshi K, Miura M, Imai K, Hebuguchi T, Habuchi T, Senoo H (2012b) Elevated expression of transforming growth factor β3 in carbon tetrachloride-treated rat liver and involvement of retinoid signaling. Int J Mol Med 29:18–24

    CAS  PubMed  Google Scholar 

  • Mezaki Y, Morii M, Hebiguchi T, Yoshikawa K, Yamaguchi N, Miura M, Imai K, Yoshino H, Senoo H (2013a) Differential increases in the expression of intermediate filament proteins and concomitant morphological changes of transdifferentiating rat hepatic stellate cells observed in vitro. Acta Histochem Cytochem 46:137–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mezaki Y, Morii M, Hebiguchi T, Yoshikawa K, Yamaguchi N, Yoshino H, Senoo H (2013b) The role of retinoic acid receptors in activated hepatic stellate cells. Med Hypothesis 81:222–224

    Article  CAS  Google Scholar 

  • Michalopoulos GK, Bowen WC, Zajac VF, Beer-Stolz D, Watkins S, Kostrubsky V, Strom SC (1999) Morphogenetic events in mixed cultures of rat hepatocytes and nonparenchymal cells maintained in biological matrices in the presence of hepatocyte growth factor and epidermal growth factor. Hepatology 29:90–100

    Article  CAS  PubMed  Google Scholar 

  • Migita K, Maeda Y, Abiru S, Komori A, Yokoyama T, Takii Y, Nakamura M, Yatsuhashi H, Eguchi K, Ishibashi H (2005) Peroxynitrite-mediated matrix metalloproteinase-2 activation in human hepatic stellate cells. FEBS Lett 579:3119–3125

    Article  CAS  PubMed  Google Scholar 

  • Mitaka T, Mikami M, Sattler GL, Pitot HC, Mochizuki Y (1992) Small cell colonies appear in the primary culture of adult rat hepatocytes in the presence of nicotinamide and epidermal growth factor. Hepatology 16:440–447

    Article  CAS  PubMed  Google Scholar 

  • Mitaka T, Sato F, Mizuguchi T, Yokono T, Mochizuki Y (1999) Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal cells. Hepatology 29:111–125

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Sato M, Toyoshima I, Senoo H (1997) Extension of long cellular processes of hepatic stellate cells cultured on extracellular type I collagen gel by microtubule assembly: observation utilizing time-lapse video-microscopy. Cell Struct Funct 22:487–492

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Sato M, Toyoshima I, Senoo H (1999) Elongation of long, multipolar processes in hepatic stellate cell culture on type I collagen gel by microtubule assembly: observation utilizing time-lapse video-microscopy. In: Wisse E, Knook DL, de Zanger R, Fraser R (eds) Cells of the hepatic sinusoid, vol 7. Kupffer Cell Foundation, Leiden, pp 17–20

    Google Scholar 

  • Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR (2002) Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277:32253–32257

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Mezaki Y, Morii M, Hebiguchi T, Yoshino H, Kawatsu K, Imai K, Senoo H (2012/2013) Histology of the hepatopancreas of puffer fish (Takifugu rubripes) in relation to the localization of tetrodotoxin. Arch Histol Cytol 74:59–70

    Article  Google Scholar 

  • Miyahara T, Schrum L, Rippe R, Xiong S, Yee HF Jr, Motomura K, Anania FA, Willson TM, Tsukamoto H (2000) Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem 275:35715–35722

    Article  CAS  PubMed  Google Scholar 

  • Miyata E, Masuya M, Yoshida S, Nakamura S, Kato K, Sugimoto Y, Shibasaki T, Yamamura K, Ohishi K, Nishii K, Ishikawa F, Shiku H, Katayama N (2008) Hematopoietic origin of hepatic stellate cells in the adult liver. Blood 111:2427–2435

    Article  CAS  PubMed  Google Scholar 

  • Montfort I, Pérez-Tamayo R, Alvizouri AM, Tello E (1990) Collagenase of hepatocytes and sinusoidal liver cells in the reversibility of experimental cirrhosis of the liver. Virchows Arch B Cell Pathol 59:281–289

    Article  CAS  Google Scholar 

  • Moore KL, Persaud TVN, Torchia MG (2008) The developing human: clinically oriented embryology, 8th edn. Saunders, Philadelphia

    Google Scholar 

  • Morii M, Mezaki Y, Yamaguchi N, Yoshikawa K, Miura M, Imai K, Yoshino H, Hebiguchi T, Hebiguchi T, Senoo H (2010) Onset of apoptosis in cystic duct during metamorphosis of a Japanese lamprey, Lethenteron reissneri. Anat Rec 293:1155–1166

    Article  Google Scholar 

  • Morii M, Mezaki Y, Yoshikawa K, Miura M, Imai K, Hebuguchi T, Watanabe R, Asanuma Y, Yoshino H, Senoo H (2011) Cholestasis. In: Tripodi V (ed) How do lampreys avoid cholestasis after bile duct degeneration. INTECH, Rijeka, pp 81–98. ISBN 979-953-307-187-8

    Google Scholar 

  • Moriwaki H, Blaner WS, Piantedosi R, Goodman DS (1988) Effects of dietary retinoid and triglyceride on the lipid composition of rat liver stellate cells and stellate cell lipid droplets. J Lipid Res 29:1523–1534

    CAS  PubMed  Google Scholar 

  • Mousavi SA, Sato M, Sporstøl M, Smedsrød B, Berg T, Kojima N, Senoo H (2005) Uptake of collagen into hepatic stellate cells: evidence of the involvement of urokinase plasminogen activator associated protein/Endo 180. Biochem J 387:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muir DCG, Wagemann R, Harrave BT, Thomas DJ, Peakall DB, Norstrom RJ (1992) Arctic marine ecosystem contamination. Sci Total Environ 122:75–134

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Abe T, Miyazawa M, Yamaguchi M, Masuda T, Matsuura T, Nagamori S, Takeuchi K, Abe K, Kyogoku M (1995) Establishment of a new human cell line, LI90, exhibiting characteristics of hepatic Ito (fat-storing) cells. Lab Invest 72:731–739

    CAS  PubMed  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115

    Article  CAS  PubMed  Google Scholar 

  • Musso O, Rehn M, Saarela J, Théret N, Liétard J, Hintikka E, Lotrian D, Campion J-P, Pihlajaniemi T, Clément B (1998) Collagen XVIII is localized in sinusoids and basement membrane zones and expressed by hepatocytes and activated stellate cells in fibrotic human liver. Hepatology 28:98–107

    Article  CAS  PubMed  Google Scholar 

  • Muto M (1975) A scanning electron microscopic study on endothelial cells and Kupffer cells in rat liver sinusoids. Arch Histol Jpn 37:269–386

    Article  Google Scholar 

  • Muto Y, Shidoji Y, Kanda Y (1982) Isolation and characterization of serum retinol-binding protein. In: Parker L (ed) Methods in enzymology, vol 81. Elsevier, Amsterdam pp 840–852

  • Nagatsuma K, Hayashi Y, Hano H, Sagara H, Murakami K, Saito M, Masaki T, Lu T, Tanaka M, Enzan H, Aizawa Y, Tajiri H, Matsuura T (2009) Lecithin:retinol acyltransferase protein is distributed in both hepatic stellate cells and endothelial cells of normal rodent and human liver. Liver Int 29:47–54

    Article  CAS  PubMed  Google Scholar 

  • Nagy NE, Holven KB, Roos N, Senoo H, Kojima N, Norum KR, Blomhoff R (1997) Storage of vitamin A in extrahepatic stellate cells in normal rats. J Lipid Res 38:645–658

    CAS  PubMed  Google Scholar 

  • Nakagawa M, Nakabayashi H, Nakano H (1991) A simple method for the isolation of human Ito cells (fat-storing cells). Acta Hepatol Jpn 45:169–174

    Article  Google Scholar 

  • Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim D-H, Nakajima Y, Seki S, Kawada N, Yoshizato K (2004) Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Invest 84:91–101

    Article  CAS  PubMed  Google Scholar 

  • Napoli JL (1993) Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis. J Nutr 123:362–366

    CAS  PubMed  Google Scholar 

  • Napoli JL (1999) Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim Biophys Acta 1440:139–162

    Article  CAS  PubMed  Google Scholar 

  • Neesse A, Wagner M, Ellenrieder V, Bachem M, Gress TM, Buchholz M (2007) Pancreatic stellate cells potentiate proinvasive effects of SERPINE2 expression in pancreatic cancer xenograft tumors. Pancreatology 7:380–385

    Article  CAS  PubMed  Google Scholar 

  • Neubauer K, Knittel T, Aurisch S, Fellmer P, Ramadori G (1996) Glial fibrillary acidic protein—a cell type specific marker for Ito cells in vivo and in vitro. J Hepatol 24:719–730

    Article  CAS  PubMed  Google Scholar 

  • Newcomer ME, Ong DE (1990) Purification and crystallization of a retinoic acid-binding protein from rat epididymis. J Biol Chem 265:12876–12879

    CAS  PubMed  Google Scholar 

  • Nieto N, Greenwel P, Friedman SL, Zhang F, Dannenberg AJ, Cederbaum AI (2000) Ethanol and arachidonic acid increase α2(I) collagen expression in rat hepatic stellate cells overexpressing cytochrome P450 2E1. Role of H2O2 and cyclooxygenase-2. J Biol Chem 275:20136–20145

