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Abstract

The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on
alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst
basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with
emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated
intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our
understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the
microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular
engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has
been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and
secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-
assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation
of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as
components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-
based and peptide-carrier nanobiomaterials that we also review.

Keywords Molecular engineering - Antimicrobial peptides - Antimicrobial resistance - Peptide-target interactions - Molecular
self-assembly - Nanotechnology - Biomaterials

Background: the antibiotic resistance global
threat and current molecular design
approaches

Historical perspective
The first documented failure of antimicrobial therapy in

humans due to acquired microbial resistance was reported in
the 1940s for penicillin, which occurred only a few years after
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its commercialisation (Wright 2010). The therapeutic revolu-
tion initiated by penicillin motivated the discovery of varied
molecular design approaches in the following few decades
(Table 1).

Gramicidin was the first reported antimicrobial peptide
(AMP), isolated from the soil bacteria Bacillus brevis in
1939, while defensin was the first evidenced animal AMP,
isolated from rabbit leukocytes. Despite these early discover-
ies, it was only after the 1960s that global interest and research
efforts were devoted to antimicrobial peptides, due to the rise
of multidrug-resistant microbial pathogens. Presently, over
5000 AMPs have been reported (Zhang and Gallo 2016;
Travkova et al. 2017).

Microbial evolution towards acquiring resistance to
marketed drugs kept increasing over the twentieth century
and early twenty-first century (Ventola 2015a; Aslam et al.
2018; Kennedy and Read 2018; Peterson and Kaur 2018).
Decades of fundamental research unravelled four main types
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of molecular resistance mechanisms: secretion of inactivating
enzymes, secretion of efflux pumps, immunity and bypass,
and target modification. A number of excellent reviews have
compiled these mechanisms for the antimicrobial agents cur-
rently on the market (Table 1, Fig. 1) (Davies and Davies
2010; Malmir et al. 2018; Ribeiro da Cunha et al. 2019;
Magana et al. 2020). Two main factors are identified as
favouring the increase of antimicrobial resistance: the gener-
alized use and misuse of antimicrobial therapies and the insuf-
ficient discovery of new antimicrobial therapies (Table 1)
(Ventola 2015a; Aslam et al. 2018; Kennedy and Read
2018; Peterson and Kaur 2018).

Worldwide, numerous organizations, like the Centre for
Disease Control and Prevention (CDC), the Infectious
Diseases Society of America, the World Economic Forum,
and the World Health Organization (WHO) have recog-
nized antibiotic resistance as a “global public health con-
cern”. Numerous attempts have been made to delineate the
diverse aspects of antibiotic resistance (Li et al. 2012; Crofts
etal. 2017; Sierra et al. 2017). WHO published several doc-
uments to guide the development of new antimicrobials,
such as the list of global priority pathogens and correspond-
ing target diseases (WHO 2017). In 2015, WHO launched
the Global Antimicrobial Resistance and Use Surveillance
System (GLASS) as the first global system to collect official
national antimicrobial resistance data in selected bacterial
pathogens (WHO 2015). In a span of 4 years, 91 countries
and territories had already enrolled in the system. Based on
worldwide data, the GLASS report of May 2020 revealed a
worrying number of common bacterial infections increas-
ingly resistant to available antibiotics (WHO 2020Db).

Fig. 1 Main molecular
mechanisms of action and
resistance for marketed
antibiotics. Modified from Wright
2010
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Recently, concerns have been raised regarding an aggrava-
tion of the inappropriate use of antibiotics during the COVID-
19 pandemic. Consequently, the WHO issued guidance to
“NOT recommend antibiotic therapy or prophylaxis for patients
with mild or moderate COVID-19 unless signs and symptoms of a
bacterial infection exist” (Getahun et al. 2020).

Global priority pathogens and infectious diseases

The WHO priority list contains 12 bacterial families, in-
cluding the ESKAPE pathogens (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter species), which are known to represent a
global threat to human health (WHO 2017).
Mycobacteria was not included in the catalogue, because
it is already considered a global priority for which inno-
vative new treatments are urgently needed. The main ob-
jective of the list was to identify the most important re-
sistant bacteria at a global level for which there is an
urgent need for new treatments, in order to encourage
the prioritisation of funding and incentives, to align re-
search and development priorities of public health and to
garner global coordination in the fight against those path-
ogens. The WHO priority pathogens were selected
through a multi-criteria decision analysis technique con-
templating both expert opinion and evidence-based data,
following ten criteria: all-cause mortality, healthcare and
community burden, prevalence of resistance, 10-year
trend of resistance, transmissibility, preventability in hos-
pital and community settings, treatability and current
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pipeline (Santajit and Indrawattana 2016; WHO 2017;
Parish 2019; De Oliveira et al. 2020).

In May 2020, WHO released a report comprising the
target product profiles (TTP) for needed antimicrobial
agents for priority diseases, namely enteric fever,
gonorrhoea, neonatal sepsis, and urinary tract infections.
Table 2 compiles the diseases considered as priority tar-
gets, together with their available treatments and reported
antimicrobial resistance (WHO 2020c¢).

The increasing occurrence of fungal infections that are re-
sistant to the limited number of commonly used antifungal
classes, such as triazoles, echinocandins, and polyenes, has
lead the WHO to develop a priority list of fungal pathogens.
This list is programmed to be launched at the end 0f 2021 with
the main purpose of defining R&D priorities with identified
public health needs. In April 2020, a first meeting of the WHO
antifungal expert group took place to establish the parameters
for pathogen selection. The priority fungal pathogens initially
set out include: Candida auris; azole-resistant Candida spp.,
azole-resistant Aspergillus fumigatus; Cryptococcus
neoformans, Cryptococcus gattii,; Pneumocystis jirovecii and
Mucorales. Further evaluation will be made based on limita-
tions of treatment options due to resistance and/or existing
treatability issues for those pathogens (WHO 2020a).

Molecular design approaches in the pre-clinical and
clinical pipelines

Since the publication of the first priority list by WHO in 2017
and until September 2019, eight new antibiotics were ap-
proved by the US and European authorities (FDA/EMA) with
activity against the priority pathogens. However, most of these

Table 2
from WHO (WHO 2020c¢)

products are not very innovative, being derivatives of known
classes, such as the tetracycline derivatives eravacycline,
omadacycline, or sarecyclin, the cephalosporin derivative
cefiderocol and the combination therapy imipenem-
cilastatin-relebactam. Sarecycline is indicated for moderate
to severe acne caused by Cutibacterium acnes while the com-
bination therapy imipenem-cilastatin-relebactam and
cefiderocol were approved for complicated urinary tract infec-
tions (Andrei et al. 2019; EMA 2020; FDA 2020).

As of September 2019, the WHO listed 49 small molecules
and 10 biological molecules in clinical development that tar-
get priority pathogens, Mycobacterium tuberculosis and
Clostridium difficile. Besides this high number, only six of
these therapies did not display cross-resistance to existing an-
tibiotics and between those six only two were active against
multidrug-resistant Gram negative bacteria. This can be ex-
plained by the general lack of chemical diversity. Indeed, most
of the new antimicrobial small molecules in clinical trials are
combinatory therapies of beta lactams with beta-lactamase
inhibitors or tetracycline derivatives. The six innovative small
molecule antibiotics include two boronate beta-lactam inhibi-
tors (taniborbactam-cefepime and VNRX-7145—ceftibuten),
two new topoisomerase inhibitors (zoliflodacin and
gepotidacin), a new Fabl inhibitor (afabicin), and a FtsZ in-
hibitor (TXA709) (WHO 2019a). Antimicrobial biological
medicines in clinical development include mono/polyclonal
antibodies and endolysins, which all can be considered inno-
vative, as they target new structures through new modes of
action (classes: anti-Staphylococcus aureus immunoglobulin
M (IgM) monoclonal antibody; anti-Staphylococcus aureus
IgG monoclonal antibody; phage endolysin; anti-
Pseudomonas aeruginosa 1gG monoclonal antibody; anti-

Available treatment and reported antimicrobial resistance for enteric fever, gonorrhoea, neonatal sepsis, and urinary tract infections. Adapted

Disease Pathogen Antibiotic resistance

Available treatment

Enteric fever  Salmonella typhi or

Salmonella paratyphi

Resistant to all major antibiotic categories
(varies upon the region)

Asia: ciprofloxacin resistance in S. typhi
or S. paratyphi is close to 100%

1) Ampicillin, chloramphenicol,
co-trimoxazole and fluoroquinolones (not
effective in many regions)

2) Cefixime, azithromycin and ceftriaxone

3) Extra resistant strains: azithromycin and
carbapenems

1) Ceftriaxone and azithromycin (resistance
has been reported)

1) Ampicillin or penicillin in combination
with gentamicin (resistance has been

reported)

1) Acute pyelonephritis: fluoroquinolones in

Gonorrhoea Neisseria gonorrhoeae Resistance to all oral antimicrobials used
for treatment: sulphonamides, penicillins,
tetracyclines, macrolides and fluoroquinolones
Neonatal Most common: Varies
sepsis E coli, Klebsiella sp.,
Acinetobacter sp., P
aeruginosa, S aureus
Urinary tract ~ Most common: E coli, K Fluoroquinolones. Resistance data to ampicillin,
infections pneumoniae, amoxicillin/clavulanic acid, oral cephalosporins,

Enterobacteriaceae

co-trimoxazole and ciprofloxacin.

countries with low resistance rates
2) Cystitis: nitrofurantoin, fosfomycin
trometamol and pivmecillinam
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Pseudomonas aeruginosa serotype O11 IgG monoclonal an-
tibody; anti-Staphylococcus aureus 1gG monoclonal anti-
body; anti-Staphylococcus aureus 1gG monoclonal antibody;
anti-Clostridium difficile polyclonal antibody). However, the
high cost of biologicals compared to small molecules limits
their potential use as alternative treatments to current therapies
(Peterson and Kaur 2018; WHO 2019a).

The first comprehensive global overview of the antibacte-
rial pre-clinical pipeline was published by the WHO in 2019,
compiling 252 antibacterial products being developed in 145
institutions around the world. The review identified relatively
innovative products, with many projects including direct-
acting small molecules (n = 108, 42.9%), antimicrobial pep-
tides (n =27, 10.7%), and phage/phage-derived peptides (n =
28, 11.1%) (WHO 2019b). Considering the WHO priority
pathogens list, examination of the pre-clinical pipeline pro-
jects indicates that a significant number of products were fo-
cused on single pathogenic species, representing a consistent
shift rather than broader spectrum agents. Almost one-third of
these products target bacterial cell wall synthesis or directly
act on the bacterial membrane because of the less likely oc-
currence of resistance to these mechanisms of action
(Kennedy and Read 2018). However, for these new non-
traditional approaches, the failure rate in clinical trials is con-
siderably higher than that of proven pathways for new agents
of existing antibiotic classes. Finding innovative antimicrobial
entities is scientifically complex and less successful than drug
discovery in other fields. The challenges include (i) in order to
avoid single-step resistance, find compounds that have more
than one binding site; (ii) discover molecules that penetrate the
outer layers of Gram negative cell walls without being
pumped out immediately by efflux pumps; and (iii) overcome
toxicity problems due to the usual high concentrations of the
antimicrobials required to kill bacteria (Ventola 2015b;
Kennedy and Read 2018; Peterson and Kaur 2018).

Antimicrobial drug discovery: latest approaches

Historically, the most successful means of antibacterial dis-
covery have been the screening of natural products obtained
from microbial sources. To date, most of the antibiotics avail-
able on the market are natural or semi-synthetic/synthetic
compounds derived from natural molecules (Simmons et al.
2010; Renwick et al. 2016; Parish 2019). Several approaches
can be employed in the discovery of natural antimicrobials,
such as diversity-based approaches (culturing the “uncul-
tured” bacteria; co-culture; examine rare bacterial taxa and
unusual habitats), ribosome engineering, genetic engineering,
and genome mining, as developed below (Goodfellow and
Fiedler 2010; Renwick et al. 2016; Wohlleben et al. 2016).
These approaches are supported by recent advances in com-
putational models and combinatorial chemistry to rationally
discover new drugs and improve current antimicrobials (Pucci

2006; Simmons et al. 2010; Renwick et al. 2016; Blaskovich
etal. 2017).

Natural antibiotics discovery: diversity-based approaches

Less than 1% of the microbes present in the environment can
be cultivated in the laboratory. In support of the global effort
to cultivate new microbial taxa, nutrient media and diffusion
chambers have been successfully used in high-throughput cul-
tivation for several microbes such as marine isolates (Amann
et al. 1995; Nichols et al. 2010; Wohlleben et al. 2016). Soil
Actinomycetes, particularly Streptomyces species, have been
the source of most natural antibiotics in use nowadays. In
recent years, after decades of exploiting terrestrial
Streptomycetes, the search has shifted to rare Actinomycetes
and other taxa of bacteria such as Cyanobacteria and
Proteobacteria. Novel Actinomycetes species and their novel
natural products have been discovered in deep ocean sedi-
ments, hyper-arid desert soils, and hot springs to name a few
unusual habitats. Endophytic bacteria present in plant tissues
and plant rhizospheres, and symbiotic bacteria such as the
actinobacteria living in mutualistic association with fungal
growing attine ants, bacterial-nematode associations, or even
human commensals are being sourced for novel antibiotics.
Goodfellow and Fiedler have outlined a bioprospecting strat-
egy where species from extreme or unusual habitats are culti-
vated with selective isolation methods, novel taxa are recog-
nized by dereplication, and then screened for natural products
(Hosaka et al. 2009; Goodfellow and Fiedler 2010; Wohlleben
et al. 2016). In the environment, microorganisms are rarely
found in isolation. Several reports have shown that microor-
ganisms that grow in co-culture with another species result in
induction of antibiotic production, often related to previously
silent gene clusters. Co-cultures can induce silent antibiotic
genes because of competition (Hosaka et al. 2009;
Wohlleben et al. 2016).

