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Abstract Thiol redox chemical reactions play a key role in a
variety of physiological processes, mainly due to the presence
of low-molecular-weight thiols and cysteine residues in pro-
teins involved in catalysis and regulation. Specifically, the
subtle sensitivity of thiol reactivity to the environment makes
the use of simulation techniques extremely valuable for
obtaining microscopic insights. In this work we review the
application of classical and quantum–mechanical atomistic
simulation tools to the investigation of selected relevant issues
in thiol redox biochemistry, such as investigations on (1) the
protonation state of cysteine in protein, (2) two-electron oxi-
dation of thiols by hydroperoxides, chloramines, and
hypochlorous acid, (3) mechanistic and kinetics aspects of
the de novo formation of disulfide bonds and thiol−disulfide
exchange, (4) formation of sulfenamides, (5) formation of

nitrosothiols and transnitrosation reactions, and (6) one-
electron oxidation pathways.
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Abbreviations
Cys L-cysteine
CysS- Cysteinate
CysSOH Cysteine sulfenic acid
DFT Density functional theory
GPx Glutathione peroxidase
GSH Glutathione
MD Molecular dynamics
MM Molecular mechanics
Prx Peroxiredoxin
QM Quantum mechanics
ROS Reactive oxygen species

Introduction

Thiol biochemistry is mainly related to cysteine (Cys), which
is one of the least abundant amino acids incorporated into
proteins. However, due to its peculiar physico-chemical prop-
erties, Cys reactivity is unique. Specifically, the large size of
the sulfur atom and the relatively low dissociation energy of
the S−H bond render Cys with the ability to perform both
nucleophilic and redox-active functions that are unfeasible for
the other naturally occurring amino acids. Most commonly,
the acid dissociation constant (pKa) values of thiol groups in
Cys residues are relatively close to the physiological pH, and
the ionization state of Cys is therefore highly sensitive to the
environment. The thiol ionization state governs Cys nucleo-
philicity and redox susceptibility, thereby facilitating the
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unique functions of Cys: nucleophilic and redox catalysis,
allosteric regulation, site of posttranslational modification,
metal coordination, and structural stabilization (Fomenko
et al. 2008). Additionally, the reactivity of specific Cys resi-
dues can be largely affected by protein environment, increas-
ing thiol reactivity in specific reactions. For example, the
reduction of hydroperoxides by peroxidatic thiols in Cys-
based peroxidases is increased by factors of 103–107 com-
pared with free Cys (Ferrer-Sueta et al. 2011). Similarly, thiol–
disulfide exchange reactions are catalyzed by specific Cys-
based oxidoreductases (Jensen et al. 2009). Protein factors
affecting Cys reactivity are only starting to be unraveled,
and computer simulations provide important tools to the un-
derstanding of the molecular basis of catalysis.

Computational techniques for modeling biochemical prob-
lems have emerged during the last decades as an important
tool to complement experimental information (Dror et al.
2012). The in silico-generated models and the information
which can be obtained throughout their study have been
shown to be very useful for analyzing the structural, spectro-
scopic, and kinetic data provided by the experimental
methods. In particular, computer simulations are a systematic
and economical tool that allow the analysis of the dependence
of a property of interest on static (e.g., amino acid sequence)
and dynamical factors (Dror et al. 2012). In recent years, the
increase in the computing power and in the accuracy of the
models made possible in many cases to draw biologically
relevant conclusions and propose new hypotheses based
mainly on simulation data (van der Kamp and Mulholland
2013). In this context, redox biochemistry of thiols, a complex
research area in which relevant reactions may occur in both
solution and protein environments, constitutes an ideal bench-
mark for many computational techniques.

The modeling of phenomena which do not involve the
formation or breaking of chemical bonds may be achieved, in
principle, without resorting to quantum mechanics (QM), by
employing classical force fields (even though such force fields
often contain parameters based on QM calculations). Among
themost widely used force fields for biomolecules are AMBER
(Cornell et al. 1995), CHARMM (MacKerell et al. 2004), and
GROMOS (Schmid et al. 2011). The time scale accessible in
atomistic simulations with modern hardware technology is
limited to the microsecond range, yet the predictive power of
simulation schemes has increased enormously in the last years
by the development of advanced sampling techniques, such as
accelerated dynamics (Hamelberg et al. 2004), replica ex-
change (Zhang and Chen 2013), metadynamics (Laio and
Parrinello 2002a), and multiple steered molecular dynamics
(MD) (Park et al. 2003).

Classical simulation techniques are not able to deal with
reactive processes where covalent chemical bonds are being
formed or broken, in which cases it is necessary to employ
QM schemes. There are twomain strategies to tackle chemical

processes in biochemistry. One is based on electronic structure
calculations using appropriate model systems of moderate
size, typically including the active site plus eventually the
most relevant region of the environment, and/or adding a
continuum representation of the environment. The second
strategy is to employ hybrid QM–molecular mechanical
(QM-MM) methods, which were introduced in the 1970s by
Warshel and Levitt (1976). These are adequate for the inves-
tigation of chemical events that take place in a limited region
of a large system (the QM region), to be modeled using QM at
a certain level of theory, which may range from simplified
valence bond schemes, to semiempirical methods, to Hartree–
Fock and density functional theory (DFT) (Laio et al. 2002b;
Crespo et al. 2003, 2005; Senn and Thiel 2009). The remain-
der of the system (MM region) is treated at the less expensive
molecular mechanics, or classical level. The use of this kind of
technique for the investigation of chemical reactivity in solu-
tion and in enzymes has become very popular during the last
years (Lebrero et al. 2005; Crespo et al. 2006; van der Kamp
and Mulholland 2013).

In this work we discuss results on classical and QM com-
puter simulations of selected processes related to thiol redox
biochemistry (Fig. 1). In section 1, we review investigations
on the protonation state of Cys in protein environments, and in
section 2 we examine and discuss the two-electron oxidation
of thiols by hydroperoxides, chloramines, and hypochlorous
acid. We discuss mechanistic and kinetics aspects of the de
novo formation of disulfide bonds and thiol−disulfide ex-
change in section 3. Section 4 is devoted to the formation of
sulfenamides, in section 5 we present results on the formation
of nitrosothiols, and transnitrosation reactions, and, finally, in
section 6 we focus on a number of one-electron oxidation
pathways.

Section 1: pKa of thiol

Many enzymes depend upon redox-active Cys. Since thiolates
are much better nucleophiles than the neutral form of thiols
(Winterbourn and Metodiewa 1999), their pKas are an essen-
tial factor for the understanding of their reactivity. While pH-
dependent reactivities involving thiolates as nucleophiles at
close to physiological pH are usually higher for those thiols
with the lower thiol pKa values, due to a higher thiolate
availability, pH-independent reactivities (intrinsic reactivity
of thiolates) show the opposite trend (Gilbert 1990; Trujillo
et al. 2007). Indeed, for low-molecular-weight thiols and a
great number of protein Cys residues, the pKa value is a useful
marker to predict thiolate reactivity, with low-molecular-
weight thiols being more reactive than those with higher
pKas (as shown for peroxynitrite in Fig. 2). However, it must
be taken into account that in specific reactions, the Brønsted
coefficient fails in this prediction for some protein thiols, the
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so-called “fast reacting protein thiols”, as shown in Fig. 2
(Trujillo et al. 2007).

Factors that control Cys pKa in proteins

Factors that affect the stability of charged species play a
crucial role in pKa shifts. Therefore, aqueous solvation, H-
bonds, charges of nearby residues, and helix dipole effects
may influence pKa values (Roos et al. 2013a). Cys residues
are very sensitive to their environment; consequently, a wide
range of pKaSH values has been measured/calculated. For

example, in different proteins of the thioredoxin superfamily,
pKaSH in the range 3.5–8 range have been found (see refer-
ences in Table 1).