    Article  CAS  PubMed  Google Scholar 

  • Niki T, De Bleser PJ, Xu G, Van den Berg K, Wisse E, Geerts A (1996) Comparison of glial fibrillary acidic protein and desmin staining in normal and CCl4-induced fibrotic rat livers. Hepatology 23:1538–1545

    Article  CAS  PubMed  Google Scholar 

  • Niki T, Penky M, Hellemans K, De Bleser P, Van den Berg K, Vaeyens F, Quartier E, Schuit F, Geerts A (1999) Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology 29:520–527

    Article  CAS  PubMed  Google Scholar 

  • Nilsson M, Berg T (1977) Uptake and degradation of formaldehyde-treated 125I-labelled human serum albumin in rat liver cells in vivo and in vitro. Biochim Biophys Acta 497:171–182

    Article  CAS  PubMed  Google Scholar 

  • Nilsson A, Trøen G, Petersen LB, Reppe S, Norum KR, Blomhoff R (1997) Retinyl ester storage is altered in liver stellate cells and in HL60 cells transfected with cellular retinol-binding protein type I. Int J Biochem Cell Biol 29:381–389

    Article  CAS  PubMed  Google Scholar 

  • Nilsson CB, Hoegberg P, Trossvik C, Azaïs-Bræsco V, Blaner WS, Fex G, Harrison EH, Nau H, Schmidt CK, van Bennekum AM, Håkansson H (2000) 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases serum and kidney retinoic acid levels and kidney retinol esterification in the rat. Toxicol Appl Pharmacol 169:121–131

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Nakano T (2000) Immunocytochemical localization of bovine serum albumin (BSA) in the liver and testis of rats injected with testosterone-BSA, hydrocortisone-BSA or corticosterone-BSA. Cell Struct Funct 25:161–169

    Article  CAS  PubMed  Google Scholar 

  • Norum KR (1984) The name of the perisinusoidal stellate cells, fat storing cells, Ito cells, pericyte, vitamin A storing cells of the liver. Kupffer Cell Bull 5:13

    Google Scholar 

  • Noy N (2000) Retinoid-binding proteins: mediators of retinoid action. Biochem J 348:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Byrne SM, Wongsiriroj N, Libien J, Vogel S, Goldberg IJ, Baehr W, Palczewski K, Blaner WS (2005) Retinoid absorption and storage is impaired in mice lacking lecithin:retinol acyltransferase (LRAT). J Biol Chem 280:35647–35657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oakley F, Trim N, Constandinou CM, Ye W, Gray AM, Frantz G, Hillan K, Kendall T, Benyon AC, Mann DA, Iredale JP (2003) Hepatocytes express nerve growth factor during liver injury. Evidence for paracrine regulation of hepatic stellate cell apoptosis. Am J Pathol 163:1849–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley F, Meso M, Iredale JP, Green K, Marek CJ, Zhou X, May MJ, Millward-Sadler H, Wright MC, Mann DA (2005) Inhibition of inhibitor of kB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 128:108–120

    Article  CAS  PubMed  Google Scholar 

  • Oben JA, Yang S, Lin H, Ono M, Mae Diehl A (2003) Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells. Biochem Biophys Res Commun 302:685–690

    Article  CAS  PubMed  Google Scholar 

  • Ohata M, Lin M, Satre M, Tsukamoto H (1997) Diminished retinoic acid signaling in hepatic stellate cells in cholestatic liver fibrosis. Am J Physiol 272:G589–G596

    CAS  PubMed  Google Scholar 

  • Oide H, Thurman RG (1994) Hepatic Ito cells contain calcium channels: increases with transforming growth factor-β1. Hepatology 20:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Oikawa H, Masuda T, Kawaguchi J, Sato R (2002) Three-dimensional examination of hepatic stellate cells in rat liver and response to endothelin-1 using confocal laser scanning microscopy. J Gastroenterol Hepatol 17:861–872

    Article  PubMed  Google Scholar 

  • Okabe T, Yorifuji H, Yamada E, Takaku F (1984) Isolation and characterization of vitamin A-storing lung cells. Exp Cell Res 154:125–135

    Article  CAS  PubMed  Google Scholar 

  • Okuno M, Muto Y, Moriwaki H, Kato M, Noma A, Yagaya O, Nozaki Y, Suzuki Y (1990) Inhibitory effect of acyclic (polyprenoic acid) on hepatic fibrosis in CCl4-treated rats. Gastroenterol Jpn 25:223–229

    CAS  PubMed  Google Scholar 

  • Okuno M, Moriwaki H, Imai S, Muto Y, Kawada N, Suzuki Y, Kojima S (1997) Retinoids exacerbate rat liver fibrosis by inducing the activation of latent TGF-β in liver stellate cells. Hepatology 26:913–921

    CAS  PubMed  Google Scholar 

  • Okuno M, Sato T, Kitamoto T, Imai S, Kawada N, Suzuki Y, Yoshimura H, Moriwaki H, Onuki K, Masushige S, Muto Y, Friedman SL, Kato S, Kojima S (1999) Increased 9,13-di-cis-retinoic acid in rat hepatic fibrosis: implication for a potential link between retinoid loss and TGF-β mediated fibrogenesis in vivo. J Hepatol 30:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Okuno M, Kojima S, Akita K, Matsushima-Nishiwaki R, Adachi S, Sano T, Takano Y, Takai K, Obora A, Yasuda I, Shiratori Y, Okano Y, Shimada J, Suzuki Y, Muto Y, Moriwaki H (2002) Retinoids in liver fibrosis and cancer. Front Biosci 7:d204–d218

    Article  CAS  PubMed  Google Scholar 

  • Olaso E, Ikeda K, Eng FJ, Xu L, Wang L-H, Lin HC, Friedman SL (2001) DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 108:1369–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong DE (1994) Absorption of vitamin A. In: Blomhoff R (ed) Vitamin A in health and disease. Marcel Dekker, New York, pp 37–72

    Google Scholar 

  • Ong DE, MacDonald PN, Gubitosi AM (1988) Esterification of retinol in rat liver. Possible participation by cellular retinol-binding protein and cellular retinol-binding protein II. J Biol Chem 263:5789–5796

    CAS  PubMed  Google Scholar 

  • Ong DE, Newcomer M, Lareyre J-J, Orgebin-Crist M-C (2000) Epididymal retinoic acid-binding protein. Biochim Biophys Acta Prot Struct Mol Enzymol 1482:209–217

    Article  CAS  Google Scholar 

  • Orland MD, Anwar K, Cromley D, Chu CH, Chen L, Billheimer JT, Hussain MM, Cheng D (2005) Acyl coenzyme A dependent retinol esterification by acyl coenzyme A:diacylglycerol acyltransferase 1. Biochim Biophys Acta 1737:76–82

    Article  CAS  PubMed  Google Scholar 

  • Paik Y-H, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA (2003) Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Paik J, Vogel S, Quadro L, Piantedosi R, Gottesman M, Lai K, Hamberger L, de Morais Vieira M, Blaner WS (2004) Vitamin A: overlapping delivery pathways to tissues from the circulation. J Nutr 134:276S–280S

    CAS  PubMed  Google Scholar 

  • Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P (2002) Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest 82:767–774

    Article  CAS  PubMed  Google Scholar 

  • Parsons CJ, Bradford BU, Pan CQ, Cheung E, Schauer M, Knorr A, Krebs B, Kraft S, Zahn S, Brocks B, Feirt N, Mei B, Cho M-S, Ramamoorthi R, Roldan G, Ng P, Lum P, Hirth-Dietrich C, Tomkinson A, Brenner DA (2004) Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 40:1106–1115

    Article  CAS  PubMed  Google Scholar 

  • Parsons CJ, Takashima M, Rippe RA (2007) Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol 22:S79–S84

    Article  CAS  PubMed  Google Scholar 

  • Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, FitzPatrick DR, Nürnberg G, Brasch F, Schirmer-Zimmermann H, Tolmie JL, Chitayat D, Houge G, Fernández-Martínez L, Keating S, Mortier G, Hennekam RCM, von der Wense A, Slavotinek A, Meinecke P, Bitoun P, Becker C, Nürnberg P, Reis A, Rauch A (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Human Genet 80:550–560

    Article  CAS  Google Scholar 

  • Pérez-Pomares JM, Carmona R, González-Iriarte M, Macías D, Guadix JA, Muñoz-Chápuli R (2004) Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Dev Dyn 229:465–474

    Article  PubMed  Google Scholar 

  • Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450

    Article  CAS  PubMed  Google Scholar 

  • Petta S, Cammà C, Di Marco V, Alessi N, Barbaria F, Cabibi D, Caldarella R, Ciminnisi S, Licata A, Massenti MF, Mazzola A, Tarantino G, Marchesini G, Craxì A (2008) Retinol-binding protein 4: a new marker of virus-induced steatosis in patients infected with hepatitis C virus genotype. Hepatology 48:28–37

    Article  CAS  PubMed  Google Scholar 

  • Pfuhl W (1932) Moellendorff's Handbuch der mikroskopishen Anatomie des Menscen. V/2 BD. Verdauungsapprat. Die Leber

  • Phillips PA, McCarroll JA, Park S, Wu M-J, Pirola R, Korsten M, Wilson JS, Apte MV (2003a) Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 52:275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips PA, Wu MJ, Kjumar RK, Doherty E, McCarroll JM, Park S, Pirola RC, Wilson JS, Apte MV (2003b) Cell migration: a novel aspect of pancreatic stellate cell biology. Gut 52:677–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard D, Yamamoto KR (1987) Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6:3333–3340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinzani M (1999) New kids on the block: pancreatic stellate cells enter the fibrogenesis world. Gut 44:451–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinzani M (2004) Therapies for hepatic fibrosis: real hope or just academic exercise? Dig Liver Dis 36:714–716