Ribosome engineering, genetic engineering and genome
mining

Ribosome engineering is an approach to discover microbes
with spontaneous mutations in their ribosome or RNA poly-
merase, through screening antibiotic-resistant mutants. Some
selected mutants may have elevated secondary metabolite pro-
duction or produce new series of natural products with inter-
esting biological activities. A simple way to introduce ribo-
somal mutations is by exposing strains to aminoglycoside
antibiotics. Strains that become resistant to these antibiotics
harbour mutations in the ribosome. Resistance to other ribo-
some targeting antibiotics such as gentamicin or erythromycin
could also stimulate antibiotic production (Hosaka et al. 2009;
Zhu et al. 2019).
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Eliminating genes for one secondary metabolite can stim-
ulate the production of silent pathways. This was verified
when ten new amexanthomycins were produced after the de-
letion of rifamycin synthesis genes in the Amycolatopsis
mediterranei. Furthermore, by introducing or altering the ex-
pression of a heterologous global regulator, the secondary
metabolome can change unpredictably. Many biosynthetic
gene clusters include pathway-specific regulators that when
overexpressed can increase the yield of the natural product
or stimulate a previously silent cluster (e.g., production of
stambomycin by Streptomyces ambofaciens) (Laureti et al.
2011; Li et al. 2018; Rajeev 2018).

Genome mining can be applied to predict the synthesis of
new compounds. Genes synthesizing natural products are
contained in biosynthetic gene clusters. Those clusters are
modular, following an assembly line method with the number
of modules correlating to the number of molecular building
blocks incorporated in the product. Normally, there is a core
cluster that models the product and adjacent genes that change
the product such as acyltransferases and genes that confer self-
resistance (Blin et al. 2017; Rajeev 2018). Genome mining
tools can connect biosynthetic gene clusters to their corre-
sponding natural products, being empowered to find the ac-
cessory tailoring domains and use the information to predict
structural features and physicochemical properties of the final
product. The most important of these are PRISM (PRediction
Informatics for Secondary Metabolomes) (Skinnider et al.
2017) and antiSMASH (antibiotics and Secondary
Metabolite Analysis SHell) (Blin et al. 2017; Rajeev 2018).
Those computational tools can foresee the number of biosyn-
thetic gene clusters in a selected genome and the structures of
the natural products. Other important tools which are restrict-
ed to peptide natural products are Pep2Path (Medema et al.
2014), NRPQuest (for non-ribosomal peptides) (Mohimani
et al. 2014a) and RiPPQuest (for ribosomal peptides)
(Mohimani et al. 2014b).

Bioactive-guided screening and target-based drug discovery

Two main principles have been applied as the basis for effec-
tive drug discovery programmes: (i) target-oriented screening:
aiming to identify compounds that are compatible with a
known and validated molecular target; (ii) bioactive-guided
screening: after the identification of the active substance, ef-
forts are made to analyse the target and the mode of action of
the compound (Goodfellow and Fiedler 2010; Jackson et al.
2018; Parish 2019).

Target-based drug discovery has a great potential. This
approach starts with identifying compounds or pathways that
are essential to the pathogen. Genome sequencing can help to
identify unique targets specific to bacteria, providing high
specificity over human cells, and targets can be selected that
are either common to all bacteria or specific to certain species.

@ Springer

After selection of the target, they are characterized, validated
and screened against a panel of small molecules or chemical
libraries to identify those that affect them. Then, the selected
molecules are evaluated for their suitability as drugs (low tox-
icity, good bacterial penetration and bioavailability) and later
attempts are made to improve their potency and pharmacoki-
netic properties (Simmons et al. 2010; Parish 2019). Structure-
based drug discovery (SBDD) is an example for target-based
drug discovery. An antimicrobial drug target should be essen-
tial have a unique function in the pathogen and exhibit an
activity that can be altered by a small molecule. After, proto-
cols for high-throughput screening and de novo design are
used to establish new drugs and their antimicrobial
structure—activity relationship (Simmons et al. 2010).

Antimicrobial peptides as promising new drugs

Antimicrobial peptides (AMPs) are small proteins usually
composed of up to 50 amino acid residues, which, depending
on their composition, size and conformation, can be arranged
in different groups such as cationic peptides (largest), non-
cationic peptides, aromatic peptides or those derived from
oxygen-binding proteins (Vizioli and Salzet 2002). Apart
from the peptide charge, the features mentioned above may
be essential for their antimicrobial activity (Friedrich et al.
2000). AMPs have exhibited broad-spectrum activity against
many Gram negative and Gram positive strains as well as
fungi (Chung and Khanum 2017) and are produced by both
animals and plants (Zasloff 2002). They have been used for
the treatment of Candidiasis (Danesi et al. 2002) and have also
been useful against replication of HIV1 by eliminating viral
gene expression (Wachinger et al. 1998). Antimicrobial pep-
tides are part of the innate immune defence of organisms
(Peschel and Sahl 2006); they may present antibacterial, anti-
fungal, antiparasitic and antiviral activity (Hancock and
Diamond 2000). They are one of the strategies used by leuko-
cytes to kill microorganisms after being ingested (Otto 2010).
AMPs also have a signalling function and can activate im-
mune cells (Yang et al. 1999). AMPs bind to the anionic
bacterial surface and can integrate into the cytoplasmic mem-
brane, making pores to kill the microorganism, since most of
them are cationic (CAMPs) and show amphipathic properties
(Brown and Hancock 2006). In humans, most AMPs belong
to the beta defensin family (Ganz 2003) while the LL-37 pep-
tide belongs to the cathelicidin family (Diirr et al. 2006).
Most of the naturally occurring antimicrobial peptides have
rather long sequences, which can compromise their applica-
tion as commercial drugs due to the high cost of protein pro-
duction at industrial scale. Hence, research is focussing on
identifying short active fragments as a base to develop new
AMPs, using a range of molecular engineering strategies,
which are the topic of this review. Short AMPs represent a
chemical class of promising new drugs due to their robust
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biomimetic mechanisms of action, their relative ease of syn-
thesis, and low production cost when compared to biologicals.
With a clearer understanding of AMP pharmacokinetics and
structural biology, these peptides are increasingly gaining at-
tention as therapeutic agents (da Costa et al. 2015; Magana
et al. 2020; Mookherjee et al. 2020).

Molecular targets and mechanisms of action
involved in peptide antimicrobial activity

The bactericidal and/or bacteriostatic activity of AMPs pri-
marily depends upon their ability to interact with bacterial
membranes or cell walls, as a direct cell death mechanism or
means to reach intracellular targets (Kang et al. 2014; da Costa
etal. 2015; Zhang and Gallo 2016; Le et al. 2017; Mookherjee
et al. 2020). Mechanisms of action that target the microbial
membrane are amongst the preferred ones to develop new
agents, as less likely to engender resistance (Kennedy and
Read 2018). For these reasons, the interactions of antimicro-
bial peptides with the microbial lipid membrane have been the
focus of intense research, with molecular mechanisms being
unravelled. Lipopolysaccharides (LPS) are other essential
components of the Gram negative bacterial cell membrane.
Given the negative charge of LPS, cationic AMPs strongly
interact with these compounds, which constitute another anti-
microbial target of choice. Interestingly, immunomodulatory
activity has been reported through the interaction of AMPs
with LPS, and also with microbial nucleic acids or other im-
mune ligands. Various microbial intracellular targets are
emerging from fundamental research, with growing evidence
that potent AMPs target multiple functions. Bacterial biofilms
recently gained attention as extracellular AMP targets to pre-
vent infection spread.

Lipid membrane
Lipid membrane disruption

Several modes of action have been suggested for bacterial
membrane disruption by peptides, including carpet, barrel-
stave, toroidal pore formations and aggregate mechanism
(Chan et al. 2006; Kang et al. 2014; Bechinger and Gorr
2017; Nagarajan et al. 2018; Mookherjee et al. 2020)
(Fig. 2). In the carpet model, the peptides align and accumu-
late parallel to the surface of the membrane until they reach a
critical concentration, leading to changes in the membrane
fluidity and/or reduction in membrane barrier properties
resulting in membrane permeabilization. The membrane is
disrupted in a detergent-like way, with no need of peptide
insertion into the hydrophobic core of the bilayer. For the
barrel-stave model, peptides interact laterally, resulting in the
formation of a structure that behaves like a protein ion

channel. In the toroidal pore model, the peptides interact only
with the head groups of the lipids, affecting the local curvature
of the membrane and resulting in the formation of high cur-
vature peptide-lipid toroids. Another model is the aggregate
mechanism, when peptides cross the membrane without caus-
ing significant membrane disruption. Once inside the cell,
AMPs aim at intracellular targets (da Costa et al. 2015; Le
et al. 2017; Mookherjee et al. 2020).

Negative Gaussian curvature model

A body of research has focussed on the link between the
mechanism of action of AMPs and the ability of these peptides
to generate negative Gaussian curvature (or saddle-splay cur-
vature) in the bacterial membrane, which is known to desta-
bilize the membrane (Schmidt et al. 2011; Schmidt and Wong
2013; Lee et al. 2016). This effect is strongly linked to the
membrane lipid composition—the presence of anionic lipids,
and lipids of intrinsic negative curvature including phosphati-
dylethanolamine (PE)-based lipids and cardiolipin increase
the susceptibility to AMPs (Som et al. 2009; Schmidt et al.
2011). PE is the main phospholipid found in the plasma mem-
brane of Gram negative bacteria. It has been shown that the
presence of these negative curvature lipids may reduce the
energy required to form membrane pores associated with dis-
ruption of the bilayer by AMPs (Zimmerberg and Kozlov
2006). In contrast, cholesterol, which is more typical of eu-
karyotic membranes and acts to rigidify the lipid bilayer, ap-
pears to inhibit the effect of AMPs (Verly et al. 2008).

The role of negative Gaussian curvature in the AMP mech-
anism of action has also been demonstrated using peptide-
mimicking phenylene ethynylenes (Yang et al. 2008). The
ability of these compounds to induce permeation in bacterial
membranes was again shown to require the presence of phos-
phatidylethanolamine (PE)-based lipids, which promote neg-
ative Gaussian curvature in membranes. A mutant PE-
knockout strain of . coli was shown to out-survive the wild
type strain following addition of phenylene ethynylenes
(Yang et al. 2008).

Lee et al. used a machine learning approach to predict
whether a series of membrane-permeating «-helical peptides
of various sequence homologies were likely to be antimicro-
bial (Lee et al. 2016). Sequence homologies were restricted to
peptides 20-25 residues in length, with homology to known
AMPs, and high «-helical content. A support vector machine
(SVM)-based classifier was used to generate a metric o based
on the distance from the SVM hyperplane—this metric was
not correlated with the peptide’s minimum inhibitory concen-
tration, but instead with the ability of the peptide to generate
negative Gaussian curvature in a lipid membrane. Small-angle
x-ray scattering (SAXS) experiments on unilamellar vesicles
following the addition of selected peptides showed the forma-
tion of coexisting bicontinuous cubic lipid phases of Pn3m
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and Im3m symmetry. These phases are based around a funda-
mental lipid bilayer structure with a non-positive Gaussian
curvature (although they maintain zero mean curvature) (Lee
et al. 2016).

Peptide secondary structure and membrane activity

Membrane active AMPs comprise peptides of varied second-
ary structures commonly classified into «-helical, (3-sheet, or
unstructured (random coil) conformations. Examples of «-
helical antimicrobial peptides include magainin, temporins
and melittin, which undergo a conformational change from
unstructured in solution to an amphipathic helix when in in-
teraction with the lipid membrane. All these peptides are cat-
ionic and disrupt the membrane of Gram positive and Gram
negative bacteria. They also exhibit activity against fungal
species (Lombardi et al. 2019). Membrane active (3-sheet an-
timicrobial peptides can already be structured in solution, due
to rigid conformations eventually stabilised by disulphide
bridges, as for instance the natural host defense peptides
defensins and their designed synthetic cyclic derivatives
(Scudiero et al. 2015). Pioneering work by Ghadiri’s group
showed that de novo designed cyclic D,L-peptides can form
pores within membranes and exert antimicrobial activity
(Fernandez-Lopez et al. 2001). Membrane active
unstructured/extended antimicrobial peptides can adopt an
amphipathic fold within membranes to induce disruption or
simply be translocated to the intracellular space. The activity
of such AMPs generally involves intracellular targets via
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specific amino acid motifs, including proline-rich AMPs orig-
inated from insects, or tryptophan and arginine rich peptides
such as indolicidin (Le et al. 2017).

