Skip to main content
Log in

Effect of Pre-Straining on High Cycle Fatigue and Fatigue Crack Propagation Behaviors of Complex Phase Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Pre-straining tends to increase yield/tensile strengths and dislocation density by strain hardening of steel while also, affecting its high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors greatly. The HCF and FCP behaviors of complex phase (CP) steel with different levels of pre-straining from 0 to 9% were examined. It was found that the resistance to HCF of CP steel decreased with 5% pre-straining, while it increased with 9% pre-straining, suggesting that such an abnormal HCF behavior of CP steel with different levels of pre-straining could be attributed to the nature of dislocation structure formed during cyclic straining. Based on the detailed micrographic and fractographic analyses, the effect of pre-straining up to 9% on the fatigue behavior of CP steel was discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Chalal, S.G. Racz, T. Balan, Int. J. Mech. Sci. 59, 104 (2012)

    Article  Google Scholar 

  2. Y.J. Chao, J.D. Ward Jr., R.G. Sands, Mater. Des. 28, 551 (2007)

    Article  CAS  Google Scholar 

  3. B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004)

    Article  CAS  Google Scholar 

  4. E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, J.G. Speer, Metall. Mater. Trans. A 39, 2586 (2008)

    Article  CAS  Google Scholar 

  5. A. Karelova, C. Krempaszky, E. Werner, P. Tsipouridis, T. Hebesberger, A. Pichler, Steel Res. Int. 80, 71 (2009)

    CAS  Google Scholar 

  6. I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, J.M. Cabrera, Mater. Sci. Eng. A 528, 4468 (2011)

    Article  CAS  Google Scholar 

  7. M.Y. Seok, J.A. Lee, D.H. Lee, U. Ramamurty, S. Nambu, T. Koseki, J.I. Jang, Acta Mater. 121, 164 (2016)

    Article  CAS  Google Scholar 

  8. N.K. Singh, E. Cadoni, M.K. Singha, N.K. Gupta, Mater. Des. 32, 5091 (2011)

    Article  CAS  Google Scholar 

  9. R.M. Wu, L. Wang, X.J. Jin, Phys. Proc. 50, 8 (2013)

    Article  CAS  Google Scholar 

  10. Q. Le, H.T. Kang, G. Kridli, A.K. Khosrovaneh, B. Yan, Int. J. Fatigue 31, 607 (2009)

    Article  CAS  Google Scholar 

  11. C. Müller-Bollenhagen, M. Zimmermann, H.J. Christ, Int. J. Fatigue 32, 936 (2010)

    Article  CAS  Google Scholar 

  12. F. Yoshinaka, T. Sawaguchi, I. Nikulin, S. Takamori, Int. J. Fatigue 129, 1 (2019)

    Article  CAS  Google Scholar 

  13. B. Wang, P. Zhang, Q.Q. Duan, Z.J. Zhang, H.J. Yang, J.C. Pang, Y.Z. Tian, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 679, 258 (2017)