The role of charged side-chains and long-range electrostat-
ics seems to be important (Lim et al. 2012). However, despite
some exceptions, computational and experimental results in-
dicate that the surrounding charged chains are not sufficient to
explain large pKa shifts, possible due to the fact that side
chains have to be long and flexible to establish strong inter-
actions with the thiolate. Hence, a stable ionic contact would
imply an entropic cost. It must be taken into account that when

Fig. 1 Most relevant thiol redox reaction pathways. Different routes of
oxidation of thiol/thiolate are shown in a schematic way. Thiol acid–base
behavior is presented in reaction (I). Reaction (II) shows the one-electron
oxidation of thiolates to thiyl radical. Thiolates can be oxidized by hydro-
peroxides, hypochlorous acid, and chloramines in two-electron oxidation
processes that yield the corresponding sulfenic acid (III), which in turn can
be further oxidized to sulfinic and sulfonic acids if oxidant is in excess (IV).
Inter- and intramolecular disulfides are de-novo formed from the reaction
of a sulfenic acid with other thiol (V) and, subsequently, thiol−disulfide
exchanges can occur (VI). Protein or protein-like thiolates can also rear-
range to a cyclic product called sulfenamide that involves the reaction of

the sulfur atomwith the backbone’s NHmoiety of the preceding residue in
the sequence (VII). Thiyl radicals can react with molecular oxygen/super-
oxide or other thiol, yielding sulfinic acid and disulfides as final products,
respectively (reactions VIII and IX). Nitrosothiols can be produced both by
radical and non-radical pathways: both thiol–thiolate oxidation by reactive
nitrogen species such as dinitrogen trioxide, or thiyl radical recombination
with nitric oxide are called S-nitrosation and S-nitrosylation (reactions X
and XI). Nitrosothiols can react with other thiols, exchanging the nitroso
group in the so-called trans-S-nitrosations (XII) or releasingHNO to form a
new disulfide (XIII)
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charges are exposed to a high dielectric medium, such as
water, the electrostatic interaction between charges is dimin-
ished (Mossner et al. 1998; Jao et al. 2006).

In contrast, hydrogen bonds seem to have a strong influ-
ence on the pKa. Compared to oxygen or nitrogen, sulfur has
lower electronegativity and a larger radius, both of which
reduce its ability to participate in hydrogen bonds. In spite of
this, there is strong evidence supporting the notion that the
thiol group can act as a hydrogen bond donor or acceptor and
that thiolate can act as hydrogen bond acceptor (Colebrook
and Tarbell 1961). The associated bond distances are longer
than those with nitrogen or oxygen, but some QM calculations
have suggested that, in some cases, sulfur may be almost as
strong a hydrogen bond acceptor as oxygen (Wennmohs et al.
2003). It has been reported that a correlation exists between
the number of H bonds to the sulfur and lower predicted pKa
values (Li et al. 2005; Foloppe and Nilsson 2007). It is
important to remark that small structural rearrangements can
form or destroy hydrogen bonds, thereby regulating reactivity
through pKa shifts.

Another factor which affects the pKa of Cys residues is the
helical effect, which has been attributed to the vector sum of
the microdipole moments of the individual peptide units
(Wada 1976). Finite difference Poisson–Boltzmann (FDPB)
calculations have also suggested that the helix dipole depends
on the geometry and solvent exposure of the termini
(Sengupta et al. 2005).

pKa experimental determinations in proteins are far from
trivial due to the often abundant number of protonable residues
and the dependence of the pKa on the three-dimensional protein
structure, as well as the solvation environment. Such determi-
nations are usually made by different spectroscopic methods,
nuclear magnetic resonance (NMR) and determination of the

Fig. 2 Intrinsic thiolate reactivities with peroxynitrite (k2pHind) as a func-
tion of thiol pKa (pKaSH). Low-molecular-weight thiols (filled squares 1–
6) show a positive Brønsted correlation, as indicated by the solid red line,
consistent with the thiols with a higher pKa being better nucleophiles.
Some protein thiols (filled triangles 10–11) react with peroxynitrite, as
anticipated according to their thiol pKa. Other protein thiols (filled circles
12–21), react much faster than expected, indicating that protein factors
other than thiol pKa are determining this reactivity. 1 L-cysteine (Cys)
ethyl ester, 2 Cys methyl ester, 3 penicillamine, 4 Cys, 5 glutathione, 6
mercapto ethyl guanidine, 7homocysteine, 8N-acetyl Cys, 9dihidrolipoic
acid, 10 Trypanosoma brucei tryparedoxin, 11 human serum albumin, 12
human arylamine N-acetyltransferase 1, 13DJ1, 14 TSA2, 15 Mycobac-
terium tuberculosisAhpC, 16creatinine kinase, 17TSA1, 18GAPDH, 19
red blood cell peroxiredoxin 2 (Prx2), 20protein-tyrosine phosphatase 1B
(PTP1B), 21human Prx5. Modified from Trujillo et al. (2007) and Ferrer-
Sueta et al. (2011)

Table 1 Predicted pKa of L-cysteine residues in different proteins by different computational methodsa

Protein Protein
Data Bank ID

L-cysteine
residue number

Experimental FDPB (electrostatic
classical approach)

PROPKA3
(minimized structure)
(empirical approach)

Quantum
mechanical
calculations

Escherichia coli Trx1 1xob 32 7.1b 7.6 6.6d 6.5d

Human glutharedoxin 1jhb 22 3.5c 5.5–7.2c

Human serum albumin 1n5u 34 5.0d 7.7

Oryctolagus cuniculus
glyceraldehide-3-phosphate-
dehydrogenase

1j0x 149 5.5d 4.2

Bacillus subtilis thiol-disulfide
oxidoreductase resA

1su9 76 8.2d 10.0d 8.1d

Staphylococcus aureus thiorredoxin 2o89 29 6.4d 4.0d 6.5d

pKa, Acid dissociation constant; FDBD, finite difference Poisson–Boltzmann
aAverage experimental results (“Experimental”) are also presented
bDyson et al. 1997
c Jao et al. 2006; Foloppe and Nilsson 2007
dMarino and Gladyshev 2012
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pH profiles of reaction rates. However, different experi-
ments may lead to different results (Thurlkill et al. 2006;
Roos et al. 2013a). Due to these difficulties, many computer
methodologies have been developed in the last years in order
to predict the pKa more accurately. Although great advances
have been made in this area and very promising models have
been created and tested for a variety of systems, only semi-
quantitative tendencies have been observed to date, and very
careful interpretations of the data are required (Alexov et al.
2011).

Electrostatic classical approach

Many pKa calculations are done by using the implicit solvent
FDPB approach (Bashford and Karplus 1990; Yang et al.
1993; Honig and Nicholls 1995). This way of modeling the
aqueous environment implies considering the protein as a set
of spheres with a different dielectric constant (ε) than the
solvent. The pKa value is calculated from the relative shift
to the reference intrinsic pKa of the same residue free in
aqueous solution, as previously described (Fitch and García-
Moreno 2007). For free Cys, a pKa of around 8.3 is generally
accepted. Many software packages are available for calculat-
ing pKa shifts, including the MEAD package and the PCE
web tool (Bashford and Karplus 1990; Sanchez et al. 2008;
Salsbury et al. 2012a). Using these approximations, various
research groups have more recently focused on accounting for
the effect of protein dynamics on pKaSH calculations. In
different peroxiredoxin (Prx) systems. Salsbury and co-
workers found that minimal changes in the surrounding envi-
ronment of the Cys could lead to major changes in the pKa
value and also that these effects could be related to conforma-
tional changes and long-range electrostatic communication
paths between different Cys residues (Yuan et al. 2010;
Salsbury et al. 2012b).