    Article  CAS  PubMed  Google Scholar 

  • Pinzani M (2006) Pancreatic stellate cells: new kids become mature. Gut 55:12–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinzani M, Marra F (2001) Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 21:397–416

    Article  CAS  PubMed  Google Scholar 

  • Pinzani M, Gesualdo L, Sabbah GM, Abboud HE (1989) Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest 84:1786–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinzani M, Gentilini P, Abboud HE (1992) Phenotypical modulation of liver fat-storing cells by retinoids. Influence on unstimulated and growth factor-induced cell proliferation. J Hepatol 14:211–220

    Article  CAS  PubMed  Google Scholar 

  • Pinzani M, Marra F, Carloni V (1998) Signal transduction in hepatic stellate cells. Liver 18:2–13

    Article  CAS  PubMed  Google Scholar 

  • Pinzani M, Rombouts K, Colagrande S (2005) Fibrosis in chronic liver diseases: diagnosis and management. J Hepatol 42:S22–S36

    Article  PubMed  Google Scholar 

  • Polonsky KS (2006) Retinol-binding protein 4, insulin resistance, and type 2 diabetes. New Engl J Med 354:2596–2598

    Article  CAS  PubMed  Google Scholar 

  • Ponfick E (1869) Studien ueber die Schiksale koerniger Farbstoffe im Organismus. Virchow Arch Path Anat 48:1–55

    Article  Google Scholar 

  • Popper H (1941) Histologic distribution of vitamin A in human organs under normal and under pathologic conditions. Arch Pathol 31:766–802

    CAS  Google Scholar 

  • Popper H (1944) Distribution of vitamin A in tissue as visualized by fluorescence microscopy. Physiol Rev 24:205–224

    CAS  Google Scholar 

  • Popper H, Volk BW (1944) Absorption of vitamin A in the rat. Arch Pathol 38:71–75

    CAS  Google Scholar 

  • Popper H, Steigmann F, Meyer KA, Zevin SS (1943) Relation between hepatic and plasma concentrations of vitamin A in human beings. Arch Int Med 72:439–460

    Article  CAS  Google Scholar 

  • Porter SB, Fraker LD, Chytil F, Ong DE (1983) Localization of retinol-binding protein in several tissues. Proc Natl Acad Sci USA 80:6586–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter JJ, Womack L, Mezey E, Anania FA (1998) Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem Biophys Res Commun 244:178–182

    Article  CAS  PubMed  Google Scholar 

  • Poynard T, McHutchison J, Manns M, Trepo C, Lindsay K, Goodman Z, Ling M-H, Albrecht J, PEG-FIBROSIS Project Group (2002) Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology 122:1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Prickett TCR, McKenzie JL, Hart DNJ (1988) Characterization of interstitial dendritic cells in human liver. Transplantation 46:754–761

    Article  CAS  PubMed  Google Scholar 

  • Purohit V, Brenner DA (2006) Mechanisms of alcohol-induced hepatic fibrosis: a summary of the Ron Thurman symposium. Hepatology 43:872–878

    Article  CAS  PubMed  Google Scholar 

  • Purohit V, Gao B, Song B-J (2009) Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 33:191–205

    Article  CAS  PubMed  Google Scholar 

  • Purton MD (1976) Extravasucular cells within perisinusoidal space of the avian liver. Experientia 32:737–740

    Article  CAS  PubMed  Google Scholar 

  • Püschel GP (2004) Control of hepatocyte metabolism by sympathetic and parasympathetic hepatic nerves. Anat Rec 280A:854–867

    Article  Google Scholar 

  • Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, Freeman S, Cosma MP, Colantuoni V, Gottesman ME (1999) Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J 18:4633–4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quadro L, Hamberger L, Colantuoni V, Gottesman ME, Blaner WS (2003) Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models. Mol Aspect Med 24:421–430

    Article  CAS  Google Scholar 

  • Quadro L, Blaner WS, Hamberger L, Novikoff PM, Vogel S, Piantedosi R, Gottesman ME, Colantuoni V (2004) The role of extrahepatic retinol binding protein in the mobilization of retinoid stores. J Lipid Res 45:1975–1982

    Article  CAS  PubMed  Google Scholar 

  • Quan TE, Cowper S, Wu S-P, Bockenstedt LK, Bucala R (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36:598–606

    Article  CAS  PubMed  Google Scholar 

  • Radaeva S, Wang L, Radaev S, Jeong WI, Park O, Gao B (2007) Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol 293:G809–G816

    Article  CAS  PubMed  Google Scholar 

  • Raddatz D, Henneken M, Armbrust T, Ramadori G (1996) Subcellular distribution of glucocorticoid receptor in cultured rat and human liver-derived cells and cell lines: influence of dexamethasone. Hepatology 24:928–933

    Article  CAS  PubMed  Google Scholar 

  • Ramadori G (1991) The stellate cell (Ito-cell, fat-storing cell, lipocyte, perisinusoidal cell) of the liver. New insights into pathophysiology of an intriguing cell. Virchows Arch [B] 61:147–158

    Article  CAS  Google Scholar 

  • Ramadori G, Saile B (2002) Mesenchymal cells in the liver-one cell type or two? Liver 22:283–294

    Article  CAS  PubMed  Google Scholar 

  • Ramadori G, Knittel T, Schwogler S, Bieber F, Rieder H, Meyer zum Buschenfelde KH (1991) Dexamethasone modulates α 2-macroglobulin and apolipoprotein E gene expression in cultured rat liver fat-storing (Ito) cells. Hepatology 14:875–882

    Article  CAS  PubMed  Google Scholar 

  • Ramm GA, Britton RS, O’Neill R, Blaner WS, Bacon BR (1995) Vitamin A-poor lipocytes: a novel desmin-negative lipocyte subpopulation, which can be activated to myofibroblasts. Am J Physiol Gastrointest Liver Physiol 269:G532–G541

    CAS  Google Scholar 

  • Ramm GA, Nair VG, Bridle KR, Shepherd RW, Crawford DHG (1998) Contribution of hepatic parenchymal and nonparenchymal cells to hepatic fibrogenesis in biliary atresia. Am J Pathol 153:527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randolph RK, Winkler KE, Ross AC (1991) Fatty acyl CoA-dependent and -independent retinol esterification by rat liver and lactating mammary gland microsomes. Arch Biochem Biophys 288:500–508

    Article  CAS  PubMed  Google Scholar 

  • Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J, Semple R, Weber A, Komas DA, Vaillier L (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120:3127–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratziu V, Lalazar A, Wong L, Dang Q, Collins C, Shaulian E, Jensen S, Friedman SL (1998) Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci USA 95:9500–9505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redlich CA, Grauer JN, Van Bennekum AM, Clever SL, Ponn RB, Blaner WS (1996) Characterization of carotenoid, vitamin A, and α-tocopheral levels in human lung tissue and pulmonary macrophages. Am J Respir Crit Care Med 154:1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Reid LM, Fiorino AS, Sigal SH, Brill S, Holst PA (1992) Extracellular matrix gradients in the space of Disse: relevance to liver biology. Hepatology 15:1198–1203

    Article  CAS  PubMed  Google Scholar 

  • Reif S, Lang A, Lindquist JN, Yata Y, Gäbele E, Scanga A, Brenner DA, Rippe RA (2003) The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem 278:8083–8090

    Article  CAS  PubMed  Google Scholar 

  • Reilly FD, McCuskey PA, McCuskey RS (1978) Intrahepatic distribution of nerves in the rat. Anat Rec 191:55–67

    Article  CAS  PubMed  Google Scholar 

  • Reimann T, Hempel U, Krautwald S, Axmann A, Scheibe R, Seidel D, Wenzel K-W (1997) Transforming growth factor-b1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells. FEBS Lett 403:57–60

    Article  CAS  PubMed  Google Scholar 

  • Rhodin J (1964) American Association of Anatomists Seventy-Seventh Session University of Colorado School of Medicine March 31, April 1, 2, 3, 1964. Anat Rec 148:326

    Google Scholar 

  • Riordan SM, Skinner N, Nagree A, McCallum H, McIver CJ, Kurtovic J, Hamilton JA, Bengmark S, Williams R, Visvanathan K (2003) Peripheral blood mononuclear cell expression of toll-like receptors and relation to cytokine levels in cirrhosis. Hepatology 37:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Rippe RA, Brenner DA (2004) From quiescence to activation: gene regulation in hepatic stellate cells. Gastroenterology 127:1260–1262

    Article  PubMed  Google Scholar 

  • Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119:4215–4224

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC (1995) Characterization of endothelin receptors mediating rat hepatic stellate cell contraction. Biochem Biophys Res Commun 207:725–731

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC (2003) Vascular mediators in the injured liver. Hepatology 37:4–12

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC, Weisiger RA (1996) Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 24:233–240

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC, Maher JJ, Jarnagin WR, Gabbiani G, Friedman SL (1992) Inhibition of rat hepatic lipocyte activation in culture by interferon-γ. Hepatology 16:776–784

    Article  CAS  PubMed  Google Scholar 

  • Rodahl K (1949a) Toxicity of polar bear liver. Nature (London) 164:530–531

    Article  CAS  Google Scholar 

  • Rodahl K (1949b) Vitamin sources in Arctic regions. Nor Polarinst Skr 91:1–64

    Google Scholar 

  • Rodahl K, Moore T (1943) The vitamin A content and toxicity of bear and seal liver. Biochem J 37:166–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojkind M, Greenwel P (1994) The extracellular matrix of the liver. In: Arias IA, Boyer JL, Fausto N, Jakoby WB, Schachter DA, Shafritz DA (eds) The liver: biology and pathobiology. Raven, New York, pp 843–868