    Article  CAS  Google Scholar 

  14. E. Dias, L. Horimoto, P.M. dos Santos, Mater. Sci. Forum Trans. Tech. Publ. 775, 141 (2014)

    Article  CAS  Google Scholar 

  15. M. Zhang, Q. Li, C. Huang, R. Wu, R. Fu, L. Li, P. Fang, Adv. Mater. Res. Trans. Tech. Publ. 634, 2899 (2013)

    Google Scholar 

  16. B.C. De Cooman, J.G. Speer, Steel Res. Int. 77, 634 (2006)

    Article  Google Scholar 

  17. H. Das, M. Mondal, S.T. Hong, Y.S. Lim, K.J. Lee, Mater. Charact. 139, 428 (2018)

    Article  CAS  Google Scholar 

  18. R. Kuziak, R. Kawalla, S. Waengler, Arch. Civ. Mech. Eng. 8, 103 (2008)

    Article  Google Scholar 

  19. A. Kawałek, J. Rapalska-Nowakowska, H. Dyja, B. Koczurkiewicz, Metalurgija 52, 23 (2013)

    Google Scholar 

  20. K. Fredriksson, A. Melander, M. Hedman, Int. J. Fatigue 10, 139 (1988)

    Article  CAS  Google Scholar 

  21. X. Long, S.K. Khanna, Int. J. Fatigue 29, 879 (2007)

    Article  CAS  Google Scholar 

  22. K. Dutta, S. Sivaprasad, S. Tarafder, K.K. Ray, Mater. Sci. Eng. A 527, 7571 (2010)

    Article  CAS  Google Scholar 

  23. V.M. Radhakrishnan, P.S. Baburamani, Int. J. Fract. 12, 369 (1976)

    CAS  Google Scholar 

  24. Y. Wang, D. Yu, G. Chen, X. Chen, Int. J. Fatigue 52, 106 (2013)

    Article  CAS  Google Scholar 

  25. F. Walther, D. Eifler, Mater. Sci. Eng. A 259, 468 (2007)

    Google Scholar 

  26. K.J. Miller, Fatigue Fract. Eng. Mater. Struct. 5, 223 (1982)

    Article  Google Scholar 

  27. G. Socha, Int. J. Fatigue 25, 139 (2003)

    Article  CAS  Google Scholar 

  28. R. Yee, D.J. Burns, U.H. Mohaupt, R. Bell, O. Vosikovsky, J. Offshore Mech. Arct. Eng. Trans. 112, 341 (1990)

    Article  Google Scholar 

  29. G.J. Deng, S.T. Tu, Q.Q. Wang, X.C. Zhang, F.Z. Xuan, Int. J. Fatigue 64, 14 (2014)

    Article  CAS  Google Scholar 

  30. B. Zhang, D.R. Poirier, W. Chen, Metall. Mater. Trans. A 30, 2659 (1999)

    Article  Google Scholar 

  31. N.L. Phung, N. Marti, A. Blanche, N. Ranc, V. Favier, A. Chrysochoos, N. Saintier, F. Grégori, B. Bacroix, G. Thoquenne, Proc. Eng. 66, 615 (2013)

