Skip to main content
Log in

Application of nanoparticles in ocular drug delivery systems

  • Original Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Application of a drug in the form of eye drops represents easiest, safest and, at the moment, the most common non-invasive method of ocular drug application. Other conventional ophthalmic formulations in the form of aqueous and oily solutions, ointments, suspensions and emulsions were established to increase bioavailability, solubility and pericorneal retention time of a drug, compared to eye drops. But in the last few decades, nanotechnology-based ophthalmic formulations have been intensively analysed in the area of drug delivery to anterior and posterior parts of the eye. Systems based on nanotechnology with adequate nanoparticle size can be formed to achieve lower irritation and inflammation and better bioavailability and interaction of a drug with ocular tissue. The nanocarrier-based approach led to the development of nanoparticles, nanosuspensions, nanoemulsions, liposomes, nanomicelles, niosomes, nanocrystals and dendrimers for ocular drug delivery. These systems have significant advancements compared to conventional systems, particularly if they are observed as systems for drug delivery to the posterior eye part. Besides advantages, the nanoparticle use in these circumstances could be a reason for concern, because of certain toxic effects noticed in some studies. In this article, we aim to provide an overview of the potential of incorporating an active pharmaceutical ingredient into nanoparticles investigated in the therapy of anterior and posterior eye segment conditions. We will discuss the most important improvements that have been accomplished in the development of nanoparticle-based formulations for the treatment of glaucoma, autoimmune uveitis, age-associated macular degeneration and corneal and choroidal neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–5.

    Google Scholar 

  2. Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol Ther. 1986;2(1):67–108.

    Google Scholar 

  3. Kaur IP, Kanwar M. Ocular preparations: the formulation approach. Drug Dev Ind Pharm. 2002;28(5):473–93.

    Google Scholar 

  4. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64.

    Google Scholar 

  5. Runkle EA, Antonetti DA. The blood-retinal barrier: structure and functional significance. Methods Mol Biol. 2011;686:133–48.

    Google Scholar 

  6. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58(11):1136–63.

    Google Scholar 

  7. Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res. 2002;21(1):15–34.

    Google Scholar 

  8. Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: characterisation and research methods. Sci World J. 2014;2014(7):861–904.

    Google Scholar 

  9. Reimondez-Troitiño S, Csaba N, Alonso MJ, De La Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95(1):279–93.

    Google Scholar 

  10. Cholkar K, Patel A, Vadlapudi DA, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2(2):82–95.

    Google Scholar 

  11. Herrero-Vanrell R, De La Torre MV, Andres-Guerrero V, Barbosa-Alfaro D, Molina-Martinez IT, Bravo-Osuna I. Nano- and microtechnologies for ophthalmic administration, an overview. J Drug Deliv Sci Tec. 2013;23(2):75–102.

    Google Scholar 

  12. Bu HZ, Gukasyan HJ, Goulet L, Lou XJ, Xiang C, Koudriakova T. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab. 2007;8(2):91–107.

    Google Scholar 

  13. Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm. 2009;378(1–2):177–86.

    Google Scholar 

  14. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827–40.

    Google Scholar 

  15. Kassem MA, Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340(1–2):126–33.

    Google Scholar 

  16. Vandamme TF, Brobeck L. Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102(1):23–38.

    Google Scholar 

  17. Yavuz B, Bozdag-Pehlivan S, Unlu N. Dendrimeric systems and their applications in ocular drug delivery. Sci World J. 2013;2013(7):732–40.

    Google Scholar 

  18. Müller RH, Junghanns JU. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–310.

    Google Scholar 

  19. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–51.

    Google Scholar 

  20. Paolicelli P, Prego C, Sánchez A, Alonso MJ. Surface-modified PLGA-based nanoparticles that can efficiently associate and deliver virus-like particles. Nanomedicine. 2010;5(6):843–53.

    Google Scholar 

  21. Kondiah P, Choonara Y, Kondiah P, Marimuthu T, Kumar P, du Toit L, et al. Nanocomposites for therapeutic application in multiple sclerosis. In: Inamuddin I, Asiri A, Mohammad A, editors. Applications of nanocomposite materials in drug delivery. 1st ed. Amsterdam: Elsevier; 2018. p. 391–408.