    Google Scholar 

  • Rojkind M, Novikoff PM, Greenwel P, Rubin J, Rojas-Valencia L, de Carvalho AC, Stockert R, Spray D, Hertzberg EL, Wolkoff AW (1995) Characterization and functional studies on rat liver fat-storing cell line and freshly isolated hepatocyte coculture system. Am J Pathol 146:1508–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rombouts K, Niki T, Wielant A, Hellemans K, Schuppan D, Kormoss N, Geerts A (2001) Effect of aldosterone on collagen steady state levels in primary and subcultured rat hepatic stellate cells. J Hepatol 34:230–238

    Article  CAS  PubMed  Google Scholar 

  • Rombouts K, Knittel T, Machesky L, Braet F, Wielant A, Hellemans K, De Bleser P, Gelman I, Ramadori G, Albert A (2002) Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone deacetylase inhibitor. J Hepatol 37:788–796

    Article  CAS  PubMed  Google Scholar 

  • Rosales C, O’Brien V, Kornberg L, Juliano R (1995) Signal transduction by cell adhesion receptors. Biochim Biophys Acta 1242:77–98

    PubMed  Google Scholar 

  • Rosette C, Karin M (1995) Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-κB. J Cell Biol 128:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Roskelley CD, Srebrow A, Bissell MJ (1995) A hierarchy of ECM-mediated signaling regulates tissue-specific gene expression. Curr Opin Cell Biol 7:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross AC (1982) Retinol esterification by rat liver microsomes. J Biol Chem 257:2453–2459

    CAS  PubMed  Google Scholar 

  • Ross AC (1993) Cellular metabolism and activation of retinoids: roles of cellular retinoid-binding proteins. FASEB J 7:317–327

    CAS  PubMed  Google Scholar 

  • Ross AC (1999) Mutations in the gene encoding retinol binding protein and retinol deficiency: is there compensation by retinyl esters and retinoic acid? Am J Clin Nutr 69:829–830

    CAS  PubMed  Google Scholar 

  • Ross AC (2004) On the sources of retinoic acid in the lung: understanding the local conversion of retinol to retinoic acid. Am J Physiol Lung Cell Mol Physiol 286:L247–L248

    Article  CAS  PubMed  Google Scholar 

  • Rothe P (1882) Ueber die Sternzellen der Leber. Inaug-Dissertation, München

  • Rubin E, Florman AL, Degnan T, Diaz J (1970) Hepatic injury in chronic hypervitaminosis A. Am J Dis Child 119:132–138

    CAS  PubMed  Google Scholar 

  • Rozga J, Demetriou AA (1995) Artificial liver: evolution and future perspectives. ASAIO J 41:831–837

    CAS  PubMed  Google Scholar 

  • Ruiz A, Winston A, Lim YH, Gilbert BA, Rando RR, Bok D (1999) Molecular and biochemical characterization of lecithin retinol acyltransferase. J Biol Chem 274:3834–3841

    Article  CAS  PubMed  Google Scholar 

  • Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, Bou-Gharios G, Jeffery R, Iredale JP, Forbes SJ (2006) The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130:1807–1821

    Article  PubMed  Google Scholar 

  • Saari JC, Bredberg L, Garwin GG (1982) Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem 257:13329–13333

    CAS  PubMed  Google Scholar 

  • Sakakibara K, Saito M, Umeda M, Enaka K, Tsukada Y (1976) Native collagen formation by liver parenchymal cells in culture. Nature 262:316–318

    Article  CAS  Google Scholar 

  • Sancho-Bru P, Bataller R, Colmenero J, Gasull X, Moreno M, Arroyo V, Brenner DA, Ginès P (2006) Norepinephrine induces calcium spikes and proinflammatory actions in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 291:G877–G884

    Article  CAS  PubMed  Google Scholar 

  • Sandgren ME, Bronnegard M, DeLuca HF (1991) Tissue distribution of the 1,25-dihydroxyvitamin D3 receptor in the male rat. Biochem Biophys Res Commun 181:611–616

    Article  CAS  PubMed  Google Scholar 

  • Sario AD, Bendia E, Macarri G, Candelaresi C, Taffetani S, Marzioni M, Omenetti A, De Minicis S, Trozzi L, Benedetti A (2004) The anti-fibrotic effect of pirfenidone in rat liver fibrosis is mediated by downregulation of procollagen a1(I), TIMP-1 and MMP-2. Dig Liver Dis 36:744–751

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Senoo H (1998) Morphological regulation of cultured hepatic stellate cells by extracellular matrix through intracellular signaling. Connect Tissue 30:219–224

    CAS  Google Scholar 

  • Sato T, Kato R, Tyson CA (1995) Regulation of differentiated phenotype of rat hepatic lipocytes by retinoids in primary culture. Exp Cell Res 217:72–83

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Imai K, Kojima N, Miura M, Senoo H (1997) Long cellular processes of hepatic stellate cells cultured on or in type I collagen gel. In: Wisse E, Knook DL, Balabaud C (eds) Cells of the hepatic sinusoid, vol 6. Kupffer Cell Foundation, Leiden, pp 85–89

    Google Scholar 

  • Sato M, Kojima N, Miura M, Imai K, Senoo H (1998) Induction of cellular processes containing collagenase and retinoid by integrin-binding to interstitial collagen in hepatic stellate cell culture. Cell Biol Int 22:115–125

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kojima N, Miura M, Imai K, Senoo H (1999) Intracellular signaling for process elongation in cultured hepatic stellate cells on type I collagen gel. In: Wisse E, Knook DL, de Zanger R, Fraser R (eds) Cells of the hepatic sinusoid, vol 7. Kupffer Cell Foundation, Leiden, pp 32–33

    Google Scholar 

  • Sato M, Miura M, Kojima N, Higashi N, Imai K, Sato T, Wold HL, Moskaug JØ, Blomhoff R, Wake K, Roos N, Berg T, Norum KR, Senoo H (2001a) Nuclear deviation in hepatic parenchymal cells on sinusoidal surface in arctic animals. Cell Struct Funct 26:71–77

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Sato T, Kojima N, Miura M, Imai K, Wang DR, Senoo H (2001b) Induction of cellular process elongation mediated by microtubule-associated protein 2 in hepatic stellate cells cultured on type I collagen gel. In: Wisse E, Knook DL, de Zanger R, Arthur MJP (eds) Cells of the hepatic sinusoid, vol 8. Kupffer Cell Foundation, Leiden, pp 205–206

    Google Scholar 

  • Sato M, Suzuki S, Senoo H (2003) Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct 28:105–112

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Sato T, Kojima N, Imai K, Higashi N, Wang DR, Senoo H (2004) Three-dimensional structure of extracellular matrix regulates gene expression in cultured stellate cells to induce process elongation. Comp Hepatol 3(Suppl 1):S4

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, Takimoto R, Takada K, Miyanishi K, Matsunaga T, Takayama T, Niitsu Y (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26:431–442

    Article  CAS  PubMed  Google Scholar 

  • Sauvant P, Sapin V, Alexandre-Gouabau M-C, Dodeman I, Delpal S, Quadro L, Partier A, Abergel A, Colantuoni V, Rock E, Azaïs-Braesco V (2001) Retinol mobilization from cultured rat hepatic stellate cells does not require retinol binding protein synthesis and secretion. Int J Biochem Cell Biol 33:1000–1012

    Article  CAS  PubMed  Google Scholar 

  • Schieferdecker HK, Pestel S, Rothermel E, Püschel GP, Götze O, Jungermann K (1998) Stimulation by anaphylatoxin C5a of glycogen phosphorylase in rat hepatocytes via prostanoid release from hepatic stellate cells but not sinusoidal endothelial cells. FEBS Lett 434:245–250

    Article  CAS  PubMed  Google Scholar 

  • Schnack H, Stockinger L, Wewalka F (1966) Die Bindegewebeszellen des Dissesch en Raumes in der menschlichten Leber bei Normafaellen und pathologischen Zustaenden. Wien klin Wochschr 78:715–724

    CAS  Google Scholar 

  • Schneider E, Schmid-Kotsas A, Zhao J, Weidenbach H, Schmid RM, Menke A, Adler G, Waltenberger J, Grünert A, Bachem MG (2001) Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. Am J Physiol Cell Physiol 281:G532–G543

    Google Scholar 

  • Schneiderhan W, Schmid-Kotsas A, Zhao J, Grünert A, Nüssler A, Weidenbach H, Menke A, Schmid RM, Adler G, Bachem MG (2001) Oxidized low-density lipoproteins bind to the scavenger receptor, CD36, of hepatic stellate cells and stimulate extracellular matrix synthesis. Hepatology 34:729–737

    Article  CAS  PubMed  Google Scholar 

  • Schwabe RF, Seki E, Brenner DA (2006) Toll-like receptor signaling in the liver. Gastroenterology 130:1886–1900

    Article  CAS  PubMed  Google Scholar 

  • Schwögler S, Odenthal M, Knittel T, Meyer zum Büschenfelde K-H, Ramadori G (1992) Fat-storing cells of the rat liver synthesize and secrete C1-esterase inhibitor; modulation by cytokines. Hepatology 16:794–802

    Article  PubMed  Google Scholar 

  • Seeliger MW, Biesalski HK, Wissinger B, Gollnick H, Gielen S, Frank J, Beck S, Zrenner E (1999) Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Invest Ophthalmol Vis Sci 40:3–11

