Skip to main content

Advertisement

Log in

FDG-PET Imaging of Doxorubicin-Induced Cardiotoxicity: a New Window on an Old Problem

  • Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The present review focus on the published literature about the use of 18F-fluorodeoxyglucose (FDG) PET/CT imaging in the early recognition of anthracyclines-related cardiotoxicity.

Recent Findings

The application of PET/CT may represent an early predictor of subsequent cardiotoxicity in cancer patients treated with doxorubicin (DXR). However, the application of PET/CT may also extend beyond mere cardiotoxicity identification and monitoring to provide mechanistic delineation of the cardiotoxic pathophysiology. Indeed, this tool further enriched the current knowledge on energy metabolism impairment in the DXR-induced cardiotoxic cascade.

Summary

The capability of FDG to selectively track the early endoplasmic reticulum pentose phosphate pathway (PPP) response to oxidative stress rather than the later occurring contractile dysfunction might imply the abrupt occurrence of metabolic abnormality during the course of chemotherapy, possibly identifying the ongoing myocardial damage in time to change the chemotherapy scheme or to initiate targeted cardioprotective treatments. Future prospective studies encompassing a specific dietary or pharmacologic preparation before FDG injection, as already performed in infectious and inflammatory heart diseases, are needed to move the obtained preclinical findings supporting the role of FDG imaging in DXR cardiotoxicity from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ellison LF. Progress in net cancer survival in Canada over 20 years. Health Rep. 2018;29:10–8.

    PubMed  Google Scholar 

  2. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics. CA Cancer J Clin. 2016;66:271–89. https://doi.org/10.3322/caac.21349.

    Article  PubMed  Google Scholar 

  3. Maejima Y, Adachi S, Ito H, Hirao K, Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7:125–36.

    Article  CAS  Google Scholar 

  4. • Mercurio V, Pirozzi F, Lazzarini E, Marone G, Rizzo P, Agnetti G, et al. Models of heart failure based on the cardiotoxicity of anticancer drugs. J Card Fail. 2016;22:449–58. https://doi.org/10.1016/j.cardfail.2016.04.008. Interesting review of the proposed models of heart failure based on the cardiotoxicity of antineoplastic drugs, including the heart failure resulting from the combination of oxidative stress, mitochondrial dysfunction, and activation of the DNA damage response, which is typically caused by anthracyclines.

    Article  CAS  PubMed  Google Scholar 

  5. Dickey JS, Rao VA. Current and proposed biomarkers of anthracycline cardiotoxicity in cancer: emerging opportunities in oxidative damage and autophagy. Curr Mol Med. 2012;12:763–71.

    Article  CAS  Google Scholar 

  6. Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983;67:766–78. https://doi.org/10.1161/01.cir.67.4.766.

    Article  CAS  PubMed  Google Scholar 

  7. Inglese E, Leva L, Matheoud R, Sacchetti G, Secco C, Gandolfo P, et al. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body 18F-FDG PET/CT. J Nucl Med. 2007;48:1662–9. https://doi.org/10.2967/jnumed.107.041574.

    Article  PubMed  Google Scholar 

  8. Borde C, Kand P, Basu S. Enhanced myocardial fluorodeoxyglucose uptake following Adriamycin-based therapy: evidence of early chemotherapeutic cardiotoxicity? World J Radiol. 2012;4:220–3. https://doi.org/10.4329/wjr.v4.i5.220.

    Article  PubMed  PubMed Central  Google Scholar 

  9. •• Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, et al. Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: a translational 18F-FDG PET/CT observation. J Nucl Med. 2017;58:1638–45. https://doi.org/10.2967/jnumed.117.191122. The first clinical observation of the correlation between myocardial FDG uptake and cardiotoxicity in a group of HL patients successfully treated with DXR.

    Article  CAS  PubMed  Google Scholar 

  10. Sarocchi M, Bauckneht M, Arboscello E, Capitanio S, Marini C, Morbelli S, et al. An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J Transl Med. 2018;16:295. https://doi.org/10.1186/s12967-018-1670-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. •• Kim J, Cho SG, Kang SR, Yoo SW, Kwon SY, Min JJ, et al. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01617-y. The correlation between myocardial FDG uptake and the subsequent development of cardiotoxicity in a group of breast cancer patients treated with anthracyclines or trastuzumab, further suggesting that oncologic FDG PET/CT scans can provide information regarding cancer therapy-induced cardiotoxicity as well as tumor response.

  12. Keramida K, Farmakis D, Bingcang J, Sulemane S, Sutherland S, Bingcang RA, et al. Longitudinal changes of right ventricular deformation mechanics during trastuzumab therapy in breast cancer patients. Eur J Heart Fail. 2019;21:529–35. https://doi.org/10.1002/ejhf.1385.

    Article  CAS  PubMed  Google Scholar 

  13. Hrelia S, Fiorentini D, Maraldi T, Angeloni C, Bordoni A, Biagi PL, et al. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta. 2002;1567:150–6. https://doi.org/10.1016/s0005-2736(02)00612-0.

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho RA, Sousa RP, Cadete VJ, Lopaschuk GD, Palmeira CM, Bjork JA, et al. Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology. 2010;270:92–8. https://doi.org/10.1016/j.tox.2010.01.019.