    Google Scholar 

  22. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials. 2002;23(15):3247–55.

    Google Scholar 

  23. Giannavola C, Bucolo C, Maltese A, Paolino D, Vandelli MA, Puglisi G, et al. Influence of preparation conditions on acyclovir-loaded nanospheres. Pharm Res. 2003;20(4):584–90.

    Google Scholar 

  24. Hühn D, Kantner K, Geidel C, Brandholt S, de Cock I, Soenen S, et al. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano. 2013;7(4):3253–63.

    Google Scholar 

  25. Tatur S, Maccarini M, Barker R, Nelson A, Fragneto G. Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir. 2013;29(22):6606–14.

    Google Scholar 

  26. Pimienta C, Lenaerts V, Cadieux C, Raymond P, Juhasz J, Simard MA, et al. Mucoadhesion of hydroxypropylmethacrylate nanoparticles to rat intestinal ileal segments in vitro. Pharm Res. 1990;7(1):49–53.

    Google Scholar 

  27. Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.

    Google Scholar 

  28. Zhang L, Li Y, Zhang C, Wang Y, Song C. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine. 2009;4(1):175–83.

    Google Scholar 

  29. Koo H, Moon H, Han H, Na JH, Huh MS, Park JH, et al. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials. 2012;33(12):3485–93.

    Google Scholar 

  30. Kim H, Robinson SB, Csaky KG. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res. 2009;26(2):329–37.

    Google Scholar 

  31. Muhamad I, Selvakumaran S, Lazim N. Designing polymeric nanoparticles for targeted drug delivery system. In: Seifalian A, de Mel A, Kalaskar D, editors. Nanomedicine. Manchester: One Central Press; 2014. p. 287–313.

    Google Scholar 

  32. Souto EB, Doktorovova S, Gonzalez-Mira E, Egea MA, Garcia ML. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr Eye Res. 2010;35(7):537–52.

    Google Scholar 

  33. Almeida H, Amaral MH, Lobão P, Silva AC, Loboa JMS. Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: present and future considerations. Journal of Pharmacy & Pharmaceutical Sciences. 2014;17(3):278–93.

    Google Scholar 

  34. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(S1):131–55.

    Google Scholar 

  35. Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289–300.

    Google Scholar 

  36. Hirlekar R, Garse H, Kadam V. Solid lipid nanoparticles and nanostructured lipid carriers: a review. Current Drug Therapy. 2011;6(4):240–50.

    Google Scholar 

  37. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced Pharmaceutical Bulletin. 2015;5(3):305–13.

    Google Scholar 

  38. Okur NÜ, Gökçe EH. Lipid nanoparticles for ocular drug delivery. International Journal of Ophthalmic Research. 2015;1(3):77–82.

    Google Scholar 

  39. Kao HJ, Lo YL, Lin HR, Yu SP. Characterization of pilocarpine-loaded chitosan/carbopol nanoparticles. J Pharm Pharmacol. 2006;58(2):179–86.

    Google Scholar 

  40. Yuan X, Yuan Y, Jiang W, Liu J, Tian E, Shun H, et al. Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm. 2008;349(1–2):241–8.

    Google Scholar 

  41. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68(3):513–25.

    Google Scholar 

  42. Ibrahim H, El-Leithy I, Makky A. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm. 2010;7(2):576–85.

    Google Scholar 

  43. Mahmoud A, El-Feky G, Kamel R, Awad G. Chitosan/sulphobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm. 2011;413(1–2):229–36.

    Google Scholar 

  44. Nagarwal RC, Kumar R, Pandit JK. Chitosan-coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci. 2012;47(4):678–85.

    Google Scholar 

  45. Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharm. 2012;432(1–2):105–12.

    Google Scholar 

  46. Gupta H, Aqil M, Khar R, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6(2):324–33.

    Google Scholar 

  47. Gupta H, Aqil M, Khar R, Ali A, Bhatnagar A, Mittal G. Nanoparticles laden in situ gel for sustained ocular drug delivery. Journal of Pharmacy and Bioallied Sciences. 2013;5(2):162–5.