    CAS  PubMed  Google Scholar 

  • Seifert WF, Bosma A, Brouwer A, Hendriks HFJ, Roholl PJM, van Leeuwen REW, van Thiel-DeRuiter GCF, Seifert-Bock I, Knook DL (1994a) Vitamin A deficiency potentiates carbon tetrachloride-induced liver fibrosis in rats. Hepatology 19:193–201

    Article  CAS  PubMed  Google Scholar 

  • Seifert WF, Roholl PJ, Blauw B, van der Ham F, van Thiel-De Ruiter CF, Seifert-Bock I, Bosma A, Knook DL, Brouwer A (1994b) Fat-storing cells and myofibroblasts are involved in the initial phase of carbon tetrachloride-induced hepatic fibrosis in BN/BiRij rats. Int J Exp Pathol 75:131–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 13:1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Senoo H (2000) Digestion, Metabolism. In: Krinke GJ (ed) The digital handbook of experimental laboratory animals: the rat. Academic, London, pp 359–383

    Google Scholar 

  • Senoo H (2004) Structure and function of hepatic stellate cells. Med Electron Microsc 37:3–15

    Article  CAS  PubMed  Google Scholar 

  • Senoo H (2007a) Stellate cell-endothelial cell interactions. In: Aird WC (ed) Endothelial biomedicine. Cambridge University Press, Cambridge, pp 616–619

    Chapter  Google Scholar 

  • Senoo H (2007b) Vitamin A-storing cell (stellate cell) system. In: Loessing IT (ed) Vitamin A: new research. Nova Science, New York, pp 59–70

    Google Scholar 

  • Senoo H (2014) The stellate cell (vitamin A-storing cell) system. Nova Science, New York, pp 1–245

    Google Scholar 

  • Senoo H, Hata R (1993a) Tissue formation and extracellular matrix system—cellular devices for adhesion to extracellular matrix. Tissue Cult Res Commun 12:237–245

    Google Scholar 

  • Senoo H, Hata R (1993b) Isolation of perisinusoidal stellate cells (vitamin A-storing cells, fat-storing cells) of the rat liver. Connect Tissue 25:129–137

    Google Scholar 

  • Senoo H, Hata R (1994a) Extracellular matrix regulates and l-ascorbic acid 2-phosphate further modulates morphology, proliferation, and collagen synthesis of the perisinusoidal stellate cells. Biochem Biophys Res Commun 200:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Senoo H, Hata R (1994b) Extracellular matrix regulates cell morphology, proliferation, and tissue formation. Acta Anat Nippon 69:719–733

    CAS  PubMed  Google Scholar 

  • Senoo H, Hata R (1995) Regulation of morphology, proliferation, and collagen metabolism of perisinusoidal stellate cells by extracellular matrix. In: Wisse E, Knook DL, Wake K (eds) Cells of the hepatic sinusoid, vol 5. Kupffer Cell Foundation, Leiden, pp 430–431

    Google Scholar 

  • Senoo H, Wake K (1985) Suppression of experimental hepatic fibrosis by administration of vitamin A. Lab Invest 52:182–194

    CAS  PubMed  Google Scholar 

  • Senoo H, Wake K (1988) Histochemical method for detection of vitamin A. Vitamins 59:465–469

    Google Scholar 

  • Senoo H, Hata R, Nagai Y, Wake K (1984) Stellate cells (vitamin A-storing cells) are the primary site of collagen synthesis in non-parenchymal cells in the liver. Biomed Res 5:451–458

    CAS  Google Scholar 

  • Senoo H, Tsukada Y, Sato T, Hata RI (1989) Co-culture of fibroblasts and hepatic parenchymal cells induces metabolic changes and formation of a three-dimensional structure. Cell Biol Int Rep 13:197–206

    Article  CAS  PubMed  Google Scholar 

  • Senoo H, Stang E, Nilsson A, Kindberg GM, Berg T, Roos N, Norum KR, Blomhoff R (1990) Internalization of retinol-binding protein in parenchymal and stellate cells of rat liver. J Lipid Res 31:1229–1239

    CAS  PubMed  Google Scholar 

  • Senoo H, Hata R, Wake K, Nagai Y (1991) Isolation and serum free culture of stellate cells. In: Wisse E, Knook DL, McCuskey RS (eds) Cells of the hepatic sinusoid, vol 3. Kupffer Cell Foundation, Leiden, pp 259–262

    Google Scholar 

  • Senoo H, Smeland S, Malaba L, Bjerknes T, Stang E, Roos N, Berg T, Norum KR, Blomhoff R (1993) Transfer of retinol-binding protein from HepG2 human hepatoma cells to cocultured rat stellate cells. Proc Natl Acad Sci USA 90:3616–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senoo H, Imai K, Sato M, Kojima N, Miura M, Hata R (1996) Three-dimensional structure of extracellular matrix reversibly regulates morphology, proliferation and collagen metabolism of perisinusoidal stellate cells (vitamin A-storing cells). Cell Biol Int 20:501–512

    Article  CAS  PubMed  Google Scholar 

  • Senoo H, Sato M, Imai K (1997) Hepatic stellate cells—from the viewpoint of retinoid handling and function of the extracellular matrix. Acta Anat Nippon 72:79–94

    CAS  PubMed  Google Scholar 

  • Senoo H, Imai K, Matano Y, Sato M (1998) Molecular mechanisms in the reversible regulation of morphology, proliferation and collagen metabolism in hepatic stellate cells by the three-dimensional structure of the extracellular matrix. J Gastroenterol Hepatol 13:S19–S32

    CAS  PubMed  Google Scholar 

  • Senoo H, Imai K, Wake K, Wold HL, Moskaug JØ, Kojima N, Matano Y, Miura M, Sato M, Roos N, Berg T, Langvatn R, Norum KR, Blomhoff R (1999) Vitamin A-storing system in mammals and birds in Arctic area—a study in the Svalbard archipelago. In: Wisse E, Knook DL, de Zanger R, Fraser R (eds) Cells of the hepatic sinusoid, vol 7. Kupffer Cell Foundation, Leiden, pp 34–35

    Google Scholar 

  • Senoo H, Wake K, Wold HL, Higashi N, Imai K, Moskaug JØ, Kojima N, Miura M, Sato T, Sato M, Roos N, Berg T, Norum KR, Blomhoff R (2004) Decreased capacity for vitamin A storage in hepatic stellate cells in arctic animals. Comp Hepatol 3(Suppl 1):S18

    Article  PubMed  PubMed Central  Google Scholar 

  • Senoo H, Kojima N, Sato M (2007) Vitamin A-storing cells (stellate cells). Vitam Horm 75:131–159

    Article  CAS  PubMed  Google Scholar 

  • Senoo H, Yoshikawa K, Morii M, Miura M, Imai K, Mezaki Y (2010) Hepatic stellate cell (vitamin A-storing cell) and its relative–past, present, and future. Cell Biol Int 34:1247–1272 (editor’s special 70th birthday edition)

    Article  CAS  PubMed  Google Scholar 

  • Senoo H, Mezaki Y, Miura M, Sanada C, Umezono-Hanata Y, Morii M, Imai K, Fujiwara M (2011a) Hepatic stellate cell (vitamin A-storing cell) and its relative. Recent Res Dev Nutr 8:129–147 (editor Shankar Pandalai, ISBN: 978-81-308-0468-2)

    CAS  Google Scholar 

  • Senoo H, Yoshikawa K, Morii M, Fujiwara M, Besshi K, Mezaki Y (2011b) Regulation of vitamin A homeostasis by the stellate cell (vitamin A-storing cell) system. In: Lucas P (ed) Vitamin A: nutrition, side effects and supplements nutrition and diet research progress. Scott ebook Nova Science, New York, pp 47–74

    Google Scholar 

  • Senoo H, Imai K, Mezaki Y, Miura M, Morii M, Fujiwara M, Blomhoff R (2012) Accumulation of vitamin A in the hepatic stellate cell of arctic top predators. Anat Rec 295:1660–1668

    Article  CAS  Google Scholar 

  • Senoo H, Mezaki Y, Morii M, Hebiguchi T, Miura M, Imai K (2013) Uptake and storage of vitamin A as lipid droplets in the cytoplasm in cells in lamina propria mucosae of rat intestine. Cell Biol Int 37:1171–1180

    CAS  PubMed  Google Scholar 

  • Servetnick DA, Brasaemle DL, Gruia-Gray J, Kimmel AR, Wolff J, Londos C (1995) Perilipins are associated with cholesteryl ester droplets in steroidogenic adrenal cortical and Leydig cells. J Biol Chem 270:16970–16973

    Article  CAS  PubMed  Google Scholar 

  • Severn CB (1971) A morphological study of the development of the human liver. I. Development of the hepatic diverticulum. Am J Anat 131:133–158

    Article  CAS  PubMed  Google Scholar 

  • Severn CB (1972) A morphological study of the development of the human liver. II. Establishment of liver parenchyma, extrahepatic ducts and associated venous channels. Am J Anat 133:85–108

    Article  CAS  PubMed  Google Scholar 

  • She H, Xiong S, Hazra S, Tsukamoto H (2005) Adipogenic transcriptional regulation of hepatic stellate cells. J Biol Chem 280:4959–4967

    Article  CAS  PubMed  Google Scholar 

  • Shidoji Y, Muto Y (1977) Vitamin A transport in plasma of the non-mammalian vertebrates: isolation and partial characterization of piscine retinol-binding protein. J Lipid Res 18:679–691

