Skip to main content
Log in

High-Speed Synthesis of Rice-Ear-Shaped Cu Dendritic Particles at Room Temperature via Galvanic Displacement Using Zn Particles

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Rice-ear-shaped Cu dendritic particles were fabricated via fast galvanic displacement reactions for 3–5 min under ambient conditions by adding Zn particles into an aqueous electrolyte without chloride ions. The obtained Cu dendritic particles have a small average size (4.44 μm) and short, multiple branches that seemed to be aggregates of nanoparticles formed on stem-like backbones, and their surface area is large. The prepared Cu dendrites could be protected against oxidation during drying via post-treatment with chelating or complexing agents. While the dendrite stem is found to be a Cu polycrystal grown only on the (111) plane, the branches consist of three planes of Cu, viz., (111), (200), and (220), indicating that they were formed by random attachment of nanoparticles and aggregates. A possible low-temperature and high-speed synthesis mechanism is proposed based on the results of time-dependent SEM investigations as well as the crystal structure of the dendrites. This novel technique to synthesize modified dendrites is extremely simple and suitable for mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.P. Xiao, Y. Xie, R. Tang, M. Chen, X.B. Tian, Adv. Mater. 13, 1887 (2001)

    Article  Google Scholar 

  2. K.D. Kim, K.Y. Choi, H.T. Kim, Scr. Mater. 53, 571 (2005)

    Article  Google Scholar 

  3. J.X. Fang, X.N. Ma, H.H. Cai, X.P. Song, B.J. Ding, Nanotechnology 17, 5841 (2006)

    Article  Google Scholar 

  4. J.X. Fang, B.J. Ding, X.P. Song, Appl. Phys. Lett. 91, 083108 (2007)

    Article  Google Scholar 

  5. X.-M. Liu, S.-Y. Fu, J. Cryst. Growth 306, 428 (2007)

    Article  Google Scholar 

  6. L.-P. Zhu, H.-M. Xiao, W.-D. Zhang, Y. Yang, S.-Y. Fu, Cryst. Growth Des. 8, 1113 (2008)

    Article  Google Scholar 

  7. N. Zhao, Y. Wei, N. Sun, Q. Chen, J. Bai, L. Zhou, Y. Qin, M. Li, L. Qi, Langmuir 24, 991 (2008)

    Article  Google Scholar 

  8. J. Ye, Q.-W. Chen, H.-P. Qi, N. Tao, Cryst. Growth Des. 8, 2464 (2008)

    Article  Google Scholar 

  9. T. Huang, F. Meng, L. Qi, Langmuir 26, 7582 (2010)

    Article  Google Scholar 

  10. Y.-J. Song, J.-Y. Kim, K.-W. Park, Cryst. Growth Des. 9, 505 (2009)

    Article  Google Scholar 

  11. X. Chen, C.-H. Cui, Z. Cuo, J.-H. Liu, X.-J. Huang, S.-H. Yu, Small 7, 858 (2011)

    Article  Google Scholar 

  12. H.-B. Noh, K.-S. Lee, P. Chandra, M.-S. Won, Y.-B. Shim, Electrochim. Acta 61, 36 (2012)

    Article  Google Scholar 

  13. J.Y. Zheng, Z.L. Quan, G. Song, C.W. Kim, H.G. Cha, T.W. Kim, W. Shin, K.J. Lee, M.H. Jung, Y.S. Kang, J. Mater. Chem. 22, 12296 (2012)

    Article  Google Scholar 

  14. H. Chen, C. Xu, X. Zhou, Y. Liu, G. Zhao, Mater. Res. Bull. 47, 4353 (2012)

    Article  Google Scholar 

  15. J. Rosen, G.S. Hutchings, Q. Lu, R.V. Forest, A. Moore, F. Jiao, ACS Catal. 5, 4586 (2015)

    Article  Google Scholar 

  16. J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang, Y.S. Ham, J.J. Kim, S.-K. Kim, Chem. Eng. J. 299, 37 (2016)

    Article  Google Scholar 

  17. S.Y. Lee, S.H. Jin, S.M. Kim, J.W. Kim, Met. Mater. Int. 20, 695 (2014)

    Article  Google Scholar 

  18. R.K. Goyal, K.R. Kambale, S.S. Nene, B.S. Selukar, S. Arbuj, U.P. Mulik, Mater. Chem. Phys. 128, 114 (2011)

    Article  Google Scholar 

  19. C. Yang, X. Cui, Z. Zhang, S.W. Chiang, W. Lin, H. Duan, J. Li, F. Kang, C.-P. Wong, Nat. Commun. 6, 8150 (2015)

    Article  Google Scholar 

  20. S.K. Kand, S. Purushothaman, J. Electron. Mater. 28, 1314 (1999)

    Article  Google Scholar 

  21. M. Joo, B. Lee, S. Jeong, M. Lee, Appl. Surf. Sci. 258, 521 (2011)

    Article  Google Scholar 

  22. N. Toshima, Y. Wang, Langmuir 10, 4574 (1994)

    Article  Google Scholar 

  23. R. Reske, H. Mistry, F. Behafarid, B.R. Cuenya, P. Strasser, J. Am. Chem. Soc. 136, 6978 (2014)

    Article  Google Scholar 

  24. H.H. Huang, F.Q. Yan, Y.M. Kek, C.H. Chew, G.Q. Xu, W. Ji, P.S. Oh, S.H. Tang, Langmuir 13, 172 (1997)

    Article  Google Scholar 

  25. S.S. Joshi, S.F. Patil, V. Iyer, S. Mahumuni, Nanostruct. Mater. 10, 1135 (1998)

    Article  Google Scholar 

  26. Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita, Solid State Sci. 13, 553 (2011)