Empirical approach

Another method that has been used to predict the pKa of
reactive Cys is the empirical pKa predictor PROPKA, which
is available online (http://propka.ki.ku.dk/). The pKa shift for
titratable residues is calculated as a function of the sum of
energy contributions of the surrounding residues. Although
this approach is simplistic, it is a very fast method with a fair
correlation to the experimental determinations of pKa in some
reported cases (Søndergaard et al. 2011). PROPKA has been
updated three times. While in PROPKA1 (Li et al. 2005) no
pKa shifts due to ligands, ions, and structural water molecules
were considered, these effects were incorporated in
PROPKA2 (Bas et al. 2008). In PROPKA3 and PROPKA3.
1 (Søndergaard et al. 2011), the residues are no longer classi-
fied as either buried or surface residues, rather a linear inter-
polation between the two is used.

QM calculations

The pKa of free Cys in water has been calculated by DFT
(Canle et al. 2005). These calculations have also been per-
formed using a DFT-based approach developed by Roos and
co-workers (Roos et al. 2009). Basically, these methods use
the information obtained by an electronic structure calculation
(free energy, atomic charges, etc.) to calculate or extrapolate
pKaSH. For example, Roos and co-workers use the linear
correlation between the atomic charge calculated on the sulfur
atom of thiols (as natural population analysis: NPA) and their
experimentally determined pKa to quantitatively calculate the
pKaSH. These methods seem to be very accurate (linear cor-
relation between theoretical and experimental values,
R2=0.96) (Marino and Gladyshev 2012), yet computationally
very demanding. A brief comparison on the performance of
different pKaSH prediction methods is presented in Table 1. In
summary, although the ability to predict the pKa has improved
considerably, further development is needed before computa-
tional calculations can be used to realistically calculate the
pKa in protein Cys residues. To date, the best correlation with
experimental results that may be achieved is the method based
in DFT (Roos et al. 2009). However, this approach is compu-
tationally expensive. The PROPKA and FDPBmethods show
a fair correlation with experimental results and can be used to
obtain a general idea about the Cys pKa, but should not yet be
used to predict precise values.

Section 2: Thiol two-electron oxidation

Hydroperoxides

The reduction of hydroperoxides via thiol oxidation is a key
event that has been implicated in a great variety of biological
processes, such as antioxidant responses, redox signaling and
transduction, regulation of different enzymes and channels,
among others. (Barford 2004; Jones 2008; Winterbourn and
Hampton 2008; Flohe 2010). Although Fig. 1 presents a
generalized picture of the first step of this oxidation reaction,
the actual reaction for each of the different hydroperoxides
may vary somewhat. Here, we describe the hydrogen peroxide
(H2O2) and peroxynitrous acid (ONOOH) cases as illustrative
examples.

Thiols react with peroxides (Edwards 1962), chloramines,
and hypochlorous acid (Peskin and Winterbourn 2001) in a
bimolecular fashion. As shown in Fig. 1, the process includes
two reaction steps; the first one (which is the topic of this
section) involves the two-electron oxidation of the thiol moi-
ety to yield sulfenic acid, and the second one involves de novo
disulfide formation by the conjugation of the sulfenic acid
generated in the first step with the other thiol (see section 3).
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H2O2 is known to be produced in many cell types as a
response to a variety of extracellular stimuli and could work as
an intracellular messenger (Rhee et al. 2005). The oxidation of
thiols by H2O2 has been reported to proceed through a SN2
mechanism (Edwards 1962). Using state of the art hybrid
quantum-classical (QM-MM) MD simulations (QM-treated
solute embedded in a MM-treated water box), we elucidated
the reaction mechanism of thiol oxidation by H2O2 for a
model methanethiolate system (Zeida et al. 2012). Our results
show that there is a proton transfer between H2O2 oxygen
atoms that occurs after the transition state (TS) has been
reached (Fig. 3), proceeding directly to unprotonated sulfenic
acid and water; these observations are in agreement with
previous reported theoretical data (Chu and Trout 2004;
Cardey and Enescu 2005; 2007a).

RS− þ H2O2→RSO− þ H2O ð1Þ

We also found that the solvent plays a key role in position-
ing the reactants and that there is significant charge redistri-
bution in the first stages of the reaction. The reaction is driven
by the tendency of the slightly charged peroxidatic oxygen to
become even more negative in the product via an electrophilic
attack on the negative sulfur atom. These results are inconsis-
tent with the SN2 mechanism, which predicts a protonated
sulfenic acid and hydroxyl anion as stable intermediates
(Edwards 1962).

Oxidation second order pH-independent rate constants of
the reaction shown in Eq. 1 are approximately20 M-1 s-1 for
low-molecular-weight thiols in aqueous solution and exhibit
almost no dependence on the thiol pKa value (Winterbourn

and Metodiewa 1999). Remarkably, the rate constants for
peroxidatic thiols in Cys-dependent peroxidases, such as
Prxs, are several orders of magnitude larger, in the approxi-
mately 104–108 M-1 s-1 range (Parsonage et al. 2005; Navrot
et al. 2006; Manta et al. 2009). It has recently been proposed
that the environment of each Prx’s active site could account
for a H-network and substrate placing such as to provide an
alternative mechanism to the one found in aqueous solution
(Hall et al. 2010; Ferrer-Sueta et al. 2011). Moreover, in a very
insightful work, Nagy and co-workers modeled this environ-
ment on the human Prx2 and performed QM calculations for
these model systems in order to gain an understanding of the
influence of the residues nearby the peroxidatic Cys. These
authors reported that both active site Arg residues are funda-
mental to explain the H-network that could in turn explain TS
stabilization (Nagy et al. 2011). This study represents the first
attempt to comprehend the extraordinary reactivity of Prxs via
molecular modeling, and much more work is needed to shed
light on this subject.

Peroxynitrite (as the sum of ONOO- and ONOOH) is
formed in the cell by the reaction between the superoxide
anion (O2

•-) and nitric oxide (•NO) radicals (Goldstein and
Czapski 1995; Pryor and Squadrito 1995; Kissner et al. 1997).
Both ONOOH and ONOO- are strong oxidants which have
been implicated in numerous biologically relevant processes
associated with protein function modification and cellular
signaling, among others [for comprehensive reviews, see
Pacher et al. (2007) and Ferrer-Sueta and Radi (2009)]. The
specific case of ONOOH reduction by thiols has been studied
very profoundly from a kinetic viewpoint (Radi et al. 1991;
Koppenol et al. 1992; Trujillo and Radi 2002).

In a very recent work, we conducted an integrated kinetic
and theoretical study of the oxidation of Cys by peroxynitrite:

CysS− þ ONOOH→CysSOHþ NO2
− ð2Þ

We determined the pH-independent thermodynamic activa-
tion parameters from kinetics experiments and also explored
the reaction mechanism and system properties on the basis of
hybrid QM-MM MD simulations (Zeida et al. 2013). This
work represents the first theoretical study of this important
reaction. Our results underline the pH dependency of the
process and the significance of the solvent in assisting in the
orientation of ONOOH and allowing the charge reorganiza-
tion to take place. Although we found that the TS structure for
this reaction is very similar to that observed for H2O2, unlike
what was proposed for that case, we did not observe the proton
transfer and the process concludes in the protonated Cys
sulfenic acid (CysSOH) and nitrite ion (NO2

¯) as products,
which is then perfectly consistent with a substitution-like
mechanism (Fig. 4).

Fig. 3 Free energy profile obtained by a quantum mechanics–molecular
mechanical (QM-MM) umbrella sampling simulation. Free energy
(kcal/mol) is plotted versus the reaction coordinate (Å). Illustrative
models of the reaction mechanism steps are also depicted. Modified from
Zeida et al. (2012)
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Taking these results into account, it is essential to obtain
atomistic detailed information on the mechanism of hydrogen
peroxide and peroxynitrite reduction by different protein
thiols, such as like peroxidatic Cys in Prxs and thiol-
dependent glutathione peroxidases (GPxs), in order to under-
stand how the protein environment can modify so drastically
thiol’s capability to scavenge these oxidants. Although scarce,
available kinetic data indicate that the reactivities of thiol-
dependent peroxidases, such as Prxs, with fatty acid hydro-
peroxides and amino acid-derived hydroperoxides are also
high (Peskin et al. 2010; Reyes et al. 2011).

Chloramines and hypochlorite

Thiol oxidations by hypohalous acids, such as hypochlorous
acid (HOCl), and by chloramines are favorable reactions
which have been implicated with alterations in regulatory
and/or signaling pathways in cells exposed to neutrophile-
derived oxidants (Peskin and Winterbourn 2001). In the case
of HOCl, the reaction has been proposed to proceed via the
formation of a very unstable sulfenyl halide (RS-Cl), which
readily rearranges to sulfenic acid (Nagy and Ashby 2007).
On the other hand, the oxidation of thiols by chloramines
would not form a sulfenic acid, and the condensation with
other thiol to form a disulfide would proceed directly from
RS-Cl (Peskin and Winterbourn 2001; Stacey et al. 2012). All
of these mechanistic hypotheses are based on the results of
kinetic experiments (see Lo Conte and Carroll 2012 for a
complete review); nevertheless, a complete atomistic descrip-
tion of these processes is needed for a thorough understand-
ing. In this context, computer simulations appear to be the
appropriate tool to shed light on this issue.

Section 3: Disulfide bonds

The analysis per se of the disulfide bond has been the subject
of multiple studies, both experimental and computational. The

combination of computational and spectroscopic tools has
been a very useful duo approach for determining the physico-
chemical properties of the disulfide bond in small XSSX
systems (X=H, Cl, F, CH3, −CH2CH2CH2−) (Boyd et al.
1983; Dixon et al. 1985; Honda and Tajima 1986; Honda
and Tajima 1990; Cárdenas-Jirón et al. 1993), various organic
molecules (Suzuki et al. 1990; Benassi et al. 1997;
Ackermann et al. 2009), diglycosyl-disulfides (Fehér et al.
2011) and even complex protein models, such as disulfide-
bridged cyclic tetrapeptides (Rao et al. 1983; Li et al. 2013)
and the 4,5-ditiaheptano-7-lactam (Hudáky et al. 2004), and
the famous antioxidant and GPx mimic cyclic selenamide
Ebselen and its derivatives (Pearson and Boyd 2006;
Pearson and Boyd 2007; Heverly-Coulson and Boyd 2009).
Beyond being one of the most significant chemical bonds of
sulfur, the disulfide bond is also one of the most important
protein structural motifs found in nature. Formed through the
oxidative binding of two cysteines (Eq. 3), disulfide bonds
constitute a major chemical modification in the structure of
proteins which leads to increased conformational stability of
the native state, mainly by reducing the conformational entro-
py of the unfolded state (Zhang et al. 1994; Abkevich and
Shakhnovich 2000).

2 Cys�SH→Cys�S�S�Cysþ 2e− þ 2Hþ ð3Þ

The introduction of disulfide bonds into proteins by site-
directed mutagenesis with the aim to stabilize the native
folded state has been explored for “engineering” S–S bridges
into unstable proteins (Perry and Wetzel 1984; Katz and
Kossiakoff 1986;Wetzel et al. 1988). The same computational
prediction approaches as those used in the as yet unsolved
biochemical problem of the prediction of the correct disulfide
bonding pattern in proteins can also be used for achieving the
best combination of disulfide bonds when the aim is stabili-
zation (Srinivasan et al. 1990; Marino and Gladyshev 2011;
Savojardo et al. 2011).

Fig. 4 Kinetic and QM-MM
study of Cys oxidation by
peroxynitrite (ONOO-). a “Bell-
shaped” plots of the dependence
of k2pHdep (M

-1 s-1) as a function
of pH, at T=10, 25, 37, and 50 °C.
b Estimated free energies of the
reactants, transition states (TS),
and products. Illustrative pictures
of reactants and products are
depicted. Modified from Zeida
et al. (2013)
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As observed from Eq. 3, the reversible formation of disul-
fide bonds is modulated by the redox potential (Sevier and
Kaiser 2002) and the pH of the environment (Roos et al.
2013a) and is often catalyzed by the action of specific proteins
(Sevier and Kaiser 2002; Kadokura et al. 2003; Depuydt et al.
2011). At the present time, only two main chemical pathways
through which disulfide bonds are formed in proteins have
been described: (1) a sulfenic acid form of a Cys reacts with
other Cys residues (Eq. 4); (2) a mechanism which involves
the nucleophilic cleavage and thiol–disulfide exchange (Eq. 5)
between a nucleophilic thiolate and a pre-formed disulfide
bond. Both reactions are of paramount relevance in cellular
physiology. There are of course a few known alternative
reactions, such as the reaction of S-nitrosothiols with thiols
(see section 5) or the encounter of two thiyl radicals (section
6), but these are less likely to occur in vivo.

R�SOHþ R’�SH→R�S�S�R’þ H2O ð4Þ

R�S�S�Rþ R’�S−→R�S�S�R’þ R�S− ð5Þ

Regarding the disulfide formation reaction via Eq. 4, the rate
at which this reaction occurs has recently become an important
discussion topic. While the sulfenic acid formation reaction
was described at a much earlier date (Barton et al. 1973;
Winterbourn and Metodiewa 1999), Luo et al. (2005) were
the first to include not only the analysis of the formation of
sulfenic acid, but also the formation of cystine through the
reaction depicted in Eq. 4. Using an experimental design that
involved reverse-phase high performance liquid chromatogra-
phy (HPLC) and a two-step nucleophilic model for interpreta-
tion of the data, these authors proposed that the reaction of
Eq. 4 evolved with a specific rate constant of 720±70 M-1 s-1

(25 °C and pH 6). However, the following year Ashby and
Nagy (2006a) published a comment on this paper arguing that
the kinetic model chosen by the authors was not suitable. In the
same journal issue, Anderson and Luo replied defending their
choice of the kinetic model used for describing the system
reactions (Anderson and Luo 2006). Finally, Ashby and Nagy
decided to publish two independent new studies (Ashby and
Nagy 2006b, 2007) where they showed that the value of the
rate constant for the reaction of Eq. 4 is greater than 105M-1 s-1,
clearly much larger than that determined by Luo and co-
workers in their original study. To add more controversy to
the issue, there is also some discrepancy between some of the
computational results. Two computational studies support the
mechanism proposed by Luo and co-workers: in one of these,
the authors combined MD and quantum chemical simulations
to understand the mechanism of activation of the OxyR tran-
scription factor by hydrogen peroxide (Kóňa and Brinck 2006).

A very strong solvent effect in the disulfide formation reaction
step was observed, resulting in a free energy of activation value
of 14.4 kcal/mol in water. In the second study, Bayse (2011)
used DFT and solvent-assisted proton exchange (SAPE) and
reported a value of −27.5 kcal/mol for reaction free energy
change and a free energy of activation in water of 12.5 kcal/
mol, consistent with the mechanism proposed by Luo et al.
(2005) at low [H2O2]/[Cys] ratios. In a recent work that deals
with the oxidation of zinc−thiolate complexes by hydrogen
peroxide, Kassim et al. (2011) calculated the reaction between
the model systems CH3SOH and CH3S

- to give dimethyl
sulfide and hydroxide. The authors predicted that the reaction
would be extremely fast since the corresponding potential
energy barrier was lower than 1 kcal/mol, supporting, con-
versely, the results obtained by Ashby and Nagy (2006b,
2007). A similar tendency was observed in a study reported
by Dokainish and Gauld (2013), where despite the complete
reaction of study being different from the ones reviewed here,
in the final step, a disulfide bond is formed between a thiolate
and a sulfenic acid. In this case, the authors observed that the
reduction of the sulfenic acid to give a disulfide bond can
effectively occur without a barrier. A number of experimental
studies of this particular reaction have been carried out within
proteins (Trujillo et al. 2007; Turell et al. 2008; Hugo et al.
2009; Peskin et al. 2013), this reaction has not been intensively
studied through computer simulations. Differences are ob-
served when free Cys rate constants are compared with those
obtained for the Cys residues in protein environments, as well
as between the different protein models investigated to date.
Clearly, despite the insights obtained through the use of com-
putational tools, the reasons for all this variance in results
remain unclear, and ultimately experimental characterization
would appear to be necessary.