    CAS  PubMed  Google Scholar 

  • Shimada T, Ross AC, Muccio DD, Brouillette WJ, Shealy YF (1997) Regulation of hepatic lecithin:retinol acyltransferase activity by retinoic acid receptor-selective retinoids. Arch Biochem Biophys 344:220–227

    Article  CAS  PubMed  Google Scholar 

  • Shimizu I (2003) Impact of oestrogens on the progression of liver disease. Liver Int 23:63–69

    Article  CAS  PubMed  Google Scholar 

  • Shimizu I, Mizobuchi Y, Yasuda M, Shiba M, Ma YR, Horie T, Liu F, Ito S (1999) Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro. Gut 44:127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Kobayashi M, Tahara J, Shiratori K (2005) Cytokines and peroxisome proliferator-activated receptor γ ligand regulate phagocytosis by pancreatic stellate cells. Gastroenterology 128:2105–2118

    Article  CAS  PubMed  Google Scholar 

  • Shin YC (1981) Some observations on perisinusoidal lipocyte (Ito cell) of Carassius auratus liver as revealed by electron microscopy. Acta Anat Nippon 56:133–144

    CAS  PubMed  Google Scholar 

  • Shiota G, Tsuchiya H, Hoshikawa Y (2006) The liver as a target organ of retinoids. Hepatol Res 36:248–254

    Article  CAS  PubMed  Google Scholar 

  • Sigal SH, Brill S, Fiorino AS, Reid LM (1992) The liver as a stem cell and lineage system. Am J Physiol Gastrointest Liver Physiol 263:G139–G148

    CAS  Google Scholar 

  • Skaare JU, Bernhoft A, Wiig Ø, Norum KR, Haug E, Eide DM, Derocher AE (2001) Relationship between plasma levels of organochlorines, retinol and thyroid hormones from polar bears (Ursus maritimus) at Svalbard. J Toxicol Environ Health 62:227–241

    Article  CAS  Google Scholar 

  • Smart DE, Vincent KJ, Arthur MJP, Eickelberg O, Castellazzi M, Mann DA (2001) JunD regulates transcription of the tissue inhibitor of metalloproteinases-1 and interleukin-6 genes in activated hepatic stellate cells. J Biol Chem 276:24414–24421

    Article  CAS  PubMed  Google Scholar 

  • Smedsrød B, Le Couteur D, Ikejima K, Jaeschke H, Kawada N, Naito M, Knolle P, Nagy L, Senoo H, Vidal-Vanaclocha F, Yamaguchi N (2009) Hepatic sinusoidal cells in health and disease: update from the 14th International Symposium. Liver Int 29:491–501

    Article  CAS  Google Scholar 

  • Smeland S, Bjerknes T, Malaba L, Eskild W, Norum KR, Blomhoff R (1995) Tissue distribution of the receptor for plasma retinol-binding protein. Biochem J 305:419–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FR, Goodman DS (1971) The effects of diseases of the liver, thyroid, and kidneys on the transport of vitamin A in human plasma. J Clin Invest 50:2426–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JE, Goodman DW (1979) Retinol-binding protein and the regulation of vitamin A transport. Fed Proc 38:2504–2509

    CAS  PubMed  Google Scholar 

  • Sorrell JM, Caplan AI (2004) Fibroblast heterogeneity: more than skin deep. J Cell Sci 117:667–675

    Article  CAS  PubMed  Google Scholar 

  • Spit BJ (1983) Induction of lipid droplets in fibroblasts of the hamster lung by a diet high in vitamin A. Exp Lung Res 4:247–257

    Article  CAS  PubMed  Google Scholar 

  • Staatz WD, Fok KF, Zutter MM, Adams SP, Rodriguez BA, Santoro SA (1991) Identification of a tetrapeptide recognition sequence for the α2β1 integrin in collagen. J Biol Chem 266:7363–7367

    CAS  PubMed  Google Scholar 

  • Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Schleicher E, Fritsche A, Häring H-U (2007) High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 30:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Steffan A-M, Gendrault J-L, McCuskey RS, McCuskey PA, Kirn A (1986) Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology 6:830–836

    Article  CAS  PubMed  Google Scholar 

  • Steiniger B, Klempnauer J, Wonigeit K (1984) Phenotype and histological distribution of interstitial dendritic cells in the rat pancreas, liver, heart, and kidney. Transplantation 38:169–175

    Article  CAS  PubMed  Google Scholar 

  • Stewart SF, Day CP (2003) The management of alcoholic liver disease. J Hepatol 38:S2–S13

    Article  PubMed  Google Scholar 

  • Stockinger L (1967) Anat Anz (verh Anat Ges) 120:545

    Google Scholar 

  • Strain AJ (1999) Ex vivo liver cell morphogenesis: one step nearer to the bioartificial liver? Hepatology 29:288–290

    Article  CAS  PubMed  Google Scholar 

  • Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P (2008) Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47:1936–1946

    Article  CAS  PubMed  Google Scholar 

  • Sundaram M, Sivaprasadarao A, DeSousa MM, Findlay JBC (1998) The transfer of retinol from serum retinol-binding protein to cellular retinol-binding protein is mediated by a membrane receptor. J Biol Chem 273:3336–3342

    Article  CAS  PubMed  Google Scholar 

  • Sung CK, She H, Xiong S, Tsukamoto H (2004) Tumor necrosis factor-α inhibits peroxisome proliferator-activated receptor γ activity at a posttranslational level in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 286:G722–G729

    Article  CAS  PubMed  Google Scholar 

  • Suskind DL, Muench MO (2004) Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J Hepatol 40:261–268

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K (1958) A silver impregnation method in histology. Takeda Pharm Ind Osaka. Pharmacutical company, Takeda pp 310–320

  • Suzuki L (1963) Proc Gen Ass Med Congr, 16th, Osaka, IV 13

    Google Scholar 

  • Svegliati-Baroni G, Ridolfi F, Hannivoort R, Saccomanno S, Homan M, De Minicis S, Jansen PL, Candelaresi C, Benedetti A, Moshage H (2005) Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor. Gastroenterology 128:1042–1055

    Article  CAS  PubMed  Google Scholar 

  • Tabb MM, Sun A, Zhou C, Grun F, Errandi J, Romero K, Pham H, Inoue S, Mallick S, Lin M, Forman BM, Blumberg B (2003) Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 278:43919–43927

    Article  CAS  PubMed  Google Scholar 

  • Tahashi Y, Matsuzaki K, Date M, Yoshida K, Furukawa F, Sugano Y, Matsushita M, Himeno Y, Inagaki Y, Inoue K (2002) Differential regulation of TGF-β signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 35:49–61

    Article  CAS  PubMed  Google Scholar 

  • Taimr P, Higuchi H, Kocova E, Rippe RA, Friedman SL, Gores GJ (2003) Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 37:87–95

    Article  CAS  PubMed  Google Scholar 

  • Takada Y, Wayner EA, Carter WG, Hemler ME (1988) Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J Cell Biochem 37:385–393

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Sasaki M, Shiraishi Y, Akasaka M, Otsuka Y (1967) J jpn Soc RES 7:127

    Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takase S, Leo MA, Nouchi T, Lieber C (1988) Desmin distinguishes cultured fat-storing cells from myofibroblasts, smooth muscle cells and fibroblasts in the rat. J Hepatol 6:267–276

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K (1955) Histochemical studies of vitamin A. J Kyoto Prefect Med Univ 58:333–377

    Google Scholar 

  • Tateno C, Yoshizato K (1996) Long-term cultivation of adult rat hepatocytes that undergo multiple cell divisions and express normal parenchymal phenotypes. Am J Pathol 148:383–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512

    Article  CAS  PubMed  Google Scholar 

  • Théret N, Lehti K, Musso O, Clément B (1999) MMP2 activation by collagen I and concanavalin A in cultured human hepatic stellate cells. Hepatology 30:462–468

    Article  PubMed  Google Scholar 

  • Tomasek JJ, Hay ED (1984) Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J Cell Biol 99:536–549

    Article  CAS  PubMed  Google Scholar 

  • Tomasek JJ, Hay ED, Fujiwara K (1982) Collagen modulates cell shape and cytoskeleton of embryonic corneal and fibroma fibroblasts: distribution of actin, α-actinin, and myosin. Dev Biol 92:107–122

    Article  CAS  PubMed  Google Scholar 

  • Tran-Thi T, Kawada N, Decker K (1993) Regulation of endothelin-1 action on the perfused rat liver. FEBS Lett 318:353–357

    Article  CAS  PubMed  Google Scholar 

  • Trim N, Morgan S, Evans M, Issa R, Fine D, Afford S, Wilkins B, Iredale J (2000) Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am J Pathol 156:1235–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trøen G, Nilsson A, Norum KR, Blomhoff R (1994) Characterization of liver stellate cell retinyl ester storage. Biochem J 300:793–798

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuiki E, Fujita A, Ohsaki Y, Cheng J, Irie T, Yoshikawa K, Senoo H, Mishima K, Kitaoka T, Fujimoto T (2007) All-trans-retinol generated by rhodopsin photobleaching induces rapid recruitment of TIP47 to lipid droplets in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 48:2858–2867

    Article  PubMed  Google Scholar 

  • Tsukamoto H (2005) Fat paradox in liver disease. Keio J Med 54:190–192

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi M, Takada A, Takase S (1987) Characterization of desmin-positive rat liver sinusoidal cells. Hepatology 7:277–284