    Article  Google Scholar 

  27. T. Ishizaki, R. Watanabe, J. Mater. Chem. 22, 25198 (2012)

    Article  Google Scholar 

  28. T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, N. Terada, J. Electron. Mater. 42, 1260 (2013)

    Article  Google Scholar 

  29. X. Liu, H. Nishikawa, Scr. Mater. 120, 80 (2016)

    Article  Google Scholar 

  30. H. Lui, X. Zhao, Q. Fu, Solid State Commun. 140, 9 (2006)

    Article  Google Scholar 

  31. H. Liu, X. Zhao, Appl. Phys. Lett. 90, 191904 (2007)

    Article  Google Scholar 

  32. X. Zhang, G. Wang, X. Liu, H. Wu, B. Fang, Cryst. Growth Des. 8, 1430 (2008)

    Article  Google Scholar 

  33. C. Yan, D. Xue, Cryst. Growth Des. 8, 1849 (2008)

    Article  Google Scholar 

  34. Z. Ji, H. Li, Y. Liu, W. Hu, Y. Liu, Nanotechnology 19, 135602 (2008)

    Article  Google Scholar 

  35. W.B. Shao, G. Zangari, J. Phys. Chem. C 113, 10097 (2009)

    Article  Google Scholar 

  36. R. Qui, H.G. Cha, H.B. Noh, Y.B. Shim, X.L. Zhang, R. Qiao, D. Zhang, Y.I. Kim, U. Pal, Y.S. Kim, J. Phys. Chem. C 113, 15891 (2009)

    Article  Google Scholar 

  37. M.S. El-Genk, A.F. Ali, J. Heat Transf. 132, 071501 (2010)

    Article  Google Scholar 

  38. Z.Y. Zhang, C.G. Hu, B. Feng, C.H. Zheng, X.S. He, X. Wang, J. Supercond. Nov. Magn. 23, 893 (2010)

    Article  Google Scholar 

  39. Y. Zheng, Z. Zhang, P. Guo, P. He, Z. Sun, J. Solid State Chem. 184, 2114 (2011)

    Article  Google Scholar 

  40. S. Sun, C. Kong, L. Wang, S. Yang, X. Song, B. Ding, Z. Yang, Cryst. Eng. Commun. 13, 1916 (2011)

    Article  Google Scholar 

  41. Q.D. Truong, M. Kakihana, J. Cryst. Growth 348, 65 (2012)

    Article  Google Scholar 

  42. A. Taleb, Y. Xue, Electrochim. Acta 112, 838 (2013)

    Article  Google Scholar 

  43. H. Jung, S.H. Lee, J. Yang, M. Cho, Y. Lee, RSC Adv. 4, 47714 (2014)

    Article  Google Scholar 

  44. H.H. Nersisyan, Y.-J. Lee, S.-H. Joo, S.K. Han, T.-H. Lee, J.-S. Lee, Y.-S. An, J.-H. Lee, Cryst. Eng. Commun. 17, 7535 (2015)

    Article  Google Scholar 

  45. R. Bakthavatsalam, S. Ghosh, R.K. Biswas, A. Saxena, A. Raja, M.O. Thotiyl, S. Wadhai, A.G. Banpurkar, J. Kundu, RSC Adv. 6, 8416 (2016)

    Article  Google Scholar 

  46. K. Zhuo, C.Y. An, P.K. Kannan, N. Seo, Y.-S. Park, C.-H. Chung, Korean J. Chem. Eng. 34, 1483 (2017)

    Article  Google Scholar 

  47. T.N. Huan, G. Rousse, S. Zanna, I.T. Lucas, X. Xu, N. Menguy, V. Mougel, M. Fontecave, Angew. Chem. 129, 4870 (2017)

    Article  Google Scholar 

  48. K. Nishiyabu, in Some Critical Issues for Injection Molding, ed. by J. Wang (InTech, Rijeka, 2012), p. 105

    Google Scholar 

  49. J. Zuo, A. Erbe, Phys. Chem. Chem. Phys. 12, 11467 (2010)

    Article  Google Scholar 

  50. R. Liu, A. Sen, Chem. Mater. 24, 48 (2012)

    Article  Google Scholar 

  51. J.E. Brown, H. Khodr, R.C. Hider, C.A. Rice-Evans, Biochem. J. 330, 1173 (1998)

    Article  Google Scholar 

  52. M. Finšgar, I. Milošev, Corros. Sci. 52, 2737 (2010)

    Article  Google Scholar 

  53. Y. Yang, Q. Zhang, Z.-W. Fu, D. Qin, A.C.S. Appl, Mater. Interfaces 6, 3750 (2014)

    Article  Google Scholar 

  54. R.M. Brady, R.C. Ball, Nature 309, 225 (1984)

    Article  Google Scholar 

  55. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada, Phys. Rev. Lett. 53, 286 (1984)

    Article  Google Scholar 

  56. T.A. Witten Jr., L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nano-Convergence Foundation (www.nanotech2020.org, Grant No. R201703410) funded by the Ministry of Science, ICT and Future Planning (MSIP, Korea) and the Ministry of Trade, Industry and Energy (MOTIE, Korea) [Project Name: Commercialization of 100 Gbps optical receiver and transmitter modules based on nano Ag-coated Cu paste]. The authors also thank the Korean Basic Science Institute (KBSI) for the TEM analysis.

Funding

Funding was provided by Nano-Convergence Foundation (Grant No. R201703410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J.H., Lee, JH. High-Speed Synthesis of Rice-Ear-Shaped Cu Dendritic Particles at Room Temperature via Galvanic Displacement Using Zn Particles. Met. Mater. Int. 25, 408–415 (2019). https://doi.org/10.1007/s12540-018-0187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0187-3

Keywords

Navigation