Toxicity: membrane composition selectivity

Due to differences in the membrane composition of different
microbes/organism and cell types (Table 3), most AMPs can
be cell-selective, by discriminating between the target
membranes.

Membrane selectivity is governed by phospholipid compo-
sition and the resulting net charge of the membrane (Yeaman
and Yount 2003), parameters which can differ significantly
between prokaryotic and eukaryotic cells. Though not always
the case, significant levels of antibacterial activity are achiev-
able with minimal haemolysis and cytotoxicity, resulting in a
high therapeutic index, which can be gauged by the ratio of
minimum haemolytic concentration (MHC) to minimum in-
hibitory concentration (MIC).

Numerous studies have found that antimicrobial peptide
charge (which is typically cationic) plays a considerable role
in the mechanism through which AMPs achieve cell selectiv-
ity. In mammalian cells, the outer lipid leaflet is typically
comprised of zwitterionic phosphatidylcholine and
sphingomyelin species, with anionic lipids distributed asym-
metrically within the inner leaflet (Verkleij et al. 1973). In
contrast, bacterial cell membranes contain an abundance of
anionic phospholipids such as phosphatidylglycerol and
cardiolipin. Other structural molecules, such as the negatively

Membrane perturbation ——————— Bacterial lysis

i
8588484888

Fig. 2 Membrane disruption molecular models and some intracellular targets of AMPs. Reproduced from Mookherjee et al. 2020. Copyright © 2020,

Springer Nature Limited
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Table 3 Major membrane lipids

References

Phosphatidylcholine (PC), phosphatidylglycerol
(PG), and phosphatidylethanolamines (PE)

(Shrestha et al. 2013; John et al. 2017;
Travkova et al. 2017; Nielsen et al.
2018)

(Cho et al. 2013; Shrestha et al. 2013)

phosphatidylinositol (PI) and ergosterol.

for bacterial, fungal and Cell type Major membrane lipids
mammalian cell types
Bacterial
Fungal Phosphatidylcholine (PC),
phosphatidylethanolamines (PE),
Mammalian

Phosphatidylcholine (PC) and cholesterol

(Shrestha et al. 2013; John et al. 2017;
Travkova et al. 2017)

charged lipopolysaccharides in Gram negative bacteria, and
teichoic acids in Gram positive bacteria, further contribute to
the net negative charge of bacterial cell membranes. As a
result, electrostatic interactions lead to preferential binding
between AMPs and bacterial membranes (Christensen et al.
1988; Matsuzaki et al. 1997; Silvestro et al. 1997).

However, significant differences in a given peptide’s anti-
microbial activity are observed when assayed against different
bacterial species, pointing to separate mechanisms beyond
simple membrane charge. Aside from fundamental structural
differences between species, several studies have indicated
that amongst anionic phospholipids, head group structure
and hydrocarbon chain length further regulate peptide-
membrane interactions. As assessed via DSC, the AMP
protegrin-1 was found to influence the thermotropic phase
behaviour of exposed DPPG vesicles significantly more than
those comprised of DPPA, despite net negative charge of both
lipid species being equal (Jing et al. 2005). It was additionally
found that while the peptide bound to both DMPG and DSPG
liposomes, penetration of protegrin-1 into the hydrophobic
region of the bilayer only occurred for DMPG. This second
observation was explained by the lipid tail packing, which is
tighter in DSPG due to increased van der Waals forces be-
tween the longer hydrocarbon chains, resulting in an increased
energy barrier for peptide insertion.

Further contributing to cell selectivity are the hydrophobic
interactions occurring between the hydrophobic portions of
amphipathic peptides and the cell membrane. It has been dem-
onstrated that peptides with high MHC values exhibit strong
interactions with membranes comprised of the zwitterionic
phosphatidylcholine, while non-haemolytic peptides do not.
With increasing insight into the parameters responsible for
activity and selectivity, attempts have been made to modify
or engineer existing antimicrobial peptides, with an aim to
increase efficacy. It has been noted that increases in cationic
charge up to approximately + 10 increase antimicrobial activ-
ity with minimal impact on haemolytic activity (Zelezetsky
and Tossi 2006).

The effect on antimicrobial and haemolytic activity of pep-
tide hydrophobicity, hydrophobic moment and angle
subtended by the positively charged helix face were examined

by Dathe et al. using a series of magainin and model peptides
(Dathe et al. 1997). It was found that increases in each of these
three parameters increased both activity against Gram positive
bacteria and haemolytic activity to a similar extent. It was
suggested that such increases in activity were driven by hy-
drophobic peptide—membrane interactions, particularly given
that the erythrocyte membrane is largely comprised of zwit-
terionic PC and PE phospholipids. MIC values for the Gram
positive S. aureus remained below the EC50 for haemolysis,
and the model KL A peptides (+ 6 net charge) displayed lower
MICs than magainins (+4 net charge), indicating that Gram
positive activity remains dependent on peptide charge as well
(Dathe et al. 1997). Activity against Gram negative bacteria
showed little change as these parameters were altered, and it
was reasoned that Gram negative activity was governed pre-
dominantly by electrostatic interactions. This observation
would appear to explain the prokaryotic specificity of
magainin, while more hydrophobic AMPs such as melittin
exhibit activity against both bacterial and mammalian cell
membranes (Dathe et al. 1997).

If one considers the action of AMPs as a combination of
electrostatic and hydrophobic interactions with a membrane,
then for more neutral membranes, where electrostatic peptide-
lipid interactions are minimized, the hydrophobic effect plays
a more predominant role regarding host cell toxicity.
Hydrophobicity is an essential feature for AMP-membrane
interactions. However, the increase of the hydrophobic inter-
action is strongly correlated with mammalian cell toxicity and
loss of antimicrobial specificity. Therefore, many AMPs are
moderately hydrophobic, to optimise selective toxicity to-
wards microbial cell membranes. Selective antimicrobial ac-
tivity results from a delicate balance of hydrophobic and elec-
trostatic interactions between an antimicrobial peptide and the
targeted membrane (Giuliani and Rinaldi 2011; Kang et al.
2014; Ong et al. 2014; Sierra et al. 2017).

Other cellular targets: lipopolysaccharides and
intracellular targets

Lipopolysaccharides (LPS) are hallmark components of Gram
negative bacteria outer membranes. LPS can be described as
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containing a lipid domain (lipid A or endotoxin) covalently
bound to a “core” oligosaccharide and an antigen polysaccha-
ride (O-antigen). Endotoxins exhibit pro-inflammatory activ-
ity via binding to innate immunity receptors, the Toll-like
receptors present in animal immune cells. Hence, targeting
LPS can result in Gram negative bactericidal activity via outer
membrane destabilisation and in reducing endotoxin activity
(Raetz and Whitfield 2002). Given the LPS amphipathic na-
ture and negative charge, cationic amphipathic peptides are
expected to significantly interact with LPS. This is the case
for natural AMPs such as melittin, magainin and protegrin
(Ding et al. 2003), but also synthetic peptides, which have
been shown to destabilise the Gram negative bacterial outer
membrane and to exhibit anti-toxin activity
(Lakshminarayanan et al. 2016; Heinbockel et al. 2018).

However, endogenous antimicrobial peptides have also been
shown to exhibit pro-inflammatory activity by complexation of
immune ligands, including LPS and nucleic acids. Indeed, com-
plexes of microbial ligands by endogenous AMPs are currently
thought to be potentially immune-stimulant to signal microbial
invasion to the immune system (Lee et al. 2019a). The interplay
between the immune system and antimicrobial peptides is com-
plex and is currently being investigated on a case by case basis,
with excellent reviews available on the topic (Hilchie et al.
2013; Mookherjee et al. 2020).

Intracellular microbial targets identified for natural AMPs
span from binding nucleic acids, the ribosome or protein chap-
erones, to inhibiting protein metabolism, cell division or cell
wall synthesis. Over the past decade, an increasing number of
natural AMPs have been shown to inhibit multiple microbial
functions (Le et al. 2017; Mookherjee et al. 2020). For in-
stance, it was evidenced that the short cationic peptide
indolicidin, a cathelicidin with high tryptophan and arginine
content, induces non-bactericidal membrane permeabilisation
and binds intracellular duplex DNA via the peptide motif
PWWP to inhibit microbial DNA replication and transcription
(Ghosh et al. 2014). Although intracellular targets may pro-
vide an interesting addition or alternative for the molecular
engineering of AMPs, few synthetic peptides have been spe-
cifically designed to target such microbial components to date
and few of these peptide motifs have been identified (Le et al.
2017).

Targeting microbial colonies: biofilm components and
bacterial adhesion

Bacterial biofilms are resilient drug-resistant communities of
surface-adhered bacteria encapsulated within a sturdy extra-
cellular matrix that acts as a physical barrier (Dunne Jr. 2002).
Medical implants such as catheters are often compromised
due to the formation of bacterial biofilms on the surface of
the device; the rate of biofilm formation being affected by the
material of the device (Quirynen and Bollen 1995; Garrett
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et al. 2008; Song et al. 2015). While this is typically remedied
by simply replacing the medical device, an infection forming a
resilient biofilm on a more permanent implant such as a pros-
thetic joint is disastrous. Biofilms may also form on living
tissue such as P. aeruginosa colonisation of the lungs in im-
munocompromised cystic fibrosis patients (Lam et al. 1980).
This is mainly due to the innate resistance of bacterial biofilms
to antibiotics and disinfectants (Oie et al. 1996). Biofilm for-
mation is also associated with several diseases and medical
complications such as diabetic foot ulcer infections (Neut
et al. 2011), ear infections, and urinary tract infections
(Vestby et al. 2020).

Aside from the cells themselves, microbial biofilms are
primarily composed of exopolysaccharides such as the
teichoic acids of Gram positive Staphylococci and several
from Gram negative species such as P. aeruginosa (Byrd
et al. 2009; Colvin et al. 2012). These polysaccharides are
involved in surface adhesion during the initial stage of bio-
film formation (Flemming 1993). Proteins and extracellular
microbial DNA are also major components of biofilm sys-
tems (Whitchurch et al. 2002; Flemming and Wingender
2010). Exopolysaccharides effect a local environment like
that of an extracellular matrix, allowing for microbial cells
to remain attached to the surface and resist shear forces
(Donlan and Costerton 2002). Biofilm-residing microbial
cells are less metabolically active than planktonic phase
cells, allowing for perseverance in nutrient-deficient envi-
ronments, and may contribute to higher resistance to antibi-
otics targeting metabolic pathways (Walters 3rd et al. 2003).
In bacterial biofilms, the cells participate in communication
via quorum sensing (QS) (Liand Tian 2012). QS arises from
the bacterial generation and detection of signalling mole-
cules called autoinducers (Als), which are typically acyl
homoserine lactones and other compounds biosynthesised
from S-adenosylmethionine (Parveen and Cornell 2011;
Papenfort and Bassler 2016). While Gram negative species
utilise small molecule Als, Gram positive bacteria such as
S. aureus employ cyclic oligopeptides as autoinducer pep-
tides (AIPs), which may be mimicked by synthetic peptides
in order to block the quorum sensing pathway and the gen-
eration of virulence factors (Mayville et al. 1999; Thoendel
etal. 2011; Zhu and Lau 2011).

The design of anti-biofilm peptides is a more nuanced ap-
proach compared to that of AMP inhibitors of planktonic cells
as membrane disruption is not the sole mechanism sought
after for anti-biofilm peptides (Sakala and Reches 2018;
Dostert et al. 2019). However, it has been suggested that
AMPs are more suitable as anti-biofilm agents compared to
traditional antibiotics since the membrane remains a target
irrespective of the metabolic state of the cell (Hurdle et al.
2011). The downside of this is of course that higher than usual
concentrations of AMPs may be required, which may also
induce haemolytic or cytotoxic effects. The distinct growth
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stages of biofilms may be targeted such as by inhibiting bac-
terial adhesion in the first place or interfering with growth and
quorum sensing (Table 4).

Antimicrobial peptide self-assembly
and activity

A correlation between peptide self-assembly and antimicrobi-
al activity was suggested by the discovery that (i)
amyloidogenic sequences can exhibit antimicrobial properties
and (ii) endogenous antimicrobial proteins can form amyloid-
like nanofibrillar aggregates (Sood et al. 2008; Jang et al.
2011; Kagan et al. 2012). Similarly, two molecular design
approaches supported the interplay between peptide self-
assembly and antimicrobial activity: (i) peptide sequences
firstly designed to self-assemble into nanostructures, then dis-
covered to exhibit antimicrobial activity; (ii) or the opposite,
peptide sequences designed towards antimicrobial activity—
essentially by membrane disruption—then discovered to self-
assemble into hydrogels and/or supramolecular nanostruc-
tures (Tian et al. 2015; Shi et al. 2021). Although the require-
ment of amphipathic sequences is an obvious common phys-
icochemical property shared by both molecular designs, the

mechanisms of action by which peptide oligomers or nano-
structures can damage microbial cells emerged relatively re-
cently. Interestingly, the microbial membrane is not the only
target that can be affected by peptide self-assembled species,
as reviewed below.