    Google Scholar 

  48. Gupta H, Aqil M, Khar R, Ali A, Bhatnagar A, Mittal G. Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention. Drug Delivery. 2013;20(7):306–9.

    Google Scholar 

  49. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238(1–2):241–5.

    Google Scholar 

  50. Attama AA, Reichl S, Muller-Goymann CC. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm. 2008;355(1–2):307–13.

    Google Scholar 

  51. Gökçe EH, Sandri G, Bonferoni MC, Rossi S, Ferrai F, Güneri T, et al. Cyclosporine-A-loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm. 2008;364(1):76–86.

    Google Scholar 

  52. Araújo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm. 2010;393(1–2):167–75.

    Google Scholar 

  53. Liu Z, Zhang X, Wu H, Li J, Shu L, Liu R, et al. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev Ind Pharm. 2011;37(4):475–81.

    Google Scholar 

  54. Gonzalez-Mira E, Egea MA, Souto EB, Calpena AC, Garcia ML. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology. 2011;22(4):45–57.

    Google Scholar 

  55. Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a box-Behnken design. Int J Nanomedicine. 2011;6(1):683–92.

    Google Scholar 

  56. Liu R, Liu Z, Zhang C, Zhang B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J Pharm Sci. 2012;101(10):3833–44.

    Google Scholar 

  57. Hippalgaonkar K, Adelli GR, Hippalgaonkar K, Repka MA, Majumdar S. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther. 2013;29(2):216–28.

    Google Scholar 

  58. Zhang W, Li X, Ye T, Chen F, Yu S, Chen J, et al. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int J Nanomedicine. 2014;9(1):4305–15.

    Google Scholar 

  59. Üstundag-Okur N, Gökçe EH, Bozbıyık DI, Egrilmez S, Ozer O, Ertan G. Preparation and in vitro-in vivo evaluation of ofloxacin-loaded ophthalmic nanostructured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci. 2014;63(1):204–15.

    Google Scholar 

  60. Üstundag-Okur N, Gökçe EH, Bozbıyık DI, Egrilmez S, Ertan G, Ozer O. Novel nanostructured lipid carrier-based inserts for controlled ocular drug delivery: evaluation of corneal bioavailability and treatment efficacy in bacterial keratitis. Expert Opinion on Drug Delivery. 2015;12(11):1791–807.

    Google Scholar 

  61. Vega E, Egea MA, Valls O, Espina M, Garcia ML. Flurbiprofen-loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci. 2006;95(11):2393–405.

    Google Scholar 

  62. Zhang Z, He Z, Liang R, Ma Y, Huang W, Jiang R, et al. Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromolecules. 2016;17(3):798–807.

    Google Scholar 

  63. Mun EA, Morrison PW, Williams AC, Khutoryanskiy VV. On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol Pharm. 2014;11(10):3556–64.

    Google Scholar 

  64. Chew EY, Glassman AR, Beck RW, Bressler NM, Fish GE, Ferris FL. Ocular side effects associated with peribulbar injections of triamcinolone acetonide for diabetic macular edema. Retina. 2011;31(1):284–9.

    Google Scholar 

  65. Natarajan JV, Darwitan A, Barathi VA, Ang M, Htoon HM, Boey F, et al. Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. ACS Nano. 2014;8(1):419–29.

    Google Scholar 

  66. Lavik E, Kuehn MH, Kwon YH. Novel drug delivery systems for glaucoma. Eye. 2011;25(5):578–86.

    Google Scholar 

  67. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6(9):7595–606.

    Google Scholar 

  68. Singh KH, Shinde UA. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Die Pharmazie. 2011;66(8):594–9.

    Google Scholar 

  69. Chen R, Qian Y, Li R, Zhang Q, Liu D, Wang M, et al. Methazolamide calcium phosphate nanoparticles in an ocular delivery system. Yakugaku Zasshi. 2010;130(3):419–24.

    Google Scholar 

  70. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Hyaluronic acid-modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target. 2010;18(4):292–302.

    Google Scholar 

  71. Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. Nanoparticles in the ocular drug delivery. International Journal of Ophthalmology. 2013;6(3):390–6.