    Article  CAS  PubMed  Google Scholar 

  15. Tokarska-Schlattner M, Zaugg M, da Silva R, Lucchinetti E, Schaub MC, Wallimann T, et al. Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol. 2005;289:H37–47. https://doi.org/10.1152/ajpheart.01057.2004.

    Article  CAS  PubMed  Google Scholar 

  16. •• Bauckneht M, Pastorino F, Castellani P, Cossu V, Orengo AM, Piccioli P, et al. Increased myocardial 18F-FDG uptake as a marker of doxorubicin-induced oxidative stress. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01618-x The preclinical data supporting the pathophysiological interpretation of the increased myocardial FDG uptake following DXR exposure.

  17. Clarke JL, Mason PJ. Murine hexose-6-phosphate dehydrogenase: a bifunctional enzyme with broad substrate specificity and 6-phosphogluconolactonase activity. Arch Biochem Biophys. 2003;415:229–34. https://doi.org/10.1016/s0003-9861(03)00229-7.

    Article  CAS  PubMed  Google Scholar 

  18. Cossu V, Marini C, Piccioli P, Rocchi A, Bruno S, Orengo AM, et al. Obligatory role of endoplasmic reticulum in brain FDG uptake. Eur J Nucl Med Mol Imaging. 2019;46:1184–96. https://doi.org/10.1007/s00259-018-4254-2.

    Article  CAS  PubMed  Google Scholar 

  19. Buschiazzo A, Cossu V, Bauckneht M, Orengo A, Piccioli P, Emionite L, et al. Effect of starvation on brain glucose metabolism and 18F-2-fluoro-2-deoxyglucose uptake: an experimental in-vivo and ex-vivo study. EJNMMI Res. 2018;8:44. https://doi.org/10.1186/s13550-018-0398-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marini C, Ravera S, Buschiazzo A, Bianchi G, Orengo AM, Bruno S, et al. Discovery of a novel glucose metabolism in cancer: the role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Sci Rep. 2016;6:25092. https://doi.org/10.1038/srep25092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marini C, Bianchi G, Buschiazzo A, Ravera S, Martella R, Bottoni G, et al. Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci Rep. 2016;6:19569. https://doi.org/10.1038/srep19569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scussolini M, Bauckneht M, Cossu V, Bruno S, Orengo AM, Piccioli P, et al. G6Pase location in the endoplasmic reticulum: implications on compartmental analysis of FDG uptake in cancer cells. Sci Rep. 2019;9:2794. https://doi.org/10.1038/s41598-019-38973-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Tsachaki M, Mladenovic N, Štambergová H, Birk J, Odermatt A. Hexose-6-phosphate dehydrogenase controls cancer cell proliferation and migration through pleiotropic effects on the unfolded-protein response, calcium homeostasis, and redox balance. FASEB J. 2018;32:2690–705. https://doi.org/10.1096/fj.201700870RR This study shows the mechanism through which H6PD exerts its effects by H6PD silencing in cancer cells. Knockdown of H6PD resulted in an increase in ER lumen oxidation, and an increase in sarco/endoplasmic reticulum Ca2+-ATPase-2 pump expression and decrease in inositol trisphosphate receptor-III, which led to augmented levels of calcium in the ER, suggesting the strict connection between H6PD enzymatic activity, reticular antioxidant response and calcium homeostasis.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salvemini F, Franze A, Iervolino A, Filosa S, Salzano S, Ursini MV. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J Biol Chem. 1999;274:2750–7. https://doi.org/10.1074/jbc.274.5.2750.

    Article  CAS  PubMed  Google Scholar 

  25. Filosa S, Fico A, Paglialunga F, Balestrieri M, Crooke A, Verde P, et al. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochem J. 2003;370:935–43. https://doi.org/10.1042/BJ20021614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, et al. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death Differ. 2004;11:823–31. https://doi.org/10.1038/sj.cdd.4401420.

    Article  CAS  PubMed  Google Scholar 

  27. Rogoff D, Black K, McMillan DR, White PC. Contribution of hexose-6-phosphate dehydrogenase to NADPH content and redox environment in the endoplasmic reticulum. Redox Rep. 2010;15:64–70. https://doi.org/10.1179/174329210X12650506623249.

    Article  CAS  PubMed  Google Scholar 

  28. Paik JY, Jung KH, Lee JH, Park JW, Lee KH. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension. Nucl Med Biol. 2017;45:8–14. https://doi.org/10.1016/j.nucmedbio.2016.10.006.

    Article  CAS  PubMed  Google Scholar 

  29. Yan R, Song J, Wu Z, Guo M, Liu J, Li J, et al. Detection of myocardial metabolic abnormalities by 18F-FDG PET/CT and corresponding pathological changes in beagles with local heart irradiation. Korean J Radiol. 2015;16:919–28. https://doi.org/10.3348/kjr.2015.16.4.919.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Evans JD, Gomez DR, Chang JY, Gladish GW, Erasmus JJ, Rebueno N, et al. Cardiac 18F-fluorodeoxyglucose uptake on positron emission tomography after thoracic stereotactic body radiation therapy. Radiother Oncol. 2013;109:82–8. https://doi.org/10.1016/j.radonc.2013.07.021.

    Article  PubMed  Google Scholar 

  31. Liu FF, Stone JR, Schuldt AJ, Okoshi K, