Skip to main content
Log in

Heavy metals’ mobility from phosphate washing effluents discharged in the Gafsa area (southwestern Tunisia)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Wet processing of natural phosphate to increase the P2O5 content and eliminate non-desired fraction (both coarse and fine fractions) took place in various laundries of the Gafsa-phosphatic area. Effluents of those laundries often contain various contaminants that are directly discharged to the receiving waterbody, representing a serious threat to the environment. Physico-chemical characterization of those effluents showed elevated levels of sulfates, fluorine, and metals. The bordering land showed gypseous soils. Those soils are covered by the discharged phosphate-washing sludge. The effect of which on the structure and the permeability of the soils seemed to be significantly harmful. Batch tests were conducted to evaluate the mobility of various metals on the surrounding area of phosphate laundries. Leaching results revealed low cadmium and uranium mobilities. However, Cd concentrations in the studied samples leached from soils exceeded the standards. This suggested the contamination by cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschuler ZS (1980) The geochemistry of trace elements in marine phosphorites: part I. Characteristic abundances and enrichment. Soc. of economic paleontologists and mineralogist, spec. Publ 29:19–30

    Google Scholar 

  • Altschuler ZS, Clarke RS Jr, Young EJ (1985) Geochemistry of uranium in apatite and phosphorites. United States Geol Paper 314-D:45–90

    Google Scholar 

  • Agency for the Promotion of Industry and Innovation, 2014. Les industries des matériaux de construction, de la céramique et du verre en Tunisie. Tunis.

    Google Scholar 

  • Ahmadi R, Ouali J, Mercier E, Mansy JL, Van-Vliet Lanoë B, Launeau P, Rhekhiss F, Rafini S (2006) The geomorphologic responses to hinge migration in the fault-related folds in the southern Tunisian Atlas. J Struct Geol 28:721–728. doi:10.1016/j.jsg.2006.01.004

    Article  Google Scholar 

  • Belayouni H (1983) Etude de la matière organique dans la série Phosphatée du bassin de Gafsa-Metlaoui (Tunisie), Thèse de Doct ès-Sci. Univ. Orléans, France

  • Bhattacharyya KG, Gupta SS (2008) Adsorption of few Heavy metals on naturel modified kaolinite and montmorillonite: A review. Advances in Colloid and interface Science 140:114–131

  • Bourrelier PH, Berthelin J (1998) Contamination des sols par les éléments en traces: les risques et leur gestion. Rapport n°42 à l'académie des sciences. Paris, France, Lavoisier Tec et Doc, p 440

  • Burollet PF (1956) Etude géologique des bassins Mio-pliocène du Nord- Est de la Tunisie (région de Mateur, Ferry ville et Porto farina), Ann. Mines et Géol., Tunis, n°7, p 91

  • Chaabani F (1978) Les phosphorites de la coupe type de Foum Selja (Metlaoui Tunisie): une série sédimentaire séquentielle à évaporites du paléocène, Thèse 3 ème cycle ULP. Strasbourg, p 25–33

  • Chaabani F (1995) Dynamique de la partie orientale du bassin de Gafsa au Crétacé et au Paléogène. Etude minéralogique et géochimique de la série phosphatée Eocène-Tunisie Méridionale, thèse de Doct. UNIV. TUNIS II

  • Deurer R, Forstner U, et Schmoli G (1978) Selective chemical extraction of carbonate-associated metals from recent lacustrine sediments. Geochim Cosmochim Acta 42:425–427

  • Eloussaief M, Benzina M (2010) Efficiency of natural and acid-activated clays in the removal of Pb (II) from aqueous solutions. J Hazard Mater 178:753–757. doi:10.1016/j.jhazmat.2010.02.004

    Article  Google Scholar 

  • Eloussaief M, Jarraya I, Benzina M (2009) Adsorption of copper ions on two clays from Tunisia: pH and temperature effects. Appl Clay Sci 46:409–413

    Article  Google Scholar 

  • Eloussaief M, Kallel N, Yaacoubi A, Benzina M (2011) Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions. Chem Eng J 168:1024–1031. doi:10.1016/j.cej.2011.01.077

    Article  Google Scholar 

  • Eloussaief M, Sdiri A, Benzina M (2012) Modelling the adsorption of mercury onto natural and aluminum pillared clays. Environ Sci Pollut Res 20:469–479

  • Eloussaief M, Sdiri A, Benzina M (2013) Modelling the adsorption of mercury onto natural and aluminium pillared clays. Environ Sci Pollut Res 20:469–479. doi:10.1007/s11356-012-0874-4