Peptide amyloidogenic properties and antimicrobial
activity

The amyloid beta (A3) peptide, which self-assembles into the
so-called amyloid nanofibrillar aggregates in the brain of
Alzheimer’s disease patients, was shown to exhibit broad-
spectrum antimicrobial activity against bacteria and fungi
(Soscia et al. 2010; Bourgade et al. 2016). Unexpectedly, the
amyloid beta (AP) peptide was found to be of equivalent or
greater antimicrobial potency as the human host defence pep-
tide LL-37, suggesting unrecognised normal functions of the
A peptide in the innate immune response to microbial infec-
tions (Soscia et al. 2010). Mechanistic studies support that A3
peptide antimicrobial activity is caused by the formation of
ion channels within the microbial membranes, e.g. similar
mechanism of action as its toxicity to brain cells (Kagan
et al. 2012). A number of mechanisms of membrane disrup-
tion were unravelled to explain amyloid toxicity towards brain

Table 4 Examples of short synthetic anti-biofilm peptides and their biofilm targets

Peptide Target Description Microbes Reference
DOPA-pfp-pfp-OMe* Cell adhesion Forms self-assembled P. aeruginosa, E. coli (Maity et al. 2014)
nanostructures on inor-
ganic surfaces that im-
pede bacterial adhesion
PEG-GZ3.163 (4-methylhexanoyl-(PEG) Cell adhesion Polymer attached linear P. aeruginosa, E. coli (De Zoysa and

-C-d-Dab-Dab-Leu-d-Phe-Dab-Dab-Leu-NH,)

lipopeptide coating that

Sarojini 2017)

prevents biofilm
formation on inorganic
surfaces

Co-polymer-Tet-26 (WIVVIWRRKRRRC) Cell adhesion

Tet-26 attached to polymer P. aeruginosa, S. aureus

(Gao et al. 2011)

brush surface inhibits
biofilm formation

1018 (VRLIVAVRIWRR-NH,) (p)ppGpp Inhibits (p)ppGpp, P. aeruginosa, E. coli, (de la Fuente-Nunez
signalling interfering with bacterial ~ A. baumanii, et al. 2014)
stringent response B. cenocepacia,
S. enterica,
K. pneumoniae,
S. aureus (MRSA)
DJK-5 (p)ppGpp Inhibits (p)ppGpp, P. aeruginosa, E. coli, (de la Fuente-Nunez
[d-(VQLRRIRVWVIR)] signalling interfering with bacterial ~ A. baumanii, et al. 2015)
DJK-6 stringent response K. pneumoniae,
[d-(VQWRRIRVWVIR)] S. enterica
LIVRHK Quorum sensing Short AIP mimicking S. aureus (Taha et al. 2019)
LIVRRK (competency peptides that inhibit
stimulation) quorum sensing

*pfp, pentafluorophenylalanine
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cells, including the insertion of toxic oligomers and membrane
interactions with mature nanofibrils (Dharmadana et al. 2017).
These molecular interactions can be hypothesised to apply to
microbial membranes too (Fig. 3).

Further supporting a correlation between self-assembly and
antimicrobial activity, endogenous antimicrobial proteins and
peptides were shown in vitro to undergo self-assembly into
amyloid-like nanofibrillar aggregates, e.g. the human peptide
LL-37 (Sood et al. 2008), protegrin-1 (Jang et al. 2011), or
human o-defensin peptides (Chairatana et al. 2016). Two
main mechanisms of action related to self-assembly were
identified for these natural AMPs: either microbial membrane
permeabilization by cytotoxic oligomers (Sood et al. 2008)
and/or the entanglement of bacteria within “nanonets” formed
by antimicrobial peptide nanostructures (Chairatana et al.
2016; Chairatana and Nolan 2017), which relates to biofilm
targeting.

Membrane disruption upon peptide self-assembly

A few excellent reviews compile examples of self-assembling
synthetic peptides that exhibit antimicrobial activity (Tian
et al. 2015; Malekkhaiat Haffner and Malmsten 2018;
Lombardi et al. 2019; Shi et al. 2021). The large majority of
systems are amphipathic cationic peptides that affect the mi-
crobial membrane, either by lipid phase destabilisation or pore
formation, eventually leading to cell lysis and death. In most
cases, the peptide amphipathic design is responsible for

Fig. 3 Main models of membrane

disruption by amyloid oligomers.

Reproduced from Dharmadana

etal. 2017. Copyright © 2017, )
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intrinsic self-assembly, while hydrophobic and cationic
charges ensure interactions with phospholipids and membrane
insertion leading to antimicrobial activity. Hence, the amphi-
pathic cationic design is sufficient to drive self-assembly
while ensuring activity. By introducing rational variations in
the amphipathic design in a single peptide system, various
research groups succeeded in fine-tuning self-assembly into
supramolecular structures of different morphologies and/or
hydrogels while conserving antimicrobial activity (Shi et al.
2021). Recently, Gazit et al. exploited the self-assembly of the
Phe-Phe dipeptide into precipitated nanotubes to create solid
nanotube arrays on surfaces. Such nanostructured surfaces
exhibit antibacterial activity by mechanical disruption of the
bacterial membrane (Schnaider et al. 2017). This mechanism
is directly inspired from the natural antibacterial properties of
micro-spikes on dragonfly wings, which paved the way to
diverse research on antimicrobial nanostructured surfaces of
various chemical compositions (Elbourne et al. 2017).

Few studies report on the direct characterisation of bacterial
membrane disruption of monomeric versus self-assembled
peptides for comparable sequences. Although one would ex-
pect synergy between self-assembly and membrane disrup-
tion, current reports support subtlety and system specificity
of this structure-function relationship. For instance, rationally
designed cationic amphipathic “multidomain peptides”
(MDPs) self-assemble into nanofibers, which have been
shown to directly interact with lipid membranes as assembled
peptides. However, when the nanofibers form hydrogels,
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antimicrobial activity is affected by rheological properties
(Jiang et al. 2015). Interestingly, the same group reported an
increase in melittin selective toxicity towards model bacterial
membranes over mammalian membranes when assembled on
MDP nanofibers. This result was assigned to the different
conformations adopted by melittin in its monomeric and as-
sembled forms when presented to the lipid membrane (Chen
etal. 2019). Another example is the rationally designed family
of ultrashort battacin-inspired peptides, with some peptides
shown to self-assemble into nanostructures and hydrogels
while other sequences remain as small oligomeric species in
solution. These peptides act by targeting the microbial mem-
brane. Although there is a clear difference in self-assembling
properties for these related sequences, it appeared difficult to
draw a direct correlation with the antimicrobial activity mea-
sured on various strains (Glossop et al. 2019). The understand-
ing of the direct interplay between self-assembly and antimi-
crobial activity requires more research to enunciate generic
rules.

Other targets than membranes affected by peptide
self-assembly

Rational design of peptide sequences to self-assemble into
toxic aggregates within bacterial cells was reported for a few
examples, although this approach remains marginal and
mechanistic details still need to be unravelled. A smart design
involving dephosphorylation induced self-assembly of a
tripeptide derivative into toxic intracellular nanofibers was
for instance reported (Yang et al. 2007). Such a peptide anti-
biotic was shown to be bacteriostatic. Another approach to
induce intracellular peptide aggregation focused on bacterial
genome screening to identify aggregation-prone sequences
(Bednarska et al. 2016). Interestingly, antibacterial peptide
sequences were obtained, including against resistant strains
and with good indications of specific toxicity. Intracellular
aggregation resulted in bacterial cell death.

Extracellular peptide self-assembly, especially when
resulting into hydrogels, can lead to bacteria entrapment and
prevent cell mobility. This effect was reported for both natural
antimicrobial sequences (Chairatana et al. 2016; Chairatana
and Nolan 2017) and synthetic self-assembling peptides
(Jiang et al. 2015). It is noteworthy that the matrix structure
of bacterial biofilms relies on amyloid-like protein self-
assembly into nanofibers. Hence, the current research effort
on amyloid nanofibril self-assembly inhibition may lead to the
discovery of compounds that chemically hinder biofilm for-
mation (Andreasen et al. 2019).

The self-assembly of endogenous antimicrobial peptides in
complex with nucleic acids (DNA or RNA) has been shown to
control Toll-like receptors activation and subsequent pro-
inflammatory responses. Interestingly, it was recently support-
ed that structural specificity of these complexes might be

essential for triggering an immune response: the peptides
self-assemble into nanoscaffolds that present ordered nucleic
acids to immune receptors (Schmidt et al. 2015; Lee et al.
2017b; Lee et al. 2019b). Although this recently emerged area
of research is directly relevant to auto-immune diseases, it
may hold promise for unravelling novel mechanisms that pro-
mote antimicrobial activity and/or modulate immunogenicity
to support novel peptide designs.

Mechanisms of resistance to antimicrobial
peptides

Microbial pathogens have developed distinct systems to resist
the effect of antimicrobial peptides. These systems involve the
destruction of antimicrobial peptides, change of their target
and removal of peptides from their site of action (Gunn
2001; Joo and Otto 2015). Some of the defence mechanisms
of bacteria versus AMPs include sequestration or degradation
by secreted proteases (Mattiuzzo et al. 2014), impedance by
biofilm formation and exopolymers (Bechinger and Gorr
2017), surface modification (Gunn 2001), cytoplasmic mem-
brane alteration and export by multidrug efflux pumps (Nizet
2006). Excellent reviews have provided details on these mech-
anisms and are presented in Table 5 and Fig. 4 (Guilhelmelli
et al. 2013; Joo et al. 2016) (Table 5, Fig. 4).

Extracellular proteolytic degradation

Extracellular proteins are the first mechanism of defence and
include proteases that degrade AMPs. Some of these proteases
are SepA, aureolysin (metalloproteases), V8 protease and
SepB that can protect against the human cathelicidin LL-37
(Schmidtchen et al. 2002; Baranska-Rybak et al. 2005; Frick
et al. 2011). It has been observed that the interaction of SpeB
and a host protein: alpha2M-binding (GRAB) creates a com-
plex with a proteinase inhibitor bound on the surface that
increases the resistance to LL-37 (Nyberg et al. 2004). Also,
SpeB-degraded host proteoglycans release dermatan sulphate
that neutralizes human alpha defensin HNP-1 (Schmidtchen
et al. 2001) amongst others (Schmidtchen et al. 2002).
Within Gram negative bacteria, the omptin family are as-
partate proteases located in the enterobacterial outer mem-
brane (OM) that cleave LL-37 and cathelicidin-related antimi-
crobial peptide (CRAMP) (Stumpe et al. 1998; Guina et al.
2000; Galvan et al. 2008). Metalloproteases are also important
for Gram negative bacteria since several AMPs such as LL-
37, human beta defensin HBD-1 and the porcine AMP
protegrin-1 are neutralized by the metalloprotease ZapA
(Belas et al. 2004). This metalloprotease is produced by
P. mirabilis and is not specific to AMPs as it also degrades
components of the cell matrix (actin, collagen) and antibodies
(Belas et al. 2004). The degradation of alpha and beta
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Table 5

Mechanisms of resistance to AMPs by bacteria, adapted from (Guilhelmelli et al. 2013; Joo et al. 2016)

Resistance mechanisms Gram positive bacteria

Gram negative bacteria

Extracellular proteins Proteolytic degradation, sequestration
Exopolymers PIA*, PGA**
Surface modification

Cytoplasmic membrane alteration

Efflux pumps Export by ABC transporters

Repulsion by D-alanylation of TA steric hindrance
by L-rhamnosylation of WTA lipid II modification

Charge repulsion by PG amino acylation

Proteolytic degradation

Polysialic acid, alginate

Repulsion by lipid A phosphate modification
increased OM rigidity by lipid A acylation
O-antigen of LPS

Increased IM rigidity by PG acylation

Export by RND family efflux pumps

*Polysaccharide intercellular adhesin or poly/N/acetyl glucosamine (PIA)

**Poly-gamma-glutamic acid (PGA)

defensins has also been observed in Porphyromonas
gingivalis (Carlisle et al. 2009).