    Article  CAS  PubMed  Google Scholar 

  • Uchio K, Tuchweber B, Manabe N, Gabbiani G, Rosenbaum J, Desmoulière A (2002) Cellular retinol-binding protein-1 expression and modulation during in vivo and in vitro myofibroblastic differentiation of rat hepatic stellate cells and portal fibroblasts. Lab Invest 82:619–628

    Article  CAS  PubMed  Google Scholar 

  • Ueno T, Bioulac-Sage P, Balabaud C, Rosenbaum J (2004) Innervation of the sinusoidal wall: regulation of the sinusoidal diameter. Anat Rec Part A 280A:868–873

    Article  Google Scholar 

  • Uyama N, Shimahara Y, Kawada N, Seki S, Okuyama H, Iimuro Y, Yamaoka Y (2002) Regulation of cultured rat hepatocyte proliferation by stellate cells. J Hepatol 36:590–599

    Article  CAS  PubMed  Google Scholar 

  • Varela-Rey M, Montiel-Duarte C, Osés-Prieto JA, López-Zabalza MJ, Jaffrèzou JP, Rojkind M, Iraburu MJ (2002) p38 MAPK mediates the regulation of a1(I) procollagen mRNA levels by TNF-a and TGF-b in a cell line of rat hepatic stellate cells. FEBS Lett 528:133–138

    Article  CAS  PubMed  Google Scholar 

  • Varet KS, Grompe M (2008) Generation and regeneration of cells of the liver and pancreas. Science 322:1490–1494

    Article  CAS  Google Scholar 

  • Viñas O, Bataller R, Sacho-Bru P, Gines P, Berenguer C, Enrich C, Nicolás JM, Ercilla G, Gallart T, Vives J, Arroyo V, Rodés J (2003) Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38:919–929

    Article  PubMed  Google Scholar 

  • Vincent KJ, Jones E, Arthur MJP, Smart DE, Trim J, Wright MC, Mann DA (2001) Regulation of E-box DNA binding during in vivo and in vitro activation of rat and human hepatic stellate cells. Gut 49:713–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23

    Article  CAS  PubMed  Google Scholar 

  • Vogel S, Mendelsohn CL, Mertz JR, Piantedosi R, Waldburger C, Gottesman ME, Blaner WS (2001) Characterization of a new member of the fatty acid-binding protein family that binds all-trans-retinol. J Biol Chem 276:1353–1360

    Article  CAS  PubMed  Google Scholar 

  • Vollmar B, Heckmann C, Richter S, Menger MD (2002a) High, but not low, dietary retinoids aggravate manifestation of rat liver fibrosis. J Gastroenterol Hepatol 17:791–799

    Article  CAS  PubMed  Google Scholar 

  • Vollmar B, Pradrarutti S, Richter S, Menger MD (2002b) In vivo quantification of ageing changes in the rat liver from early juvenile to senescent life. Liver 22:330–341

    Article  PubMed  Google Scholar 

  • Vyalov SL, Gabbiani G, Kapanci Y (1993) Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis. Am J Pathol 143:1754–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wake K (1964) Distribution of vitamin A in the liver. In: Miyake M (ed) Proceedings of 5th annual meeting of Japanese histochemical association, pp 103–106

  • Wake K (1971) “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 132:429–462

    Article  CAS  PubMed  Google Scholar 

  • Wake K (1973) Cytochemistry of the lipid droplets containing vitamin A in the liver. In: Wisse E, Daems WTh, Molenaar I, van Duijn P (eds) Electron microscopy and cytochemistry. North-Holland, Amsterdam, pp 279–282

    Google Scholar 

  • Wake K (1974) Development of vitamin A-rich lipid droplets in multivesicular bodies of rat liver stellate cells. J Cell Biol 63:683–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wake K (1975a) One hundred years of the stellate cells of von Kupffer. In: Proceedings of 10th international congress of anatomists, August 25–30

  • Wake K (1975b) Lysosomes in the hypervitaminosis A rat liver, with special reference to storage of vitamin A in the perisinusoidal stellate cells. Recent Adv RES Res 15:83–92

    CAS  Google Scholar 

  • Wake K (1975c) The stellate cell of the liver. Kagaku (Science) 45:33–42

    Google Scholar 

  • Wake K (1976) Structure of the sinusoidal wall in the hypervitaminosis A rat liver. J Electron Microsc 25:218

    Google Scholar 

  • Wake K (1978) Kupffer's original article of discovery of the stellate cell in liver. Acta Anat Nippon 53:368–372

    Google Scholar 

  • Wake K (1980a) Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol 66:303–353

    Article  CAS  PubMed  Google Scholar 

  • Wake K (1980b) So-called Kupffer cells and hepatic stellate cells. Saibo (Cell) 12:189–198

    CAS  Google Scholar 

  • Wake K (1982) The Sternzellen of von Kupffer-after 106 years. In: Knook DL, Wisse E (eds) Sinusoidal liver cells. Elsevier Biomed, Amsterdam, pp 1–12

    Google Scholar 

  • Wake K (1995) Structure of the sinusoidal wall in the liver. In: Wisse E, Knook DL, Wake K (eds) Cells of the hepatic sinusoid, vol 5. Kupffer Cell Foundation, Leiden, pp 241–246

    Google Scholar 

  • Wake K (1997a) Cells in and around the hepatic sinusoid: past, present and future. In: Motta PM (ed) Recent advances in microscopy of cells, tissues and organs. Antonio Delfino, Rome, pp 421–428

    Google Scholar 

  • Wake K (1997b) One hundred years of sinusoidal cells in the liver. Acta Anat Nippon 72:407–423

    CAS  PubMed  Google Scholar 

  • Wake K (1998) Hepatic stellate cells. Connect Tissue 30:245–246

    Google Scholar 

  • Wake K (2006) Hepatic stellate cells: three-dimensional structure, localization, heterogeneity and development. Proc Jpn Acad Ser B 82:155–164

    Article  CAS  Google Scholar 

  • Wake K (2009) Browcz’s phagocytic cells and Kupffer’s ‘so-called stellate cells’. Acta Anat Nippon 84:17–21

    PubMed  Google Scholar 

  • Wake K, Senoo H (1986) Morphological aspects of the differentiation of stellate cell line in the vertebrates. In: Kirn A, Knook DL, Wisse E (eds) Cells of the hepatic sinusoid, vol 1. Leiden, pp 215–220

  • Wake K, Motomatsu K, Senoo H, Masuda A, Adachi E (1986) Improved Kupffer’s gold chloride method for demonstrating the stellate cells storing retinol (vitamin A) in the liver and extrahepatic organs of vertebrates. Stain Technol 61:193–200

    Article  CAS  PubMed  Google Scholar 

  • Wake K, Motomatsu K, Senoo H (1987) Stellate cells storing retinol in the liver of adult lamprey, Lampetra japonica. Cell Tissue Res 249:289–299

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Ohata M, Schrum L, Rippe RA, Tsukamoto H (1998) Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem 273:302–308

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tankersley LR, Tang M, Potter JJ, Mezey E (2002) Regulation of the murine α2(I) collagen promoter by retinoic acid and retinoid X receptors. Arch Biochem Biophys 401:262–270

    Article  CAS  PubMed  Google Scholar 

  • Wang DR, Sato M, Li LN, Miura M, Kojima N, Senoo H (2003) Stimulation of pro-MMP-2 production and activation by native form of extracellular type I collagen in cultured hepatic stellate cells. Cell Struct Funct 28:505–513

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tang X, Gong X, Albanis E, Friedman SL, Mao Z (2004a) Regulation of hepatic stellate cell activation and growth by transcription factor myocyte enhancer factor 2. Gastroenterology 127:1174–1188

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tankersley LR, Tang M, Potter JJ, Mezey E (2004b) Regulation of α 2(I) collagen expression in stellate cells by retinoic acid and retinoid X receptors through interactions with their cofactors. Arch Biochem Biophys 428:92–98

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Potter JJ, Rennie-Tankersley L, Novitskiy G, Sipes J, Mezey E (2007) Effects of retinoic acid on the development of liver fibrosis produced by carbon tetrachloride in mice. Biochim Biophys Acta 1772:66–71

    Article  CAS  PubMed  Google Scholar 

  • Wanless IR (1999) Physioanatomic considerations. In: Schiff ER, Sorrell MF, Maddrey WC (eds) Schiff’s diseases of the liver, 8th edn. Lippincott-Raven, Philadelphia, pp 3–37

    Google Scholar 

  • Warren A, Bertolino P, Cogger VC, McLean AJ, Fraser R, Le Couteur DG (2005) Hepatic pseudocapillarization in aged mice. Exp Gerontol 40:807–812

    Article  PubMed  Google Scholar 

  • Weinberger C, Hollenberg SM, Ong ES, Harmon JM, Brower ST, Cidlowski J, Thompson EB, Rosenfeld MG, Evans RM (1985a) Identification of human glucocorticoid receptor complementary DNA clones by epitope selection. Science 228:740–742

    Article  CAS  PubMed  Google Scholar 

  • Weinberger C, Hollenberg SM, Rosenfeld MG, Evans RM (1985b) Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature 318:670–672

    Article  CAS  PubMed  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1986) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324:641–646

    Article  CAS  PubMed  Google Scholar 

  • Weiner FA, Giambrone M-A, Czaja MJ, Shah A, Annoni G, Takahashi S, Eghbali M, Zern MA (1990) Ito-cell gene expression and collagen regulation. Hepatology 11:111–117

    Article  CAS  PubMed  Google Scholar 

  • Weiner FR, Blaner WS, Czaja MJ, Shah A, Geerts A (1992) Ito cell expression of a nuclear retinoic acid receptor. Hepatology 15:336–342

    Article  CAS  PubMed  Google Scholar 

  • Wells RG, Crawford J (1998) Pancreatic stellate cells. The new stars of chronic pancreatitis? Gastroenterology 115:491–493

    Article  CAS  PubMed  Google Scholar 

  • Wickert L, Abiaka M, Bolkenius U, Gressner AM (2004) Corticosteroids stimulate selectively transforming growth factor (TGF)-β receptor type III expression in transdifferentiating hepatic stellate cells. J Hepatol 40:69–76

    Article  CAS  PubMed  Google Scholar 

  • Wieckowska A, McCullough AJ, Feldstein AE (2007) Noninvasive diagnosis and monitoring of nonalcoholic steatohepatitis: present and future. Hepatology 46:582–589

    Article  CAS  PubMed  Google Scholar 

  • Wiig Ø, Derocher AE, Cronin MM, Skaare JU (1998) Female pseudohermaphrodite polar bears at Svalbard. J Wildl Dis 34:792–796

    Article  CAS  PubMed  Google Scholar 

  • Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, Modlin RL, Liblau RS, Gressner AM, Kaufmann S (2007) Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26:117–129

    Article  CAS  PubMed  Google Scholar 

  • Wisse E (1970) An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoid. J Ultrastruct Res 31:125–150

    Article  CAS  PubMed  Google Scholar 

  • Wisse E (1972) An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J Ultrastruct Res 38:528–562

    Article  CAS  PubMed  Google Scholar 

  • Wold HL, Wake K, Higashi N, Wang D-R, Kojima N, Imai K, Blomhoff R, Senoo H (2004) Vitamin A distribution and content in tissues of the lamprey (Lampetra japonica). Anat Rec 276A:134–142

    Article  CAS  Google Scholar 

  • Wolins NE, Rubin B, Brasaemle DL (2001) TIP47 associates with lipid droplets. J Biol Chem 276:5101–5108

    Article  CAS  PubMed  Google Scholar 

  • Wood RL (1963) Evidence of species difference in the ultrastructure of the hepatic sinusoids. Z Zellforsch 58:679–692

    Article  CAS  PubMed  Google Scholar 

  • Wolins NE, Brasaemle DL, Bickel PE (2006) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491

    Article  CAS  PubMed  Google Scholar 

  • Wright MC (2006) The impact of pregnane X receptor activation on liver fibrosis. Biochem Soc Trans 34:1119–1123

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Jia W, Bao Y, Lu J, Zhu J, Wang R, Chen Y, Xiang K (2008) Serum retinol binding protein 4 and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 79:185–190

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Fu Y, Chen A (2003) Activation of peroxisome proliferator-activated receptor-γ contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol 285:G20–G30

    Article  CAS  PubMed  Google Scholar 

  • Yagmur E, Weiskirchen R, Gressner AM, Trautwein C, Tacke F (2007) Insulin resistance in liver cirrhosis is not associated with circulating retinol-binding protein 4. Diabetes Care 30:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Yamada E (1982) Vitamin A storing cell. Method Enzymol 81:834–839

    Article  CAS  Google Scholar 

  • Yamada E, Hirosawa K (1976) The possible existence of a vitamin A-storing cell system. Cell Struct Funct 1:201–204

    Article  Google Scholar 

  • Yamada KM, Miyamoto S (1995) Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 7:681–689

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Blaner WS, Soprano DR, Dixon JL, Kjeldbye HM, Goodman DS (1987) Biochemical characteristics of isolated rat liver stellate cells. Hepatology 7:1224–1229

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM (2008) Diacylglycerol acyltranferase 1 anti-sense oligonucleotides reduce hepatic fibrosis in mice with nonalcoholic steatohepatitis. Hepatology 47:625–635

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Enzan H (1975) Morphology and function of Ito cell (fat-storing cell) in the liver. Recent Adv RES Res 15:54–75

    Google Scholar 

  • Yamamoto K, Ogawa K (1983) Fine structure and cytochemistry of lysosomes in the Ito cells of the rat liver. Cell Tissue Res 233:45–57

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Ogawa K (1984) Freeze-replica study of lipid droplets in the Ito cells of rat liver. Anat Rec 210:415–420

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Enzan H, Hara H, Iijima S (1978) Fluorescence and electron microscopic studies on the perivascular mesenchymal cells and fibroblasts after vitamin A administration. Acta Pathol Jpn 28:513–521

    CAS  PubMed  Google Scholar 

  • Yamauchi M, Potter JJ, Merzey E (1988) Characteristics of alcohol dehydrogenase in fat-storing (Ito) cells of rat liver. Gastroenterology 94:163–169

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N, Kalluri R (2003) Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology 124:147–159

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Jung Y, Omenetti A, Witek RP, Choi S, Vandongen HM, Huang J, Alpini GD, Diehl AM (2008) Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 26:2104–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yavrom S, Chen L, Xiong S, Wang J, Rippe RA, Tsukamoto H (2005) Peroxisome proliferator-activated receptor γ suppresses proximal α1(I) collagen promoter via inhibition of p300-facilitated NF-I binding to DNA in hepatic stellate cells. J Biol Chem 280:40650–40659

    Article  CAS  PubMed  Google Scholar 

  • Yen CL, Monetti M, Burri BJ, Farese RV Jr (2005) The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J Lipid Res 46:1502–1511

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Evason KJ, Maher JJ, Stainer YR (2012) The basic helix-loop-helix transcript factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 56:1958–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P (1992) Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J 11:3681–3694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoi Y, Namihisa T, Kuroda H, Komatsu I, Miyazaki A, Watanabe S, Usui K (1984) Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology 4:709–714

    Article  CAS  PubMed  Google Scholar 

  • Yorifuji H, Hirosawa K, Yamada E (1980) Vitamin A storing cell in mouse urinary bladder—an autoradiographic study. J Electron Microsc 29:288

    Google Scholar 

  • Youson JH, Sidon EW (1978) Lamprey biliary atresia: first model system for the human condition? Experientia 34:1084–1086

    Article  CAS  PubMed  Google Scholar 

  • Yu MC, Chen CH, Liang X, Wang L, Gandhi CR, Fubg JJ, Lu L, Qian S (2004) Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40:1312–1321

    Article  CAS  PubMed  Google Scholar 

  • Zajicek G, Oren R, Weinreb M Jr (1985) The streaming liver. Liver 5:293–300

    Article  CAS  PubMed  Google Scholar 

  • Zajicek G, Ariel I, Arber N (1988) The streaming liver III. Littoral cells accompany the streaming hepatocyte. Liver 8:213–218

    Article  CAS  PubMed  Google Scholar 

  • Zaret KS (2001) Embryonic development of the liver. In: Arias IM, Boyer JL, Chisari EV, Fausto N, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 17–25

    Google Scholar 

  • Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282:23337–23347

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann KW (1923) Der feinere Bau der Blutcapillaren. Z Anat 68:29–109

    Article  Google Scholar 

  • Zimmerman KW (1928) Ueber das Verhaeltnis der Kupfferschen Sternzellen zum Endothel der Leberkapillaren beim Menschen. Z Mikr Anat Forsch 14: 528–548

    Google Scholar 

  • Zhan S-S, Jiang JX, Wu J, Halsted C, Friedman SL, Zern MA, Torok NJ (2006) Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 43:435–443

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Pegoli W Jr, Clemens MG (1994) Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol Gastrointest Liver Physiol 266:G624–G632

    CAS  Google Scholar 

  • Zhao C, Chen W, Yang L, Chen L, Stimpson SA, Diehl AM (2006) PPARγ agonists prevent TGFβ1/Smad3-signaling in human hepatic stellate cells. Biochem Biophys Res Commun 350:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Chen A (2004) Activation of PPARγ is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. Biochem J 384:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Chen A (2006) Curcumin suppresses the expression of extracellular matrix genes in activated hepatic stellate cells by inhibiting gene expression of connective tissue growth factor. Am J Physiol Gastrointest Liver Physiol 290:G883–G893

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Shimizu I, Lu G, Itonaga M, Okamura Y, Shono M, Honda H, Inoue S, Muramatsu M, Ito S (2001) Hepatic stellate cells contain the functional estrogen receptor β but not the estrogen receptor α in male and female rats. Biochem Biophys Res Commun 286:1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Jamil A, Nash A, Chan J, Trim N, Iredale JP, Benyon RC (2006) Impaired proteolysis of collagen I inhibits proliferation of hepatic stellate cells. Implications for regulation of liver fibrosis. J Biol Chem 281:39757–39765

    Article  CAS  PubMed  Google Scholar 

  • Zizola CF, Schwartz GJ, Vogel S (2008) Cellular retinol-binding protein type III is a PPAR target gene and plays a role in lipid metabolism. Am J Physiol Endocrinol Metab 295:E1358–E1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Drs. Kenjiro Wake and late Hajime Mannen (Emeritus professors of Tokyo Medical and Dental University), who introduced Haruki Senoo to basic medical research and encouraged the authors continuously. We are grateful to Drs. Tetsuro Kato and Tetsuo Kato (Emeritus professors of Akita University) for their continuous support and encouragement. The authors also thank Dr. Mitsuru Sato and Mr. Naosuke Kojima (Akita University School of Medicine) for valuable discussions and significant techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruki Senoo.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senoo, H., Mezaki, Y. & Fujiwara, M. The stellate cell system (vitamin A-storing cell system). Anat Sci Int 92, 387–455 (2017). https://doi.org/10.1007/s12565-017-0395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-017-0395-9

Keywords

Navigation