    Article  Google Scholar 

  • Freedman B, Hutchinson TC (1981) Sources of metal and elemental contaminants of terrestrial environments. In: Lepp NW (ed) Effect of heavy metal pollution on plants. Metals in the environment, vol. II. London and New Jersey, p. 35–94

  • Godfrin JM, Bladel RV (1990) Influence du pH sur l'adsorption du cuivre ET du zinc par les sols. Sci Sol 28(1):15–26

  • Hamed Y, Dassi L, Ahmadi R, Dhia HB (2008) Geochemical and isotopic study of the multilayer aquifer system in the Moulares-Redayef basin, southern Tunisia/etude géochimique et isotopique du système aquifère multicouche du bassin de Moulares-Redayef, Sud tunisien. Hydrol Sci J 53:1241–1252. doi:10.1623/hysj.53.6.1241

    Article  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. doi:10.1016/j.jtemb.2005.02.010

    Article  Google Scholar 

  • Jarvis I, Barnett WC, Nathay Y, Almbaydin F, Attia KM, Castro LN, Fliocoleaux R, Hilmy ME, Hussain V, Qutawna AA, Serjani A, Zinin YN (1994) Phosphorites Geochemistry : State-of-the-art and environnemental concerns. In: Follmi KB (ed) Concepts and controversies in phosphogenesis, Eclogae Geol Helv 87, pp 643–700

  • Lespagnol G (2003) Lixiviation du Chrome, du Cuivre et de arsenic (CCA) à partir de sols contaminés sur des sites de traitement du bois. These en Sciences de la Terre et de l'Environnement, p 212

  • Mrabet A (1981) Stratigraphie, sédimentation et diagenèse carbonatée des séries du Crétacé inférieur de Tunisie centrale. These Doct. D'Etat, Univ. Paris XI, Orsay, p 540

  • Pigozzo ATJ, Junior JL, Scapim CAS, Da Costa (2006) Transition metal, rates in latosol twice treated with sewage sludge. Brazil. Arch Biol Technol 49(3):515–526

  • Sassi S (1974) La sédimentation phosphate au Paléocènes dans le sud et le centre de la Tunisie. Thèse Doct Etat ès-Sci Univ Paris-Sud, Orsay, France

  • Sdiri A, Bouaziz S (2014) Re-evaluation of several heavy metals removal by natural limestones. Front Chem Sci Eng 8:418–432. doi:10.1007/s11705-014-1455-5

    Article  Google Scholar 

  • Sdiri A, Higashi T (2013) Simultaneous removal of heavy metals from aqueous solution by natural limestones. Appl Water Sci 3:29–39. doi:10.1007/s13201-012-0054-1

    Article  Google Scholar 

  • Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N, Jamousssi F, Tase N (2011) Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chem Eng J 172:37–46. doi:10.1016/j.cej.2011.05.015

    Article  Google Scholar 

  • Sdiri A, Higashi T, Jamoussi F, Bouaziz S, Hatta T, Jamoussi F, Tase N, Bouaziz S (2012) Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manag 93:171–179. doi:10.1016/j.jenvman.2011.08.002

    Article  Google Scholar 

  • Sdiri A, Khairy M, Bouaziz S, El-Safty S (2016) A natural clayey adsorbent for selective removal of lead from aqueous solutions. Appl Clay Sci 126:89–97. doi:10.1016/j.clay.2016.03.003

    Article  Google Scholar 

  • Thornton I (1981) In: Lepp NW (ed) Effect of heavy metal pollution on plants: metals in the environment. Springer, Netherlands, Dordrecht, pp. 1–33. doi:10.1007/978-94-009-8099-0_1

    Chapter  Google Scholar 

  • Webber (1981) Trace metals in agriculture. In: Lepp NW (ed) Effect of heavy metal pollution on plants. Metals in the environment, vol. II. London and New Jersey, p. 159–184

  • Zaier A (1999) Evolution tectono-sédimentaire du bassin phosphaté du centre ouest de la Tunisie : minéralogie, pétrographie, géochimie et genèse des phosphorites, thèse de Doct. UNIV. TUNIS II, pp 260–305

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sdiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzougui, S., Sdiri, A. & Rekhiss, F. Heavy metals’ mobility from phosphate washing effluents discharged in the Gafsa area (southwestern Tunisia). Arab J Geosci 9, 599 (2016). https://doi.org/10.1007/s12517-016-2613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2613-5

Keywords

Navigation