Similarly, various cationic AMPs (CAMPs) can be degrad-
ed by ZmpA and ZmpB produced by B. cenocepacia (Kooi
and Sokol 2009). The degradation can also occur intracellu-
larly with the help of transport proteins such as the ABC
transporter that is encoded by the sapABCDFZ (Groisman

et al. 1992; Mason et al. 2005). Moreover, an increased ex-
pression of genes in the sap operon is caused by the binding of
the CAMPs by the SapA that leads to their proteolytic degra-
dation (Mason et al. 2005; Mason et al. 2006; Shelton et al.
2011) as observed with H. influenzae with several AMPs such
as LL-37, HBD-2, HBD-3 and HNP-1 and melittin (Mason
etal. 2011). Itis also important to note that inactivating AMPs

Gram positive bacteria Gram negative bacteria
1) Protease
8) Sequestration/
- 2) Sequestration steric hindrance _
i AMP i
Biofilm I 3) Electrostatic ‘ Biofilm
repulsion by
+ Ala AMP
Ala
L A
AMP PEA v Outer
. */Gly bk membrane
5 aminosugar
peptidoglycan AMP ) @/ QOC20 nmocmoomm
4) lipid Il 4) peptidoglycan
[ooe@ee ..0.0! (1111 ] 90000000000 000000000000 000000 |
+)Ala “+ ) Ala
cytoplasmic 4fLys +Lys cytoplasmic
membrane | 00000000000000000000 000 HhOBOH® QO00000wOOO0 ©0006® | membrane
6) Efflux Pump 6) Efflux Pump
7) Uptake and
degradation

Fig. 4 Mechanisms of bacterial resistance to AMPs. (1) Extracellular
proteases perform proteolytic degradation; (2) sequestration can occur
by extracellular matrix or extracellular proteins; (3) alanylated teichoic
acids create electrostatic repulsion; (4) aminoacylated peptidoglycan also
create electrostatic repulsion; (5) lack of lipid II-binding AMPs by
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pentapeptide alteration; (6) AMPs rejection by efflux pumps; (7) proteo-
lytic cleavage by cytosolic protease after uptake by transporters; (8) se-
questration or steric hindrance by O-antigen of LPS; (9) amine
compound-added lipid A creates electrostatic repulsion; (10) lipid A ac-
ylation creates increased rigidity. Figure modified from Joo et al. 2016
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highly depends on the structure of the target peptide. Linear
structures are easier to degrade because the proteolytic areas
are more exposed to cleavage than those with disulfide bonds.
Bacteriocins such as lantibiotics contain sophisticated post-
translational modification, presenting a resistance mechanism
towards proteolytic degradation by the host or competing mi-
croorganisms (Bierbaum and Sahl 2009).

Another resistance mechanism is the sequestration of
AMPs. Staphylokinase is an important extracellular AMP-
sequestering molecule that targets alpha defensins (HNP1
and 2) (Bokarewa and Tarkowski 2004). Another streptococ-
cal sequester is streptococcal inhibitor of complement (SIC). It
protects S. pyogenes from defensins, LL-37 and the membrane
attack complex (Akesson et al. 1996; Frick et al. 2003).

Also, some streptococcal cell surface-attached proteins
such as M1 and PilB from S. pyogenes and S. agalactiae re-
spectively bind cathelicidins (LL-37 and CRAMP) providing
resistance to AMPs (Maisey et al. 2008; Lauth et al. 2009).

Exopolymers and biofilms

A bacterial biofilm exhibits higher resistance to AMPs and
antibiotics compared to planktonic bacteria (Nickel et al.
1985; Mah and O’Toole 2001). This is partially due to
AMPs not being able to penetrate the biofilm matrix since
EPS and capsular polysaccharides (CPS) can adsorb incoming
antimicrobials, hinder their traversal into the biofilm, and limit
their local concentration at the cells (Sugano et al. 2016; Singh
et al. 2017). This property also applies especially to cationic
AMPS (CAMPs), which have been found to bind to the an-
ionic exopolysaccharide alginate from P. aeruginosa
biofilms. This sequestering of CAMPs arises from the same
mechanism by which they target anionic components of bac-
terial membranes. Negatively charged extracellular DNA
(eDNA) is another major component of biofilms that may
bind CAMPs (Mulcahy et al. 2008; Montanaro et al. 2011).

eDNA is important for biofilm regulation and is secreted or
released by lysed cells during biofilm growth, allowing for
horizontal gene transfer within the bacterial population and
also acting as a potential source of nutrients (Spoering and
Gilmore 2006; Flemming and Wingender 2010; Mulcahy
et al. 2010; Okshevsky and Meyer 2015) It has been proposed
that this sharing of genetic material may enhance antimicrobi-
al resistance, adaptability, and pathogenicity in the biofilm
(Sykes 2010; Vorkapic et al. 2016) Furthermore, the chelation
of cations such as magnesium (Mg”*) by eDNA may trigger
virulence responses in P. aeruginosa leading to AMP resis-
tance (Mulcahy et al. 2008; Lewenza 2013; Wilton et al. 2016;
Ibanez de Aldecoa et al. 2017).

Polysaccharide intercellular adhesin (PIA) provides AMP
resistance in different forms: it is efficient against LL-37, cat-
ionic HDB-3 and anionic dermicidin (Vuong et al. 2004b;
Wang et al. 2004b), its deacetylation increases its positive

net charge and repels CAMPs (Vuong et al. 2004a), but is also
crucial for biofilm formation and enhanced resistance
(Heilmann et al. 1996; Rupp et al. 1999; Vuong et al.
2004b). The CPS of Klebsiella pneumoniae or
P. aeruginosa impedes CAMPs by electrostatic trapping
(Campos et al. 2004; Llobet et al. 2008). Other capsules such
as M protein and the hyaluronic acid capsule of group A
streptococci also sequester AMPs (Cole et al. 2010).

Bacteria (P. aeruginosa and S. pyogenes) can also exploit
the host polysaccharide to sequester AMPs after degrading
their host proteoglycan matrix with bacterial proteases
(Schmidtchen et al. 2001). Exopolysaccharides play a major
role in the resistance to LL-37 in P. aeruginosa and other lung
pathogens (Herasimenka et al. 2005; Foschiatti et al. 2009).
Also, in Pseudomonas species, alginate plays an important
role in AMP resistance in biofilms (Hentzer et al. 2001).
Alginate acts by mimicking the microbial membrane inducing
changes in AMPs and prevents their diffusion since it binds
and induces peptide aggregation (Chan et al. 2004; Chan et al.
2005). Poly-gamma-glutamic acid (PGA) exists only in Gram
positive bacteria and coagulase-negative staphylococci and
forms an extracellular capsule that protects from phagocytosis
by leukocytes (Ogunleye et al. 2015). Although it protects
from dermcidin, LL-37 and HBD-3 like PIA, it does not fa-
cilitate biofilm formation (Kocianova et al. 2005; Otto 2008).

For these reasons, eradication of matured biofilms by
AMPs is a complicated task, especially in vivo, where there
may be limitations to the concentration of AMP allowed in
treatments within a therapeutic window. Recent efforts to
overcome the antibiotic resistance of biofilms involve the
use of DNase to counter the effects of eDNA. DNase has been
reported to disperse or destabilise bacterial biofilms of several
medically relevant pathogens including S. aureus,
P. aeruginosa, E. coli and C. jejuni (Tetz and Tetz 2010;
Kaplan et al. 2012; Baelo et al. 2015; Brown et al. 2015)
This gives credence to the further development of potential
co-administration treatments of DNases and AMPs as a means
of overcoming the resistance granted to bacteria by the biofilm
matrix and its components (Jones et al. 2013; Fleming and
Rumbaugh 2017).

Surface modification

The critical molecules on the cell surface involved in the resis-
tance to AMPs are the anionic polymers attached to the outer-
most cell surface, teichoic acids (TA) in Gram positive cell wall
and lipopolysaccharides (LPS) in the Gram negative outer
membrane. TA represent 60% of the cell wall in Gram positive
bacteria and provide a negative cell charge (Kojima et al. 1985;
Bera et al. 2007) but alanylation on free hydroxyls of the re-
peating sugars confers a positive charge to TA and this in turn
decreases the attraction of CAMPs as observed with S. aureus
(Peschel et al. 1999). D-alanylation also increases cell density
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suggesting a reduction of the permeability and electrostatic re-
pulsion (Saar-Dover et al. 2012). Gram negative Bordetella
pertussis uses D-alanylation via Dra (a DIt homologue) to de-
crease the negative charge on the OM and increases resistance
to LL-37, HNP-1, HNP-2 and polymyxin B (Taneja et al.
2013). Another mechanism involves the L-rhamnosylation of
WTA in L. monocytogenes that increases the steric impediment
in the cell wall (Carvalho et al. 2015).

Modification of lipid II (which is an important cell wall
building block and peptidoglycan precursor) is also performed
by many bacteria to evade AMPs. The modification consists
in the replacement of the terminal D-alanine with D-lactate or
D-serine to prevent vancomycin binding to the D-Ala-D-Ala
dipeptide and blocking the transpeptidation required for cell
wall synthesis (Kahne et al. 2005). Lipid II with D-lactate or
D-serine is found on resistant strains conferring them a 1000-
fold increased resistance to vancomycin (Bugg et al. 1991).
Bacteriocins and human AMPs HNP-1 and HBD-3 also use
lipid II for pore formation (Brotz et al. 1998) and block cell
wall biosynthesis respectively (de Leeuw et al. 2010).

In Gram negative bacteria, LPS provides a negative charge
(as TA in Gram positive bacteria) and its alteration is required
for resistance to AMPs. Thus, amine containing molecules
such as glycine, phosphoethanolamine (PEA) and 4-amino-
4-deoxy-T-arabinose (Ara4N) increase the positive charge of
LPS by modifying lipid A. Acinetobacter baumannii and
Bordetella species perform the modification of lipid A with
galactosamine or glucosamine (Llewellyn et al. 2012; Pelletier
et al. 2013; Shah et al. 2014). The attachment of PEA onto
phosphates in lipid A by S. typhimurium, Neisseria
gonorrhoea and A. baumanii also decreases the anionic prop-
erties of LPS (Lee et al. 2004a; Lewis et al. 2013; Pelletier
et al. 2013). Burkholderia and N. meningitidis constitutively
express PEA-attached lipid A conferring them a higher resis-
tance to AMPs (Tzeng et al. 2005; Loutet and Valvano 2011).
The removal of anionic phosphate groups from lipid A pro-
vides the same effect of adding positive molecules to LPS; this
is done by phosphatases in F. novicida (Wang et al. 2004a;
Wang et al. 2006). In addition to the mentioned mechanisms,
the O-antigen (outermost long polysaccharide chain in LPS)
provides an extra barrier to Gram negative bacteria. A couple
of studies have confirmed it is essential for AMP resistance in
Brucella abortus and B. cenocepacia (Allen et al. 1998;
Loutet et al. 2006).

Alteration of the cytoplasmic membrane structure

Since the cytoplasmic membrane is the major target of AMPs,
bacteria modify it with different strategies. One of them is the
amino acylation of the phosphatidyl glycerol (PG) head
group, which masks anionic phosphates with cationic primary
amines. This prevents CAMPs attraction to anionic head
groups and results in electrostatic repulsion (Peschel et al.
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2001). The protein responsible for this amino acylation is
the multipeptide resistance factor (MprF) and was first de-
scribed in S. aureus (Peschel et al. 2001). The C-terminal
synthase domain of MprF uses PG and aminoacyl-tRNA as
substrates, the resulting aminoacyl-PG is sent to the outer
leaflet of the cytoplasmic membrane by MprF (Ernst et al.
2009). A different combination of substrates has been used
by other bacteria such as Ala-PG in P. aeruginosa (Klein
et al. 2009), Lys-PG and Lys-CL in Listeria monocytogenes
(Thedieck et al. 2006) and Lys-PG and Ala-PG in Clostridium
perfringes (Johnston et al. 2004). Lys-PG has also been re-
ported in Gram negative bacteria such as Caulobacter
crescentus (Jones and Smith 1979) or Rhizobium tropici
(Sohlenkamp et al. 2007). Finally, the increase of saturated
acyl chains can provide a higher membrane rigidity and higher
resistance to nisin and pediocin in L. monocytogenes and
E. faecalis respectively (Mazzotta and Montville 1997;
Kumariya et al. 2015). Similarly, the addition of carotenoid
phyloxanthin has been reported to stabilize the acyl chains in
the membrane and increase its rigidity in S. aureus (Mishra
etal. 2011).

Efflux pumps

Efflux pumps can remove the AMPs even when they have
attached to the cytoplasmic membrane. They are energy-
dependent transporters that expel not only AMPs but also
other antibiotics (Poole 2007). Gram negative bacteria contain
a resistance-nodulation-cell division (RND) family of trans-
porters (Piddock 2006; Delmar et al. 2014). A typical AMP
efflux pump of this family has three components: (1) inner
membrane proton/ AMP antiporter, (2) an outer membrane
(OM) transporter and (3) a periplasmic accessory protein that
provides stability to the whole complex. Some of examples of
efflux pumps in Gram negative bacteria include AcrAB-TolC
in K. pneumoniae, which is efficient against polymyxin B and
HNP-1, HBD-1 (human defensins), and VexAB-TolC of
V. cholerae that also protects from polymyxin B (Bina et al.
2008). RosA, RosB in Y. enterocolotica and K. pneumoniae is
a major facilitator superfamily (MFS) efflux pump that also
confers resistance to polymyxin B (Bengoechea and Skurnik
2000; Padilla et al. 2010).

Within Gram positive bacteria, AMP-exporting efflux
pumps are ATP-binding cassette (ABC) transporters that can
secrete or produce immunity against newly synthesized AMPs
(Gebhard 2012). NisT of Lactococcus lactis exports nisin
(Qiao and Saris 1996) and Epi FEG of S. epidermidis exports
epidermin and gallidermin (Otto et al. 1998). The BceAb type
are another group of two-component ABC transporters that
are active on lantibiotics, cyclic AMPs and defensins, glyco-
peptides and cathelicidin and have a wider range of action vs.
AMPs (Gebhard 2012). The transporter VraFG in S. aureus
provides resistance to several AMPs (nisin, bacitracin,
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vancomycin, indolicidin, LL-37 and HBD-3 (Li et al. 2007a;
Falord et al. 2012; Gebhard 2012). The BceAb-type trans-
porters have also been detected in B. subtilis, S. pneumoniae
and other Gram positive bacteria (Becker et al. 2000; Ohki
etal. 2003; Collins et al. 2010; Gebhard 2012). The MefE/Mel
is a unique efflux pump in S. pneumoniae of the MFS and
ABC families that confers resistance to LL-37 (Ambrose et al.
2005; Zahner et al. 2010).

Sensing systems

The AMP resistance mechanisms are regulated by sensors and
regulators in order to save energy. The antimicrobial peptide
sensor (Aps) was first observed in S. epidermidis and is also
known as GraRs or GraRSX (Li et al. 2007b). It has three
components: a membrane-bound AMP sensing histidine ki-
nase (ApsS), DNA-binding response regulator (ApsR) and
another component (ApsS). The expression of genes involved
in AMP resistance mechanisms is regulated by the Aps and
one of them is the dlt operon for TA alanylation, the mprF
gene for PG lysinylation and the viaF'G ABC transporter.

Systems homologous to Aps are also found in Gram posi-
tive pathogens such as Bacillus anthracis, Clostridium
difficile, L. monocytogenes, S. pneumoniae and
Sthaphylococcus haemolyticus (Li et al. 2007b). Other sys-
tems that sense and regulate resistance mechanisms are
BceSR of B. subtilis, BraSRVraSR in S. aureus and LiaFSR
in Streptococci (Suntharalingam et al. 2009).

Within Gram negative bacteria, the PhoPQ acts as a central
regulator (Groisman et al. 1989; Miller et al. 1989). PhoPQ is
located in the cytoplasmic membrane and is a histidine kinase
sensor while PhoP is the corresponding DNA-binding re-
sponse regulator. PhoPQ and PmrAB (another two-
component system) regulate lipid A modifications involved
with AMP resistance (Gunn et al. 1998; Herrera et al. 2010).
Some PhoPQ homologous are found in several strains such as
S. typhimurium, Y. pestis and Shigella flexneri (Moss et al.
2000; Oyston et al. 2000; Rebeil et al. 2004; Bader et al.
2005).

Molecular engineering approaches
for antimicrobial peptide motif design

AMPs isolated from natural sources typically exhibit common
sequence motifs: the peptides are 12—50 amino acid long, are
highly cationic (net charge between + 2 and +9) and amphi-
pathic, with around 50% of hydrophobic residues in their se-
quence (Hancock and Sahl 2006). Starting from these general
design rules, recent strategies for AMP molecular engineering
include the use of high-throughput screening, machine learn-
ing, modelling tools and combinatorial libraries to aid in the
identification and initial characterization of lead sequences

(Kang et al. 2014; Zhang and Gallo 2016; Bechinger and
Gorr 2017).

Bioinformatic tools

Considering the structural diversity of AMPs, bioinformat-
ics has significant advantages in the computational enumer-
ation of all possible peptide sequences (Travkova et al.
2017; Nagarajan et al. 2018). Online databases that contain
large AMP libraries and several bioinformatic functions
based on classification algorithms and machine learning
have been built in the past decade to assist on the rational
design of antimicrobial peptides, allowing the identification
and optimization of new lead sequences in a time and cost-
effective manner. A classic application of those tools is the
use of artificial neural network (ANN), quantitative matri-
ces (QM) and support vector machine (SVM) to predict
antibacterial peptides (Wang and Wang 2004; Kang et al.
2014; Wang et al. 2016a; Zhang and Gallo 2016).
Computer-assisted AMP design is useful for estimating
the desired biological activity from the primary peptide
structure. There are five types of prediction methods for
AMPs; (1) prediction based on mature peptide sequences
only (2) prediction based on precursor sequences only, (3)
prediction based on both mature and precursor sequences,
(4) prediction based on sequence similarity of the modify-
ing enzymes and (5) prediction based on genomic informa-
tion. The databases can also indicate related information
such as specific target, antimicrobial activity and cytotoxic-
ity (Hammam and Fliss 2010). Commonly used online da-
tabases are compiled in Table 6. Online peptide modelling
tools are also available to assess physicochemical parame-
ters, such as aggregation in aqueous media and pharmaco-
kinetic profiles. Examples of modelling tools include
(1)TANGO to predict amyloid cross-beta aggregation
(Rousseau et al. 2006; Goldschmidt et al. 2010); (ii)
ZipperDB to evaluate the peptide fibrillogenic propensity
profile (Rousseau et al. 2006; Goldschmidt et al. 2010); (iii)
GROMACS to perform molecular dynamics simulations
(Pronk et al. 2013); and (iv) SWISSADME to predict phar-
macokinetic properties, drug-like nature and medicinal
chemistry friendliness (Daina et al. 2017).

Machine learning has recently been applied as a high-
throughput molecular design approach for AMPs, fed by
the increased depth of molecular understanding of AMP
activity, especially membrane activity, and by the im-
mense molecular dataset compiled by researchers over
the past decades (Lee et al. 2017a; Lee et al. 2018a; Lee
et al. 2018b). Although in its early ages, such high-
throughput methods hold promises for a boost to the de-
velopment of lead candidates for clinical translation of
rationally designed minimal antimicrobial peptides.
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Table 6 Commonly used online databases for antimicrobial peptide prediction

Online databases

Content

References

Collection of antimicrobial peptides (CAMPR3)
http://www.camp.bicnirrh.res.in/

Antimicrobial peptide database (APD)
http://aps.unmc.edu/AP/

Linking AMPs database (LAMP2)
http://biotechlab.fudan.edu.cn/database/lamp/index.php
Database of antimicrobial activity and structure of peptides (DBAASP)
https://dbaasp.org/

Data repository of antimicrobial peptides (DRAMP)
http://dramp.cpu-bioinfor.org/

Yet Another database of antimicrobial peptides (Y ADMP)
http://yadamp.unisa.it/default.aspx

Plant antimicrobial peptides (PhytAMP)
http://phytamp.ptba-lab-tun.org/main.php

Bactibase

http://bactibase.hammamilab.org/main.php

Antiviral peptides database (AVPdb)
http://crdd.osdd.net/servers/avpdb/index.php

Natural and synthetic AMPs

Natural and synthetic AMPs

Natural and synthetic AMPs
Ribosomal, non-ribosomal and synthetic AMP

Natural and synthetic AMPs

(Waghu et al. 2016)

(Wang and Wang 2004;
Wang et al. 2016a)

(Zhao et al. 2013)
(Pirtskhalava et al. 2016)

(Kang et al. 2019).
(patent and AMPs in drug development)

Natural and synthetic AMPs

Plant AMPs (Hammami et al. 2008)
Bacteriocins (Hammam and Fliss 2010).
Antiviral peptides (Qureshi et al. 2014).

Top-down molecular design

In top-down molecular design, an AMP sequence, generally
from a natural source, is used as a starting template for sys-
tematic sequence truncation, amino acid substitution, hybrid-
ization and cyclization in order to obtain important informa-
tion on the structural activity correlation and further design
shorter AMPs with improved antimicrobial activity and selec-
tivity (Ong et al. 2014; da Costa et al. 2015). Evolutionary
conserved AMPs typically have long sequences of amino
acids with redundancy in the sequence required for potent
antimicrobial activities, thus trimming the natural AMP se-
quence allows a shorter active motif to be acquired, which
can have reduced cost involved in the industrial scale produc-
tion of the synthetic AMP for therapeutic use. Furthermore,
the removal of naturally occurring peptide regions with unde-
sired properties could also yield synthetic derivatives with
reduced toxicity or immunogenicity (Ong et al. 2014; da
Costa et al. 2015). Applying the principle of template modifi-
cation, it is also possible to construct hybrid peptides com-
posed by truncated fragments from multiple types of naturally
occurring AMPs, so-called multidomain peptides. The
resulting sequences could offer an effective strategy to capi-
talize on the desirable properties of the individual parent pep-
tides. Such an approach typically involves the amalgamation
of a sequence from a potent, but comparatively toxic AMP
with a less active AMP having lower toxicity (Bianco et al.
2013; Ong et al. 2014; Zhu et al. 2017). Alanine scanning is
another typical top-down approach to studying the structure-
activity relationship (SAR) of an AMP to in turn optimize the
peptide. Exemplary AMP alanine scanning studies include
that of polymyxin B, which elucidated the SAR but also gave
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credence to optimized structures. More recently, alanine scan-
ning on tridecaptin A1 (Kanazawa et al. 2009; Cochrane et al.
2014; Ballantine et al. 2019) revealed favourable modifica-
tions to retain activity but at a reduced synthetic cost, whereas
alanine scanning of the linear battacin octapeptide revealed a
truncated pentapeptide sequence that retained most of its an-
timicrobial activity (De Zoysa et al. 2015). Additional top-
down designs include NSAID drug-peptide conjugates
exhibiting antimicrobial, anti-inflammatory and self-
assembling hydrogelator properties all in one due to the mod-
ification of a self-assembling peptide (McCloskey et al. 2016).
Further techniques include the reorientation of a peptide struc-
ture without changing the amino acid composition, such as in
the case of retro, inverso and retro-inverso peptide modifica-
tions (Chorev and Goodman 1995; Li et al. 2010; Parthsarathy
et al. 2013).

Bottom-up molecular design

Bottom-up molecular design relies on the fundamental under-
standing of the impact of key chemical peptide features for
antimicrobial activity (Frecer et al. 2004; Zelezetsky and Tossi
2006). A simplified approach is typically applied such as com-
bining (i) cationic amino acids for electrostatic interactions
with the microbial membranes and (ii) non-polar amino acids
for insertion or permeation of the microbial membrane (Sforca
et al. 2004; Matsuzaki 2009; Oddo and Hansen 2017). This
approach is highly attractive for drug development as it can
lead to the identification of the smallest motif or
pharmacophore essential for antimicrobial effects, which
could in turn increase the ease of optimization through
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systematic modifications to the short peptide sequence
(Gordon et al. 2005; Ong et al. 2014) (Fig. 5).

Combined with bioinformatics, a complete de novo peptide
design framework usually consists in three stages: an
optimization-based sequence selection, fold specificity calcu-
lation and approximate binding affinity calculation (Fig. 5)
(Klepeis et al. 2004; Smadbeck et al. 2014). The first stage
ofthe method is a sequence selection stage which uses a set of
design inputs such as biologically relevant constraints in an
integer linear optimization model to produce a rank ordered
list of sequences with the lowest potential energy in a given
template structure. The comparative model in peptides is

based on the fact that sequence similarity implies structural
similarity, thus the structure of an active peptide can be pre-
dicted by comparing the amino acid sequence to that of known
native 3D structures. However, similar structures can be found
for peptides with different sequences. The second stage col-
lects the top sequences from the sequence selection stage and
determines the specificity of candidates for the target. It deter-
mines how well-designed sequences fold into the desired tem-
plate structure compared to the native sequence. The se-
quences with the top fold specificity values are then run
through a computationally rigorous third stage to calculate
the approximate binding affinity of the sequences to the target.

Fig. 5 Three-stage de novo
peptide design workflow
diagram. (1) design inputs and
sequence selection; (2) fold spec-
ificity; (3) approximate binding
affinity. Modified from
Smadbeck et al. 2014

v

Sequence Selection

v v

Fold Specificity Approximate Binding
Affinity
CYANA 4
Rosetta Abinitio/
TINKER Loop Modelling
AMBER OREO

energy evaluation

Fold Specificity
Calculation

Rosetta Dock
Rosetta Design

K* Calculation

@ Springer



54

Biophys Rev (2021) 13:35-69

Those peptides with the highest predicted binding affinity are
then validated experimentally (Klepeis et al. 2004; Smadbeck
etal. 2014).

Multivalent ligand design is another technique for AMP
motif design, wherein multiple copies of an AMP are
appended to a branched core. Branched multivalent peptide
systems have also been investigated extensively in antimicro-
bial peptide design. Early study on multiple antigen peptide
(MAP) systems was eventually translated into the field of
antimicrobial peptide chemistry due to the inherent proteolytic
stability of MAP ligands (Tam 1988; Bracci et al. 2003). This
technique typically involves appending identical AMPs to a
branched multi-lysine core to yield a multivalent peptide array
and was utilised by Pini et al. to form a tetrabranched M33
antimicrobial peptide system with high proteolytic stability
(Pini et al. 2010).

Antimicrobial peptide motifs and their rationale

A number of peptide motifs have been identified to promote
antimicrobial activity and pharmacokinetic properties that aid
molecular engineering translatable AMPs, as developed
below.

Necessary peptide features for antimicrobial activity

Several studies have established that strong antimicrobial po-
tencies can be obtained with engineered synthetic AMPs
consisting of a cationic amino acid combined with a non-
polar amino acid. Thus, AMPs generally contain positively
charged amino acid residues (Dab, O, Lys and Arg) and
hydrophobic residues (Phe, Trp, Tyr, Met) in a ratio varying
from 1:1 to 1:2. Their primary structure is often characterized
by a net positive charge of + 2 to + 9. Hydrophobic and non-
charged peptides such as the aromatic peptide diphenylalanine
have also shown antimicrobial activity due mainly to hydro-
phobic interactions (Strom et al. 2002; Klepeis et al. 2004;
Ong et al. 2014).