The reactions of disulfide bond cleavage have been studied
for over 50 years (Parker and Kharasch 1959). One of these
reactions, the thiol−disulfide exchange, has received particular
attention over the years (Fava et al. 1957; Singh and
Whitesides 1990; Keire et al. 1992; Bulaj et al. 1998). Many
discussions have focused on determining the exact mecha-
nism through which the thiol−disulfide exchange reactions
occur, and it now appears that an agreement has been reached.
Structural and energetic data suggest that as the central atom in
disulfide becomes larger (−SS−H vs. −SS−CH3), the pathway
tends to shift away from an addition–elimination (A–E)mech-
anism, and the SN2 pathway comes into operation (Bachrach
and Mulhearn 1996; Bachrach et al. 2002; Bachrach and
Pereverzev 2005; Hayes and Bachrach 2003). However, a
precise partitioning of the mechanism into SN2 versus A–E
has proved to be difficult because of the flatness of the
potential energy surfaces (PESs) in the region of the TS and
intermediates. A broad review of the kinetics and mechanisms
of thiol−disulfide exchange and the challenges and advances
associated with this type of investigation (small molecules vs.
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enzymatic systems) from a rigorous chemical point of view
has been recently published (Nagy 2013). In addition, most of
these results have been re-examined in two recent and com-
prehensive computational works (Fernandes and Ramos
2004; Bach et al. 2008). In the latter study, the authors char-
acterized the mechanism and the transition state for the reac-
tion of Eq. 5 when the substituents R are small. Using ab initio
calculations (DFT and post-Hartree–Fock approaches) and
corrections for solvation (COSMO and CPCM), these data
suggest that thiolate–disulfide exchange involves a discrete
intermediate resulting from the attack of the incoming thiolate
on a disulfide bond, resulting in the formation of an anionic
trisulfide structure [δ-S–S–Sδ-] that exists in an energy well
sufficiently deep to allow for such an exchange process. Thus,
the mechanism of the thiolate–disulfide exchange most likely
proceeds by an SN2 process whereby the corresponding
trisulfur anionic intermediate is formed.

What becomes clear from all of the above examples is that,
given the large charge transfer along the reaction progress, the
protein environment where these reactions may occur will
play a key role in the mechanism and catalysis of the reaction.
For this, an accurate description of the thiolate, disulfide, and
leaving group solvation is essential for understanding the costs
and benefits of carrying out this reaction in the interior of an
enzyme. In recent studies (Hayes and Bachrach 2003;
Geronimo et al. 2009), the microhydration of small disulfide
molecules, such as dimethyldisulfide, either neutral or radical
anionic, has been explored by means of ab initio calculations,
revealing drastic changes in its electron affinity induced by
only a few water molecules. These studies provide an impor-
tant take-home message: it would seem mandatory that ex-
plicit quantum water molecules be included to achieve a
complete and satisfactory picture of disulfide bond chemistry.
This inclusion could be essential when these reactions are
interpreted inside proteins.

The formation of disulfide bonds is not only important for
the thermal stabilization of proteins, but also for proteins that
carry out key redox functions through them. This has become
evident in those proteins where their function is a consequence
of the dynamic and sensitive exchange between two different
redox states, reduced (2 CysH) and oxidized (Cys–Cys)
(Sevier and Kaiser 2002; Marino and Gladyshev 2011).
Another type of scenario is possible when the protein function
is not intimately related with a redox Cys-mediated catalysis
but still plays a physiological role in the response to oxidative
stress through disulfide bond formation (Fomenko et al.
2008). In these cases, the disulfide bridge affects some protein
properties, i.e., local structure, solubility, conformational en-
tropy, among others, that ultimately impact on its not neces-
sarily redox function. The Cys residues involved in this par-
ticular kind of modification [and also oxidation to CysSOH
and S-nitrosylation) have been classified as “regulatory cyste-
ines” (Fomenko et al. 2008). Computational tools to study

these particular cases are a combination of the above. First, it
is necessary to characterize the structure and dynamics of
reduced and oxidized forms and to establish the impact of
disulfide bond formation in the specific function of the protein
in both oxidation states. Sometimes this is not easy to obtain
because the structures of proteins in both oxidation states are
very different, and computation requires having a starting
structure (X-ray, NMR, etc.). In order to get a complete
picture, an understanding of the physiological environment
is necessary, as well as of the agents responsible for these
changes (small oxidizing and reducing agents, traffic and
mechanisms of protein secretion, proteins responsible for
disulfide exchange, reversibility of these processes, etc.).
Finally, a QM-MM calculation is the most appropriate ap-
proach for exploring and describing the chemical reaction
pathway connected with protein function.

Section 4: Sulfenamides

Sulfenic acid (Cys−OH) may act as a metastable oxidized
form or as an intermediate, giving rise to more stable products
such as disulfide, sulfinic acid, or sulfonic acids (Giles et al.
2003; Paulsen and Carroll 2010). As oxidation can lead to the
loss of protein activity, there are alternative mechanisms to
recover the Cys residue that may be observed when disulfide
formation is not possible. In this section we refer to an
autorecovery mechanism by the protein itself that involves
the formation of a sulfenamide, a cyclic product which in-
volves the reaction of the sulfur atom with the backbone NH
moiety of the preceding residue in the sequence (Fig. 5). This
intermediate was seen for the first time in X-ray studies of
protein tyrosine phosphatase 1B (PTP1B) (Salmeen et al.
2003). An increasing body of evidence suggests that the
cellular redox states of the catalytic Cys are involved in
determining tyrosine phosphatase activity. Peroxides can reg-
ulate cellular processes by the transient inhibition of protein
tyrosine phosphatases through the reversible oxidization of
their catalytic Cys, which suppresses protein dephosphoryla-
tion (Buhrman et al. 2005; Brandes et al. 2009; Miki and
Funato 2012). The discovery of sulfenamide formation in
PTP1B emerged as a possible mechanism to prevent
overoxidation of functional Cys without the need of external
regulators as organic molecules or proteins (Paulsen and
Carroll 2010). Since the discovery of the formation of this
intermediate in PTP1B (Salmeen et al. 2003), several proteins
have been identified as forming sulfenamides, and this reac-
tion is emerging as an important mechanism of auto-resolution
of protein oxidation. In Bacillus subtilis, this phenomenon is
involved in the control of the expression of Prx in response to
reactive oxygen species (ROS): cyclic sulfenamide prevents
the overoxidation of the organic hydroperoxide resistance
regulator (OhrR) and acts as a slow switch to prevent DNA
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binding, allowing the transcription of the Prx genes (Lee et al.
2007; Eiamphungporn et al. 2009). Cyclic sulfenamide was
also detected in the D2 distal domain of PTPalpha. This
protein consists of two phosphatase domains, one proximal
(D1)with phosphatase activity and one distal (D2), not directly
involved in phosphatase activity. In this case the sulfenamide
has been proposed as an allosteric regulator of the D1 domain,
controlling its catalytic activity (Yang et al. 2007).

We have recently provided evidence that sulfenamide forma-
tion can be achieved in those proteins that adopt a constrained
conformation of the Cys residue (Defelipe et al., in preparation)
which has an specific value of the Phi angle, located in the
forbidden region of the Ramachandran plot. This constrained
conformation is present in almost all proteins reported to form
the intermediate and in many proteins that have a reactive Cys.
The constrained Cys was identified to be located in a conserved
helix-loop-beta-sheet motif present in different folds, which
positions the NH backbone that will form the cyclic product in
a conformation needed for the reaction to occur (Table 2). The
formation of sulfenamide in proteins has been proposed to occur
through oxidation of the constrained Cys to sulfenic acid,
followed by a nucleophilic attack of the backbone nitrogen atom
of the following residue in the sequence to the sulfur atom of
oxidized Cys. Synthetic thiols having ortho-amide substituents
have been proposed as good models for proteins because they
enforce proximity of the amide and Cys thiol groups
(Sivaramakrishnan et al. 2005), highlighting the importance of
specific conformations in enabling the reaction to occur. The
proposedmechanism in the model organic compounds that have
the S–OH moiety, as in sulfenic acid, involves a concerted
mechanism that yields the cyclic sulfenamide and the loss of a
water molecule (Sivaramakrishnan et al. 2005).

We performed QM–MM calculations starting with X-ray
crystal of PTP1B; Cys 215 (as CySOH) and Ser 216 were
treated at the DFT theory level (PBE/dzvp) while the rest of
the protein and water molecules were treated classically using
the AMBER force field.We found that the reactions occur in a
concerted mechanism involving the abstraction of the amide
hydrogen by the OH group from the sulfenic acid and the
subsequent formation of the the S–N bond (Defelipe, in prep-
aration) (Fig. 5). The S–O bond rupture is clearly homolytic
based on the neutral charge in the S and OH groups in the
apparent TS. The Psi dihedral angle does not change signifi-
cantly during the reaction, again showing that backbone con-
formation is important. These results are consistent with the
fact that the reaction is very slow, as measured in synthetic
probes and based on previous calculations (Sarma and
Mugesh 2007). A possible explanation of why the process
actually happens, even if at slow rates, may be given by flaws
in the computational methodology, such as the neglect of
entropic effects. Relatively high activation energy barriers
can be partially overcome as the reactants are constrained
and located in the same molecule ready to react. By analyzing
the conformation of a model peptide we found that proteins
overcame a penalty of around 8 kcal/mol to achieve the
constrained conformation; on the other hand, local environ-
ment around the reactive Cys seemed not to be important as
we failed to find any conserved residues or amino acid type
with respect to sequence or structure around the reactive Cys
in all proteins that have the helix-loop-beta-sheet motif.

The physiological relevance of sulfenamides is still a mat-
ter of discussion. The fact that some proteins which have a
reactive Cys lack a regulatory mechanism to protect it from
oxidative attack and that a constrained conformation found in

Fig. 5 Energy profile for
sulfenamide formation in protein
tyrosine phosphatase 1B (PTP1B)
for histidine protonated in the
epsilon nitrogen (HIE). Cys 215
(as CysSOH) and Ser 216 were
treated at the density functional
theory level (PBE/dzvp), while
the rest of the protein and water
molecules were treated
classically. Reactant, TS, and
products are shown as ball and
stick representations. Solid lines
distances, dashed lines putative
bonds. Modified from Defelipe
(in preparation)
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many of these protein families may be relevant for its forma-
tion opens the possibility that this mechanism might be more
general than previously thought when it was identified in
PTP1B.

Section 5: S-nitrosothiols

S-nitrosothiols (RSNOs) were first synthesized in 1909 by
(Tasker and Jones 1909). In 1974, Incze and co-workers
showed that these compounds exert biological activity, such
as antibacterial effects (Incze et al. 1974). The first studies in
mammalian systems were performed in the early 1980s by
Ignarro (1999). At that time, a plethora of investigations
followed into the many different aspects of •NO biochemistry:
the generation of nitric oxide, its function, and fate (Bredt and
Snyder 1993; Marletta 1993; Nathan and Xie 1994; Gross and
Wolin 1995; Kerwin et al. 1995; Crane et al. 1998). As part of
this extensive research, the presence of RSNOs in biological
systems was demonstrated (Rockett et al. 1991; Goldman
et al. 1998). This led to a considerable interest into the phys-
iological role of RSNOs, their formation, reactivity, and de-
livery, either as a small molecule adduct or as a post-
translational chemical modification of a protein.

S-nitrosation and S-nitrosylation are thought to be a major
mechanism of NO-mediated signaling in pathology and phys-
iology (Hess et al. 2005). S-nitrosated proteins have been
found in many tissues (Bryan et al. 2004), and these proteins
are involved in a wide range of functions, including transcrip-
tion, channel activity, response to hypoxia, and cell death
(Hess et al. 2005). Although it is widely accepted that
RSNOs occurs in vivo, mechanisms of S-nitrosation in bio-
logical systems are poorly understood. •NO is synthesized
from nitric oxide synthase (NOS), but it does not directly react

with thiols to form RSNOs (Hogg et al. 1996). Several mech-
anisms (1, 2, and 3, as follows) have been proposed:

1. the formation of nitrosating species from •NO oxidation
by a molecular oxygen-dependent process (Wink et al.
1994; Goldstein and Czapski 1996);

2. thiol oxidation to form a thiyl radical, which can combine
with •NO to form RSNO (Jourd’heuil et al. 2003; Madej
et al. 2008);

3. direct addition of •NO to RSH to form the radical inter-
mediate RSNOH followed by oxidation of this radical by
oxygen or some other one-electron acceptor (Gow et al.
1997).

Regarding mechanism 1, there is little evidence that this
effect is important in vivo (Liu et al. 1998; Moller et al. 2007).
The reaction of •NOwith the thiyl radical has been reported by
some authors (Schrammel et al. 2003; Hofstetter et al. 2007),
and some discrepancies about the rate constant have been
observed. A pulse radiolysis study by Madej et al. (2008)
has shed light on this issue, with these authors demonstrating
that the rate constants for this reaction in a variety of Cys and
glutathione (GSH)-derived thiols are (2–3) × 109 M-1 s-1—
two orders of magnitude higher than those previously report-
ed. Regarding mechanism 3, there has been significant interest
in the role of metal ions and metalloproteins in RSNO forma-
tion (Stubauer et al. 1999): peroxidases and hemoglobin
(Nagababu et al. 2006; Angelo et al. 2006) as well as in
dinitrosyl iron complexes (Boese et al. 1995). Gow and co-
workers proposed that electron acceptors could facilitate S-
nitrosation by oxidizing the thionitroxyl radical (Gow et al.
1997), suggesting that single electron acceptors may facilitate
RSNO formation. Broniowska et al.( 2012) recently observed
that ferric cytochrome c can, under anaerobic conditions,

Table 2 Statistical analysis of proteins in a given protein familya that display the strand-loop-helix motif with the corresponding Cys in a “forbidden”
conformation

Important families Pfam
accession

Percentage of proteins
in the Pfam family
with structural motif

Experimental
Information oxidationb

Reference

Y_phosphatase PF00102 70,27 Yes (Yang et al. 2007; Sivaramakrishnan et al. 2005)

Glutamine amidotransferase (GATase) PF00117 69,56 No

Rhodanese-like domain PF00581 37,50 Yes (Seo and Carroll 2009)

Dual specificity phosphatase PF00782 30,77 Yes (Alonso et al. 2004; Eiamphungporn et al. 2009)

Carbon–nitrogen hydrolase PF00795 91,67 No

SNO glutamine amidotransferase PF01174 83,33 Yes (ortholog) (Wolf et al. 2008)

DJ-1/PfpI PF01965 68,75 Yes (Canet-Avilés et al. 2004; Wilson et al. 2004;
Wolf et al. 2008)

a As defined by the Pfam HMM model; for more information, see Sonnhammer et al. (1997)
b Experimental information on cysteine oxidation which has been reported in any member of the Pfam family
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efficiently promote glutathione S-nitrosation by acting as an
electron acceptor (Basu et al. 2010).

Two aspects of these S-nitroso compounds are of particular
interest in this review. One is their electronic structure and
properties, and the other is their reactivity, in particular the
reaction of RSNOs with other thiols.

Electronic structure description of RSNO by QM calculations

S-nitrosothiols, with certain exceptions, are unstable in aque-
ous solution. For example S-nitrosoglutatione (GSNO) un-
dergoes decomposition over hours, while S-nitrosoCys has a
half life of less than 2 min. The S–N bond in RSNOs is weak,
with a bond dissociation energy (BDE) in the range of 25–
30 kcal/mol (Bartberger et al. 2001; Lu et al. 2001; Grossi and
Montevecchi 2002) and a long bond distance (1.75Å to almost
2.00 Å) relative to a typical S–N bond (1.77–1.79 Å: range of
values for available crystal structures of RSNOs) (Arulsamy
et al. 1999; Wang et al. 2002; Baciu and Gauld 2003). At the
same time, the evidence of cis and trans conformers of RSNOs
separated by a barrier of approx. 10 kcal/mol (Arulsamy et al.
1999) suggests a partial S–N double bond character
(Bartberger et al. 2000, 2001; Lu et al. 2001; Grossi and
Montevecchi 2002; Wang et al. 2002). Hence, an attractive
challenge for those researchers using the computational chem-
istry approach is to determine whether or not such variable
optimized lengths are artifacts of the methods employed or
indicative of the particular nature of the N–S bonds.

Quantum chemical calculations of RSNOs do not
provide a consistent description of the RSNO structure
and energetics since the results are highly dependent on
the method and basis set used (see Table 1) (Baciu and
Gauld 2003). For example, calculations employing a
relatively high-level coupled-cluster with single and
double excitations or quadratic configuration interaction
with single and double excitations (QCISD) underesti-
mate the BDE(S–N) by more than 10 kcal/mol (Baciu
and Gauld 2003), whereas DFT and various composite
methodologies, such as G3 and CBS-QB3, predict
BDE(S–N) values close to those experimentally deter-
mined. Timerghazin et al. (2008a) suggested that this
unusual and seemingly inconsistent properties of RSNOs
indicates that the RSNO wave function possibly pos-
sesses a multireference character (Timerghazin et al.
2008b). Weinhold et al. (2005) demonstrated that natu-
ral resonance theory (NRT) analysis of the single deter-
minant DFT electron density indicates that the electronic
structure of RSNOs can be expressed as a combination

of three resonance structures (S, D, I; Scheme 1)
(Timerghazin et al. 2007).

The conventional structure S implies a single S–N bond.
The zwitterionic structure D, with a double S–N bond, would
account for the cis–trans isomerization of RSNOs, while the
ionic structure Iwould explain the unusually long S–N bond.
In addition, reactivity and stability of the RSNOs could be
modulated via N-coordination to other molecules. It has re-
cently been shown how the stability and reactivity of RSNOs
can significantly change when coordinated to metal complexes
such as pentachloroIridate(III) and pentacyanoferrate(II)
(Szacilowski and Chmura 2005; Perissinotti et al. 2006, 2008).

RSNO reaction with thiols

One possible reaction between RSNOs and thiols is a simple
transnitrosation reaction that results from the nucleophilic
attack on the nitrogen of the RSNO (reaction 1, Scheme 2) and
which contributes to the •NO transfer without involving free
•NO during the process. However, this is not the only possible
chemical outcome, as the reaction of RSNOs with other thiols
is complex and leads to the generation of a variety of species,
including ammonia (NH3),

•NO, nitrous oxide (N2O), and
nitrite (NO2

-) (Singh et al. 1996). The chemistry is complex
and may involve a series of sequential reactions leading to a
multitude of products. It has been proposed that many of the
observed products may result from the disulfide formation
reaction (also known as S-thiolation reaction) and thus the
nuclephilic attack on the sulfur atom of the RSNO (reaction 2,
Scheme 2), leading to disulfide and the initial generation of
nitroxyl (HNO) (Wong et al. 1998).

The two resonance structures discussed above, D and I
(see Scheme 2), with the opposite formal charge distribu-
tion and bonding patterns, can explain the duality of the
reactivity of RSNOs with nucleophiles. While D favors a
nucleophilic attack at the electrophilic S+ atom, I describes
the •NO group as a nitrosonium ion NO+ and thus favors a
nucleophilic attack at the N atom. Talipov and Timerghazin
(2013) recently demonstrated that complexation with
charged and polar residues modulate the reactivity of bio-
logical RSNOs through D and I effects. However, specific
interactions with charged/polar residues are not the only
way to control the RSNOs reactivity. For instance, catalytic

Scheme 1 Representation of S-nitrosothiols (RSNOs) in terms of three
resonance structures—D, S, and I

Scheme 2 The two reactions studied: transnitrosation and disulfide
formation
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effects of external electric fields created by the protein
environment can modify the RSNO structure and reactivity
(Timerghazin and Talipov 2013).

Transnitrosation

Transnitrosation is a second order reaction with a barrier
height in the range of 13–18 kcal/mol (Perissinotti et al.
2005; Li et al. 2006). The reaction rate depends on pH,
suggesting that the RS- is the reactive species (Barnett et al.
1994, 1995; Munro and Williams 2000; Wang et al. 2001).
The experimental evidence is also supported by QM calcula-
tions, first by Houk and co-workers for the methylthiol
(MeSH) model system (Houk et al. 2003), and later revisited
for the same model system by Li et al. (2006). It is proposed
that transnitrosation proceeds by the attack of a thiolate on an
electrophilic RSNO through an anionic [RSN(O)SR]- inter-
mediate. We have also proposed this intermediate and charac-
terized it through 15N, 1HNMR, and QM calculations for the
Cys ethylester (CEE) system, a much more relevant model
system from the biological point of view (Perissinotti et al.
2005).

To date, transnitrosation has been observed experimentally
and supported by quantum calculations; whether it plays a key
biological role needs further research but it may be a relevant
pathway for •NO trafficking. We will present here a detailed
analysis of the transnitrosation of the more relevant model
system, CEE.

The CEE system This reaction was studied experimentally
and computationally by Perissinotti et al. (2005). Figure 6a
shows the energetics for the reaction in gas phase and water
(PCM), together with the optimized structures for all species.
We observed similar environmental effects for the MeSH
system, but the barrier was much higher, and the intermediate
seemed to be more thermodynamically favored in the CEE
system.The barrier was experimentally measured in water and
the intermediate characterized by 15N and 1H NMR tech-
niques in methanol. Figure 6b shows the experimental char-
acterization and the 15N NMR assignment together with the
the QM prediction for the reaction intermediate. The choice of
methanol as solvent allowed characterization of the transient
intermediate while all attempts in water failed. The potential
structure that we suggested for the intermediate is shown in
Fig. 6c and, in accordance to that proposed by Schlegel (Li
et al. 2006), based on the 1HNMR and 2DNMR assignment it
would appear that a thiol molecule assists the process.

Disulfide formation

In vivo disulfide formation occurs in competition with
transnitrosation and may be associated with the release
of •NO. It has been established that RSNOs are sensitive

to both photolytic (Wang et al. 2002) and transition
metal ion-dependent decomposition, two processes that
could significantly interfere with transnitrosation as well as
disulfide formation.