    Google Scholar 

  72. Cho YK, Uehara H, Young JR, Tyagi P, Kompella UB, Zhang X, et al. Flt23k nanoparticles offer additive benefit in graft survival and anti-angiogenic effects when combined with triamcinolone. Investig Ophthalmol Vis Sci. 2012;53(4):2328–36.

    Google Scholar 

  73. Li Z, Yao L, Li J, Zhang W, Wu X, Liu Y, et al. Celastrol nanoparticles inhibit corneal neovascularization induced by suturing in rats. Int J Nanomedicine. 2012;7(1):1163–73.

    Google Scholar 

  74. Gomes-Bittencourt M, Sepah YJ, Do DV, Agbedia O, Akhtar A, Liu H, et al. New treatment options for noninfectious uveitis. Dev Ophthalmol. 2012;51(1):134–61.

    Google Scholar 

  75. Sakai T, Ishihara T, Higaki M, Akiyama G, Tsuneoka H. Therapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2011;52(3):1516–21.

    Google Scholar 

  76. Hashida N, Ohguro N, Yamazaki N, Arakawa Y, Oiki E, Mashimo H, et al. High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome. Exp Eye Res. 2008;86(1):138–49.

    Google Scholar 

  77. Strettoi E, Gargini C, Novelli E, Sala G, Piano I, Gasco P, et al. Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci. 2010;107(43):18706–11.

    Google Scholar 

  78. Zhang W, Wang Y, Lee B, Liu C, Wei G, Lu W. A novel nanoscale-dispersed eye ointment for the treatment of dry eye disease. Nanotechnology. 2014;25(12):125101.

    Google Scholar 

  79. Huang J, Peng T, Li Y, Zhan Z, Zeng Y, Huang Y, et al. Ocular cubosome drug delivery system for timolol maleate:pPreparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2919–26.

    Google Scholar 

  80. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21(5):789–801.

    Google Scholar 

  81. Li J, Wu L, Wu W, Wang B, Wang Z, Xin H, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1–2):75–84.

    Google Scholar 

  82. Klausner EA, Zhang Z, Chapman RL, Multack RF, Volin MV. Ultrapure chitosan oligomers as carriers for corneal gene transfer. Biomaterials. 2010;31(7):1814–20.

    Google Scholar 

  83. Konat Zorzi G, Contreras-Ruiz L, Párraga JE, López-García A, Romero Bello R, Diebold Y, et al. Expression of MUC5AC in ocular surface epithelial cells using cationized gelatin nanoparticles. Mol Pharm. 2011;8(5):1783–8.

    Google Scholar 

  84. De La Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Investig Ophthalmol Vis Sci. 2008;49(5):2016–24.

    Google Scholar 

  85. Mittal N, Kaur G. Leucaena leucocephala (Lam.) galactomannan nanoparticles: optimization and characterization for ocular delivery in glaucoma treatment. Int J Biol Macromol. 2019;139(1):1252–62.

    Google Scholar 

  86. Zhou Y, Li L, Li S, Li S, Zhao M, Zhou Q, et al. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale. 2019;11(27):13126–38.

    Google Scholar 

  87. Hanafy AF, Abdalla AM, Guda TK, Gabr KE, Royall PG, Alqurshi A. Ocular anti-inflammatory activity of prednisolone acetate loaded chitosan-deoxycholate self-assembled nanoparticles. Int J Nanomedicine. 2019;14(1):3679–89.

    Google Scholar 

  88. Abdel-Rashid RS, Helal DA, Omar MM, El Sisi AM. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int J Nanomedicine. 2019;14(1):2973–83.

    Google Scholar 

  89. Wu M, Feng Z, Deng Y, Zhong C, Liu Y, Liu J, et al. Liquid antisolvent precipitation: an effective method for ocular targeting of lutein esters. Int J Nanomedicine. 2019;14(1):2667–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Vranić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omerović, N., Vranić, E. Application of nanoparticles in ocular drug delivery systems. Health Technol. 10, 61–78 (2020). https://doi.org/10.1007/s12553-019-00381-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-019-00381-w

Keywords

Navigation