It has been reported that increasing the positive charge of
the peptide results in increasing antibacterial activity.
However, there is a limit since a very high net charge can lead
to an enhanced haemolytic propensity and a loss of antimicro-
bial activity. Additionally, the most common motif found in
AMPs is the secondary structures; however, many of them
also exist as unstructured conformers (Galdiero et al. 2013;
Falanga et al. 2017).

Studies have suggested that a free N-terminal amino group
and an amidated C-terminal on a peptide are correlated to a
high antimicrobial activity. Thus, the balance between cation-
ic residues, aromatic residues, an amidated C-terminal end and
a free N-terminal amino group constitutes a highly efficient
motif in antimicrobial peptides (Strom et al. 2002; Chen et al.
2010; Deslouches et al. 2013; Ong et al. 2014).
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Choice of specific amino acids

Arginine and lysine are the most common cationic residues in
AMP sequences as they are protonated under physiological
conditions and have been found to be related strong antimi-
crobial activities. While the incorporation of arginine residues
in AMPs confers greater antimicrobial activity, their presence
is frequently associated with relatively higher haemolytic ac-
tivities as compared to the use of lysine residues.

Due to their common occurrence in many naturally occur-
ring AMPs such as cathelicidins, the combination of cationic
arginine with hydrophobic tryptophan residues represents one
of the most extensively investigated designs for synthetic
AMPs. This combination is believed to be extremely efficient
as the guanidinium side chain of arginine undergoes hydrogen
bonding with negatively charged microbial membranes while
participating in cationic—7t interactions with the aromatic indole
side chain of tryptophan, making AMP penetration into the
hydrophobic lipid bilayer more energetically favoured. The
bulky amphipathic character of the indole side chain in Trp is
also believed to aid in the interfacial association of AMP with
lipid bilayers and to mediate cohesive hydrophobic interactions
with the lipid acyl chains during membrane penetration (Strom
et al. 2002; Klepeis et al. 2004; Ong et al. 2014).

Secondary and supramolecular structures

In addition to the amphipathic content of the peptide primary
sequence, their folding into distinct secondary structures either
in the presence of bacterial membranes (e.g. cathelicidins and
magainins) or constitutively (e.g. the defensins) is also a well-
studied motif for antimicrobial activity. Generally, a basic
repeating sequence pattern of amino acids that can be arranged
into stabilized o-helical, 3-sheet and/or hairpin structures are
selected (Chen et al. 2010; Deslouches et al. 2013; Ong et al.
2014). Due to charge repulsion between cationic entities, lin-
ear AMPs often remain as free unstructured molecules in
aqueous solutions, which facilitate their diffusion across the
bacterial capsule and/or cell wall to the membrane lipid bilay-
ers. Various peptide motifs were reported to enhance the sta-
bility of specific secondary structures, including for AMPs.
For instance, the high proline content of insect AMPs has been
correlated to a high helical propensity favouring membrane
insertion (Chen et al. 2010; Ong et al. 2014).

Although self-assembly may inherently arise from amphi-
pathic primary and/or secondary structures, simple aromatic
motifs recently emerged as chemical tricks to induce the in-
trinsic formation of peptide supramolecular structures in solu-
tion via mainly pi-stacking interactions. Notable examples
include (i) fluorenylmethoxycarbonyl (Fmoc) driving self-
assembly when conjugated to peptides, generally resulting in
the formation of hydrogels, and (ii) the amyloid-derived
diphenylalanine motif inducing self-assembly into nanofibers
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or nanotubes when present in a sequence. These motifs were
incorporated into numerous de novo designed peptides, in-
cluding self-assembling AMPs (Schnaider et al. 2017;
Glossop et al. 2019).

Non-proteinogenic amino acids and peptide termini

Unnatural residues, such as D-amino acids, improve proteo-
lytic stability because proteases have poor affinity for unnat-
ural side chains (Weinstock et al. 2012). Another common
modification is N-alkylation of amino acids, typically N-
methylation, which can improve pharmacokinetic properties.
Studies on the cyclic peptide somatostatin yielded analogues
with up to 10% improved oral bioavailability when N-
methylated at certain points (Biron et al. 2008). While N-
terminal acylation reduces the overall charge of the peptide,
it improves proteolytic stability depending on the sequence
and may also drastically improve antimicrobial activity of
AMPs or grant activity to inactive sequences (Malina and
Shai 2005; Radzishevsky et al. 2005; Glossop et al. 2018).
Amidation is a common C-terminal modification employed
to improve the antimicrobial potency of peptides in two ways,
by increasing the net charge of the peptide and by enhancing
proteolytic stability, thus improving half-life times in vivo
(Stromstedt et al. 2009; Kumar et al. 2014; Mura et al.
2016). N-terminal acetylation and amidation may also en-
hance helicity by stabilising hydrogen bonding (Fairman
et al. 1989; Stromstedt et al. 2009).

Fluorination

Fluorination is a frequent modification in medicinal chemistry
and as such has been translated to peptide and protein engi-
neering (Yoder and Kumar 2002). A small subset of AMPs
feature naturally halogenated residues such as
bromotryptophan in hagfish cathelicidins and hedistin
(Uzzell et al. 2003; Tasiemski et al. 2007). Fluorination has
been employed to enhance AMP activity through stabilised
conformation and increased proteolytic resistance. Most nota-
bly, analogues of melittin substituting every leucine residue
for 5,5,5-trifluoroleucine exhibited enhanced binding to
DOPC vesicle membranes due to improved self-association
in solution from hydrophobic interactions from
trifluoroleucine (Niemz and Tirrell 2001). Furthermore, fluo-
rinated buforin and magainin analogues were found to exhibit
modest resistance to trypsin proteolytic degradation while
retaining or improving in antimicrobial efficacy (Meng and
Kumar 2007). However, this came at the cost of greater he-
molysis in some fluorinated analogues. Studies on longer he-
lical sequences by Lee et al. have also reported on the benefits
of fluorination, in this case by hexafluoroleucine, in enhancing
helical protein stability (Lee et al. 2004b). Further study of
substitutions with hexafluoroleucine generated the magainin

analogue fluorogainin-1, which resisted proteolytic degrada-
tion under the same conditions that degraded the unfluorinated
parent peptide, while exhibiting improved antimicrobial activ-
ity towards K. pneumoniae and S. aureus (Gottler et al. 2008).
Overall, fluorination has generally positive outcomes when
designing synthetic AMPs.

Antimicrobial peptide lipidation
Lipopeptide motifs and antimicrobial activity

There are several examples of inactive peptides that gained
antimicrobial activity upon conjugation of a hydrophobic acyl
group (Malina and Shai 2005). Structure-activity studies were
conducted by generating lipopeptides of varying fatty acid
lengths (Nasompag et al. 2015; Glossop et al. 2018). Over
improving lipid membrane insertion, fatty acid conjugation
may enhance secondary structure characteristics: magainin-2
analogues showed tuneable helical, (3-sheet, and oligomeric
conformations depending on the size of attached fatty acid,
from heptanoyl to palmitoyl in length (Avrahami and Shai
2002). Typically, longer fatty acids improve lipopeptide anti-
microbial activity, but at a certain threshold also contribute to
cytotoxicity. The acyl group may vary widely in structure
from saturated fatty acyl moieties to unsaturated, branched
or aromatic groups (Chooi and Tang 2010).

Prime examples of lipopeptide antibiotics that have under-
gone extensive structure-activity studies are the polymyxins
and daptomycin. These lipopeptides are cyclic in structure
and contain a majority of cationic and anionic charged side
chains, respectively, and a fatty acyl chain in addition to hydro-
phobic residues. Both of these drugs have potent antimicrobial
activity, even against multidrug-resistant strains (Dixon and
Chopra 1986; Steenbergen et al. 2005; Zavascki et al. 2007).
Structure-activity studies on polymyxins revealed that acyl
chain length is also important for the spectrum of activity
against pathogens. Polymyxin B analogues were found to have
ideal acyl chains of 7-9 carbon length (Naoki et al. 2004).
Studies on magainin analogues indicate that the fatty acyl moi-
ety can modulate solution conformation and cell selectivity as
well (Avrahami and Shai 2002). The primary sequence of the
peptide component has the greatest influence over peptide hy-
drophobicity, stability, net charge and secondary structure.
Lipopeptides may be cyclic or linear and may or may not have
an exocyclic peptide region to which the fatty acyl chain is
conjugated. An example of important primary peptide sequence
is the hydrophobic dipeptide motif observed in polymyxin B
(D-Phe-6, L-Leu-7) and E (D-Leu-6, L-Leu-7). The hydropho-
bic region provided by this dipeptide in the macrocycle is con-
sidered to contribute significantly to the amphipathicity of the
lipopeptide as well as its biological interaction with Gram neg-
ative bacterial outer membranes (Pristovsek and Kidric 1999).
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The same phenylalanine and leucine combinations are seen in
octapeptins (Velkov et al. 2017).

Charged amino acids are important determinants of
lipopeptide surfactant and antimicrobial activity as they con-
tribute to the hydrophilicity and electrostatic interactions of
the peptide at physiological pH. Residues such as lysine and
its relatives Dab or ornithine (2,5-diaminovaleric acid) are
common cationic moieties found in natural antimicrobial
lipopeptides such as the polymyxins, octapeptins and
tridecaptins, which target anionic bacterial membranes,
whereas daptomycin and its congeners feature anionic resi-
dues involved in their calcium-directed mechanisms (Kato
et al. 1979; Baltz et al. 2005; Kanazawa et al. 2009; Velkov
et al. 2017). Rarely will membrane-lytic lipopeptide antibi-
otics have neutral net charge at physiological pH such as in
the case of iturin A, a potent antifungal agent and surfactant
(Besson et al. 1984).

The incorporation of negatively charged residues into the
peptide sequence is important for acidic lipopeptides such as
daptomycin, amphomycins, tsushimycin, laspartomycins and
friulimicins (Tanaka et al. 1977; Bunkoczi et al. 2005;
Steenbergen et al. 2005; Borders et al. 2007; Schneider et al.
2009). These anionic lipopeptides often undergo conformation-
al changes by interacting with calcium ions, effecting a stronger
amphipathic structure and enhanced activity, whereas cationic
lipopeptides, such as the polymyxins, have weaker antibiotic
activity in vitro at higher concentrations of divalent cations such
as Mg®* (Daugelavicius et al. 2000; Ho et al. 2008).

Lipopeptide motifs for self-assembly into different colloidal
morphologies

Self-assembly into various types of colloids can be pro-
grammed by conjugating a peptide sequence to an acyl chain.
The resulting morphologies range from nanofibers and
nanoribbons to micelles and vesicles (Cui et al. 2010;
Webber et al. 2011; Hendricks et al. 2017). The influence of
both the peptide sequence and acyl chain on the resulting
colloidal morphology has been thoroughly investigated by
Stupp’s group (Hendricks et al. 2017). For instance, a mini-
mum of 10 carbon long acyl chain was found necessary to
induce the hydrophobic effect needed to direct one-
dimensional self-assembly into elongated morphologies.
However, variation in the peptide residues closer to the acyl
chain can still induce spherical micelles through altering hy-
drogen bonding capacity, while assembly into flat structures is
favoured by alternating hydrophobic and hydrophilic residues
in the peptide sequence (Hendricks et al. 2017). The conjuga-
tion of various bioactive peptide sequences to acyl chains has
been reported to achieve the combination of nanostructure
formation and biological/therapeutic activity in a single mol-
ecule (Silva et al. 2004; Webber et al. 2011; Hendricks et al.
2017).

@ Springer

Table 7 compiles the main peptide motifs reported to en-
hance antimicrobial activity and other properties important in
the molecular engineering of such peptide drug molecules.

Translation opportunities of antimicrobial
peptide-based formulations and biomaterials

Antimicrobial peptide drug discovery nowadays focuses on
short synthetic peptides to overcome drawbacks inherent to
naturally isolated AMPs, such as high production costs of long
sequences and off-target cytotoxicity (Ong et al. 2014). A
recent SWOT analysis identified critical weaknesses associat-
ed with the development of peptides as therapeutics: (1) chem-
ically and physically instable, (2) prone to hydrolysis and
oxidation, (3) tendency for aggregation, (4) short half-life
and fast elimination, (5) not orally available and (6) low mem-
brane permeability (Fosgerau and Hoffmann 2015). Besides
the discovery and design of thousands of AMPs to date, very
few AMP drugs have advanced to clinical development to
date (Magana et al. 2020). In addition to molecular engineer-
ing principles developed in the previous sections, a number of
formulation approaches are currently being investigated to
overcome the challenge to reach clinical stage. An overview
of peptide formulations is here provided with a focus on the
latest advances in peptide and lipid nanotechnology, which
are identified as the most promising formulations for transla-
tion (Magana et al. 2020).

Biomedical applications of antimicrobial peptide self-
assembled nanostructures

Peptide hydrogels result from the self-assembly of amphipathic
and/or aromatic rich sequences into elongated nanostructures,
including nanofibers and nanotubes, which reticulate the aqueous
media into a gel. In recent years, peptide hydrogels have gained
attention for broad biomedical applications, from therapeutic for-
mulations to tissue engineering (Mondal et al. 2020). The intrin-
sic self-assembly of antimicrobial peptide sequences into elon-
gated nanostructures was reported for various sequences, open-
ing the door to hydrogel applications for self-assembling AMPs
(Shi et al. 2021). A remarkable example is the molecular engi-
neering of short AMP sequences into self-assembling peptides
that form hydrogels. For instance, the antibacterial sequence
(KIGAKI)3;-NH, was incorporated into an engineered beta-
hairpin sequence, resulting in hydrogels active against E. coli
(Liu et al. 2013). Peptide sequences designed to self-assemble
into nanostructured hydrogels also showed intrinsic antimicrobial
properties. For instance, the synthetic sequence of MAX1 pep-
tide was designed as an amphiphilic beta-hairpin of alternating
lysine and valine residues, in order to induce self-assembly. This
strategy resulted in the formation of rigid nanostructured
hydrogels (Schneider et al. 2002). This elegantly designed
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Table 7
approaches for antimicrobial peptide motif design”)

Summary of the main peptide motifs identified for molecular engineering AMPs (references in manuscript text, “Molecular engineering

Generic motifs Main mechanisms for activity

Other properties

Cationic residues: peptide net
charge between +2 to +9 phospholipids

Electrostatic interaction with LPS

Amphipathic primary sequence Membrane insertion
(50% hydrophobic residues)

Aromatic side chains Membrane insertion

Unnatural amino acids Proteolytic stability
Added specificity to activity

Electrostatic interactions
with membrane components

Specific motifs

High arginine content

Electrostatic interactions
with membrane components

High lysine content

High proline content

Electrostatic interaction with microbial

Electrostatic interaction with DNA, RNA, LPS:
immunomodulation via Toll-like receptors,
anti-toxin activity

Self-assembly into nanostructures and/or hydrogels.

Self-assembly into nanostructures and/or hydrogels

Stabilisation of amphipathic secondary structures

Other properties

Risk of haemolytic toxicity

Electrostatic interaction with DNA, RNA, LPS:
immunomodulation via Toll-like receptors,
anti-toxin activity

Lower risk of haemolytic toxicity when compared
to Arginine

Electrostatic interaction with DNA, RNA, LPS:
immunomodulation via Toll-like receptors,
anti-toxin activity

Membrane insertion through stabilisation /

of amphipathic helical secondary structures

High tryptophan content

Termini amidation/acetylation

Acetylation: proteolytic stability

Fluorination
structure stability

Lipidation Lipid membrane insertion

Membrane insertion through amphiphilic nature

Amidation: proteolytic stability, increased net
charge for membrane interactions

Cation-pi interactions with cationic residues
that promote membrane insertion

Stability of helical secondary structure
Improved pharmacokinetics, especially non-parenteral
bioavailability

Membrane interaction through improved secondary Proteolytic stability

Proteolytic stability
Self-assembly into nanostructures and/or hydrogels

hydrogel was shown to be active against both Gram negative and
Gram positive bacteria when directly in contact with colonies,
with a proposed mechanism of action involving disruption of the
bacterial lipid membrane (Salick et al. 2007). Within the broad
landscape of applications being currently explored for AMP
hydrogels, one of the most promising ones appears to be their
use as topical treatments, to cure skin infections or promote
wound healing (Pfalzgraff et al. 2018).

In the current context of a viral pandemic, self-assembling
AMPs could be of use as vaccine adjuvants or nanocarriers.
Subunit vaccines, which are composed of synthetic antigen
peptides or proteins, require adjuvants to stimulate an appro-
priate immune response. Amongst the several immunological
adjuvants that have been developed so far (such as nanoparti-
cles, liposomes, and polymers), an interesting category could
be self-assembling AMP nanostructures (Hudalla et al. 2014;
Wang et al. 2016b). Self-assembling AMPs could be used as
delivery carriers for antigenic proteins and/or to boost immu-
nogenicity, especially considering the immunomodulatory
properties of some AMP sequences.

The deposition of arrays of solid-state peptide nanostruc-
tures was shown to provide antibacterial properties to the

surface. The vertically aligned arrays of diphenylalanine
nanotubes showed activity against E. coli, through their topo-
logical capacity to disrupt bacterial membranes (Schnaider
et al. 2017). This original bionanomaterial deposition augurs
well for a future use of self-assembling AMPs as medical
coatings.

Formulations of antimicrobial peptides with lipid
nanomaterials

The encapsulation of antimicrobial peptides in lipid nanopar-
ticles (LNPs) confers two main advantages: Firstly, LNPs
provide encapsulated peptides protection from enzymatic
and chemical degradation. Such protection is otherwise diffi-
cult to achieve via modifications to the peptides chemical
structure, due to the inherently fragile constituent peptide
bonds. Secondly, increases in efficacy and bioavailability are
possible via further functionalization of lipid nanoparticles,
enabling the formulation of targeted delivery vehicles through
techniques such as surface conjugation of antibodies, or the
design of environment-responsive or triggered release parti-
cles. A wide range of lipid-based nanoparticle species have
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been investigated as delivery vehicles for antimicrobial pep-
tides, ranging from liposomes to liquid crystalline cubic nano-
particles (Table 8).

Given the lipid bilayer structure inherent in these materials,
it is unsurprising that membrane disruptive peptides have the
potential to influence phase behaviour and structural parame-
ters. Thus, careful characterization is necessary to determine
any changes in material properties that come as a result of
peptide loading and resulting peptide-membrane interactions.
For example, the encapsulation of gramicidin A in cubic phase
lipid materials has repeatedly revealed a shift towards

structures with high negative curvature, such as hexosomes,
with increasing peptide concentration (Liu and Caffrey 2005;
Meikle et al. 2016; Meikle et al. 2017). The cationic charge of
many AMPs must also be considered; electrostatic repulsion
between membrane associated peptides appears to influence
lipid phase behaviour as well as encapsulation efficiency
(Boge et al. 2017; Meikle et al. 2017; Meikle et al. 2021).
Manipulation of these interactions via the addition of anionic
lipids to the cubosome formulation, or the inclusion of a
charge screening buffer condition, can lead to favourable
structural properties and increased peptide loading (Boge

Table 8 Summary of various

studies in which antimicrobial
peptides are encapsulated within
LNPs

Peptide

LNP type

Reference

Gramicidin A, alamethicin, melittin,
indolicidin, pexiganan, cecropin A

Liquid crystal nanoparticles

(Meikle et al. 2016;
Meikle et al. 2017,

LL-37, AP114, DP-060

Cyclosporin A
KSL-W

Nisin

Vancomycin
Polymyxin B
Gramicidin
Melittin
DP7-C

Whey peptides

Indolicidin

LL-37
Alyteserin-1c
Microcin J25
P34

Pediocin AcH

Temporin
CM3
Polymyxin B
Cyclosporin A

Nisin
Polymyxin B
LL-37/serapinA 1

Meikle et al. 2021)

(Boge et al. 2016;
Gontsarik et al. 2016;
Boge et al. 2017,
Boge et al. 2019a;
Boge et al. 2019b;
Zabara et al. 2019)

(Lai et al. 2010)
(Bernegossi et al. 2016)

Liquid crystal nanoparticles

Liquid crystal nanoparticles
Liquid crystal nanoparticles

Liposome (Benech et al. 2002;
Benech et al. 2003;
Laridi et al. 2003)
Liposome (Nicolosi et al. 2010)
Liposome (Alipour et al. 2009)
Liposome (Ragioto et al. 2014)
Liposome (Zetterberg et al. 2011)
Liposome (Liu et al. 2016)
Liposome (Mohan et al. 2018)
Liposome (Ahmad et al. 1995;
Ron-Doitch et al. 2016)
Liposome (Ron-Doitch et al. 2016)
Liposome (Cantor et al. 2019)
Liposome (Gomaa et al. 2017)
Liposome (da Silva Malheiros et al. 2011)
Liposome (Degnan and Luchansky 1992;
Degnan et al. 1993)
Liposome (Mizukami et al. 2010)
Liposome (Lange et al. 2001)
Lipid micelles (Brandenburg et al. 2012)

Solid lipid nanoparticles (Zhang et al. 2000;

Miiller et al. 2006;
Kim et al. 2009)

(Prombutara et al. 2012)
(Severino et al. 2017)
(Fumakia and Ho 2016)

Solid lipid nanoparticles
Solid lipid nanoparticles
Solid lipid nanoparticles
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et al. 2017). Antimicrobial activity of cubosome encapsulated
AMPs is seen to increase in some cases, decreasing in others.
Work is currently underway exploring the fusion and uptake
mechanisms involved in cubosome-bacteria interactions
(Dyett et al. 2019; Meikle et al. 2020; Meikle et al. 2021).

Liposomes have long been utilized as nanocarriers for var-
ious drugs, as their structure allows for both hydrophobic and
amphiphilic drug encapsulation within the membrane, while
hydrophilic drugs can be contained within the liposome inte-
rior. They are also highly biocompatible and non-toxic; the
first FDA approved nanodrug was Doxil, a liposomal doxo-
rubicin formulation (Barenholz 2012). Design considerations
include maximising both stability and peptide loading effi-
ciency, achieved via careful selection of lipid formulations.
Accordingly, lipids for which AMPs display selectivity or
increased activity, such as those containing anionic head
groups, are often avoided due to complete disruption of the
liposomal bilayer.

A wide range of antimicrobial peptides have since been
formulated with liposomes. In a recent study, DSPC/DSPE-
PEG liposomes were used to encapsulate the AMP LL-37
(Ron-Doitch et al. 2016). Characterisation and activity exper-
iments showed that the liposomal formulation possessed in-
creased antiviral activity against HSV-1, with reduced toxicity
over the free peptide. Cantor et al. have also demonstrated
increased antimicrobial activity following encapsulation of
the peptide alyteserin-lc in polymer-coated liposomes
(Cantor et al. 2019).

Other lipid-based nanoparticle formulations are under inves-
tigation for AMP delivery, including phospholipid micelles,
recently investigated for the encapsulation of polymyxin B
(Brandenburg et al. 2012). In this study, encapsulation of the
peptide in DSPE-PEG(2000) micelles was high; however, the
in vitro activity against P. aeruginosa was significantly reduced
compared to free peptide, presumably due to reduced electro-
static interactions between the encapsulated peptide and the
bacterial membrane as a result of the PEG (200) coating.

Solid lipid nanoparticle solutions are colloidal dispersions
of solid-state lipids, often stabilized with surfactants. They are
formulated using lipids with increased melting points, such as
mono- and tri-glycerides, steroids and fatty acids. Various
production methods have been proposed, and parameters such
as drug structure and solubility, final particle size and produc-
tion conditions such as increased temperature must be consid-
ered. They have been used for the encapsulation of polymyxin
B (Brandenburg et al. 2012), cyclosporin A (Zhang et al.
2000; Miiller et al. 2006; Kim et al. 2009) and nisin
(Prombutara et al. 2012). To increase wound healing,
Fumika et al. fabricated solid lipid nanoparticles comprised
of glyceryl monostearate and phosphatidylcholine co-
encapsulated with two AMPs, LL-37 and serpin Al
(Fumakia and Ho 2016). The nanoparticles were found to
accelerate wound healing and closure via BJ fibroblasts and

keratinocytes, and the two peptides were found to possess
synergistic antimicrobial activity against S. aureus and E. coli.

Conclusion

Worldwide health institutions generally project multidrug-
resistant infections to cause several million deaths annually
by 2050. In the search for new antimicrobial compounds and
biomaterials to counter the alarming progression of such in-
fections, antimicrobial peptides (AMPs) are considered as
promising candidates by the research community. The in-
creasing interest in these compounds is indicated by the expo-
nential number of scientific articles published on AMPs,
which led this review to cite close to 400 references to provide
a global overview of this accelerating research area.

AMPs present the advantage of typically targeting micro-
bial lipid membranes, a site of action less prone to resistance.
AMPs often concomitantly act on other microbial sites, either
intracellular and/or extracellular targets. Such multi-target
mechanisms of action further limit the occurrence of
resistance.

The recent years have seen the emergence of molecular
engineering principles for the creation of optimised synthetic
AMPs. Thanks to intense fundamental research in peptide
design, it is now possible to engineer and optimise short pep-
tide sequences that exhibit selective antimicrobial activity
while limiting toxicity. Peptide molecular engineering is also
now capable to optimise sequences towards biomaterial appli-
cations via controlling peptide self-assembling properties, in-
cluding into nanostructured peptide hydrogels.

Challenges still remain to translate this global research ef-
fort to marketed products, especially improving pharmacoki-
netic properties of peptide-based therapeutics and continuing
to decrease the costs of synthesis. However, recent advances
in peptide synthesis and bio-nanotechnology augur well for
overcoming these issues and providing AMP-based formula-
tions and biomaterials with optimised pharmacokinetic prop-
erties at a reasonable cost.
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