The MeSH system Li et al. (2006) showed that the reaction
of MeSH with MeSNO to generate HNO and disulfide has
a prohibitively high barrier in the gas phase. Without
considering an explicit molecule of water, the barrier is
12 kcal/mol higher than transnitrosation in gas phase.
Inclusion of an explicit water molecule lowers the differ-
ence to 9 kcal/mol, and adding bulk solvent reduces the
difference to 3–5 kcal/mol. Similar to transitrosation re-
actions, the corresponding reactions with the MeS radical
were also studied. These authors found that the reaction
for the MeS radical with RSNO to form the disulfide bond
is barrierless. This observation is in accord with the auto-
catalytic effect of the MeS radical on the decomposition
rate of MeSNO (Oliveira et al. 2002) (Table 3).

General considerations

The relevance of the different reactive species, namely,
the RSH, RS-, and RS radicals, is determined by the
reaction conditions. The energy barriers of RSNO for
neutral RSH are very high, but they can be lowered by
the inclusion of explicit water molecules. The involve-
ment of the RS- as a reactive species lowers the barrier
heights even more. In each case, RS radicals reacting with
RSNO have the lowest barrier for both transnitrosation
and disulfide formation reactions.

The experimental work of Hogg (1999) shows that
the S-nitrosation reaction is several orders of magnitude
faster than disulfide formation at pH=7 and room tem-
perature. Since the mechanisms for both reactions in-
volving RSH have very high barriers, the reactions
involving RS- will contribute the most. From the other
side, although the mechanisms involving thiyl radicals
have the lowest barriers, the concentration of the radical
in the solution is very low, and the contribution of these
radicals will depend on temperature, the presence of
transition metals, and light.

Finally, it is important to emphasize that the chemical
reaction between RSNOs and thiols is complex due to
the multiple secondary reactions that take place and the
differing conditions which govern the favorableness of
each reaction. It is also of crucial importance to con-
sider the RSH/RSNO ratio, the environment, and oxy-
gen availability in biological systems when speculating
on the fate and reaction of RSNOs. In addition, the
selectivity of S-nitrosation of Cys residues against di-
sulfide formation might in part be determined by the
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local electric field exerted by nearby charged residues,
alfa-helices dipoles, or membrane potentials.

Section 6: One-electron oxidation paths overview

Low-molecular-weight thiols, such as glutathione and
Cys protein residues, are good antioxidant scavengers
because along with other capabilities they react rapidly
with a great variety of cellular free radicals (hydroxyl,
phenoxyl, peroxyl radicals, among others) (Sjöberg
et al. 1982; Swarts et al. 1989; Folkes et al. 2011).
Concomitantly, these reactions produce thiyl radicals
that need to be converted or removed from the cell.

Thiolates, molecular oxygen (O2), O2
•-, and •NO can

react subsequently with these thiyl radicals, yielding
disulfides, sulfinyl radical, or nitrosothiols (as discussed
in the previous section) as final products, respectively
(Winterbourn and Hampton 2008; Winterbourn 2013).
However, the other central role for protein radicals
(such as glycyl and thiyl radicals) in biology should
not be forgotten. These are formed during the catalysis of
key metabolic reactions (Stubbe and van Der Donk 1998;
Buckel 2013), as in the case of the pyruvate formate-lyase
(Becker and Kabsch 2002) and benzylsuccinate synthase
(Bharadwaj et al. 2013) enzymes. These new findings open
the door to a new world of free radical mechanisms in protein,
where the thiyl radical is one of the leading actors.

The thiyl radical has been the subject of a few
theoretical QM studies in which the unusual spectro-
scopic and one-electron reduction potential properties
measured in these kind of systems are explained in
terms of their electronic structure and the surrounding
environment, especially by the number of H bonds to
the sulfur (Engström et al. 2000; van Gastel et al. 2004)
and by the ligand polarity around the sulfur atom (Roos
et al. 2013b).

After the reaction of a thiolate with a free radical, the
fate of the generated thiyl radical is extremely sensitive
to its surroundings. Although its major physiological
decay route would imply the reaction with another
thiolate to yield the disulfide radical anion (Buettner
1993), with the subsequent reaction being with O2 to

Fig. 6 a Energetics and
optimized species for the
transnitrosation reaction between
the Cys ethylester (CEE) and the
corresponding S-nitrosothiol in
gas phase (black) and water
(PCM, red) at the B3LYP/6-311+
G* level of theory. b Intermediate
assignment from 15N nuclear
magnetic resonance (NMR)
spectrum for the reaction in
methanol (reference:
nitromethane). c Suggested
structure for the intermediate
based on 1H NMR and 2-
dimensional correlation
spectroscopy (2D COSY), and
heteronuclear correlation
(HETCOR) NMR spectra.
Modified from Perissinotti et al.
2005

Table 3 Energetics (kcal/mol) for the disulfide formation reaction be-
tween MeSH and MeSNO in gas phase in which one explicit water
molecule in gas phase was included and using different solvating schemes
to account for the effect of water and acetonitrilea

Species CBS-QB3/6-311+G*

Gas Gas+H2O CPCM
(water)+H2O

CPCM
(CH3CN)+H2O

1+2 0 0 0 0

TS 50.4 36.1 33.2 30.3

MeSSMe+HNO 5.6 6.0 2.1 4.3

a Data from Li et al. (2006)
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produce O2
•- (reactions 6 and 7) (Winterbourn 2013),

secondary pathways may be activated.

R�S• þ R’�S−→R�S�S�R’•− ð6Þ

R�S�S�R’•− þ O2→R�S�S�R’þ O2•− ð7Þ

Particularly, O2 can react directly with thiyl radicals, yielding
sulfynil radicals which can be converted to sulfinic and
sulfenic acids (Winterbourn and Metodiewa 1994).

A biologically important and discussed issue of this radical
chemistry is the direct reaction of O2

•- with thiols (Winterbourn
and Metodiewa 1999). In this context, two QM investigations
have confirmed the possibility for a three-electron-bonded
superoxide–thiol complex and the likelihood of decompo-
sition into the sulfinyl radical and hydroxide (Cardey et al.
2007, 2009).

Another significant issue of thiyl radical biochemistry is
the intramolecular electron transfer (IET) between tyrosyl
radicals (Tyr-O•) and Cys residues. This event has been stud-
ied in model Tyr/Cys-containing peptides (Prütz et al. 1989;
Zhang et al. 2005) and some proteins (Romero et al. 2003;
Bhattacharjee et al. 2007), and it represents a key factor in
controlling the final sites and yields of protein oxidative
modifications. Recently, Petruk et al. (2012) used MD and
QM-MM calculations to analyze the molecular basis of IET.
The results support a sequential, acid/base equilibrium-
dependent and solvent-mediated, proton-coupled electron
transfer from Tyr-O• to the thiyl radical in which not only
energetic and kinetics of the reversible IET are key physico-
chemical factors, but also the pKa values of the Tyr phenol
and Cys thiol groups (Petruk et al. 2012).

All of these mechanisms are not only relevant in the context
of antioxidant defense, but they are also components of the
complex network of radical reactions that assist regulation of
the oxidation state of cellular thiols (Winterbourn 2013). Clearly,
the atomistic detailed description of these particular processes is
not entirely unraveled, and computer simulation techniques
appear to be a useful tool to contribute to this understanding.

Concluding remarks

Thiol redox biochemistry is a rich field in which classical and
QM computer simulation techniques provide valuable tools to
shed light onto the different possible reaction pathways.
Specifically, the subtle sensitivity of thiol reactivity with the
environment results in these techniques being extremely use-
ful. In this context, the contribution of hybrid QM-MM
schemes represents an ideal tool.

Different theoretical schemes based on classical MD and
QM-MM, can complement each other by covering different
time and space scales, thereby providing a complete picture of
the molecular basis of thiol reactivity. The agreement with the
experimental data, when available, constitutes a stringent test
to the reliability of these approaches. Computational simula-
tion has been shown to be a precious tool to validate, contrast,
and complement experimental observations, offering a micro-
scopic view, and providing new insights that sometimes are
impossible to obtain with experimental approaches.
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