    Article  CAS  Google Scholar 

  32. H.K. Sung, D.H. Jeong, T.D. Park, J.S. Lee, S.S. Kim, Met. Mater. Int. 22, 755 (2016)

    Article  CAS  Google Scholar 

  33. L. Li, Z. Zhang, P. Zhang, C. Li, Z. Zhang, Mater. Charact. 145, 96 (2018)

    Article  CAS  Google Scholar 

  34. K. Berchem, M.G. Hocking, Mater. Charact. 58, 593 (2007)

    Article  CAS  Google Scholar 

  35. D.W. Ha, C.Y. Jeong, Korean J. Met. Mater. 56, 177 (2018)

    CAS  Google Scholar 

  36. C.Y. Jeong, Mater. Trans. 54, 2037 (2013)

    Article  CAS  Google Scholar 

  37. A. Gustavsson, A. Melander, Fatigue Fract. Eng. Mater. Struct. 18, 201 (1995)

    Article  CAS  Google Scholar 

  38. Y. Nagase, S. Suzuki, J. Eng. Mater. Technol. 114, 317 (1992)

    Article  CAS  Google Scholar 

  39. S. Nishida, N. Hattori, W. Zhang, M. Koga, W.I.T. Trans, Eng. Sci. 19, 419 (1998)

    Google Scholar 

  40. H.F. Chai, C. Laird, Mater. Sci. Eng. 93, 159 (1987)

    Article  CAS  Google Scholar 

  41. C. Laird, P. Charsley, H. Mughrabi, Mater. Sci. Eng. 81, 433 (1986)

    Article  CAS  Google Scholar 

  42. K. Shiozawa, Y. Morii, S. Nishino, L. Lu, Int. J. Fatigue 28, 1521 (2006)

    Article  CAS  Google Scholar 

  43. Q.Y. Wang, J.Y. Berard, S. Rathery, C. Bathias, Fatigue Fract. Eng. Mater. Struct. 22, 673 (1999)

    Article  CAS  Google Scholar 

  44. S.H. Park, S.M. Kim, D.E. Lee, S.J. Ahn, S.S. Kim, Korean J. Met. Mater. 56, 845 (2018)

    CAS  Google Scholar 

  45. C. Bathias, R.M. Pellouc, Metall. Mater. Trans. B 4, 1265 (1973)

    Article  CAS  Google Scholar 

  46. D.H. Jeong, W.G. Seo, H.K. Sung, S.S. Kim, Mater. Charact. 121, 103 (2016)

    Article  CAS  Google Scholar 

  47. C. Laird, Metall. Trans. A 8, 851 (1977)

    Article  Google Scholar 

  48. J. Wasén, B. Karlsson, Int. J. Fatigue 11, 395 (1989)

    Article  Google Scholar 

  49. K. Tanaka, T. Mura, Acta Metall. 32, 1731 (1984)

    Article  CAS  Google Scholar 

  50. N.E. Dowling, Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue, 4th edn. (Pearson, Boston MA, 2012)

    Google Scholar 

  51. A. Ray, S.K. Dhua, Mater. Charact. 37, 1 (1996)

    Article  CAS  Google Scholar 

  52. ASTM Standard E8/E8M Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards, 03.01 (2002).

  53. ASTM Standard E466 Standard practice for conduction force controlled constant amplitude axial fatigue test of metallic materials, Annual Book of ASTM Standards, 03.01 (2002).

  54. ASTM Standard E647 Standard test method for measurement of fatigue crack growth rates, Annual Book of ASTM Standards, 03.01 (2002).

  55. Y. Kondo, Corrosion 45, 7 (1989)

    Article  CAS  Google Scholar 

  56. A.S. Hamada, L.P. Karjalainen, J. Puustinen, Mater. Sci. Eng. A 517, 68 (2009)

    Article  CAS  Google Scholar 

  57. S.S. Kim, D.H. Jeong, H.K. Sung, Met. Mater. Int. 24, 1 (2018)

    Article  CAS  Google Scholar 

  58. M.F.E. Ibrahim, K.J. Miller, Fatigue Fract. Eng. Mater. Struct. 2, 351 (1979)

    Article  Google Scholar 

  59. D.H. Jeong, S.M. Hyun, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 22, 594 (2016)

    Article  CAS  Google Scholar 

  60. E. Hornbogen, K.H. Zum Gahr, Acta Metall. 24, 581 (1976)

    Article  CAS  Google Scholar 

  61. A. Shyam, W.W. Milligan, Acta Mater. 53, 835 (2005)

    Article  CAS  Google Scholar 

  62. D.H. Jeong, S.G. Lee, W.K. Jang, J.K. Choi, Y.J. Kim, S.S. Kim, Metall. Mater. Trans. A 44, 4601 (2013)

    Article  CAS  Google Scholar 

  63. D.H. Jeong, S.G. Lee, J.Y. Yoo, J.S. Lee, S.S. Kim, Mater. Charact. 103, 28 (2015)

    Article  CAS  Google Scholar 

  64. H. Ogi, Y. Minami, M. Hirao, J. Appl. Phys. 91, 1849 (2002)

    Article  CAS  Google Scholar 

  65. P.N. Thielen, M.E. Fine, R.A. Fournelle, Acta Metall. 24, 1 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (20002700) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the Engineering Research Center (ERC) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A5A6075959). This work was also supported by the Industrial Technology Innovation Program (10067503, Development of Manufacturing Technology for Aerospace Grade Ti-6Al-4V Sheet and Hot Forming) funded by the Ministry of Trade, industry & Energy (MI, Korea). The authors would like to thank Prof. Jung Gi Kim for his help with the microstructural analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Song, T., Sung, H. et al. Effect of Pre-Straining on High Cycle Fatigue and Fatigue Crack Propagation Behaviors of Complex Phase Steel. Met. Mater. Int. 27, 3810–3822 (2021). https://doi.org/10.1007/s12540-020-00751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00751-4

Keywords

Navigation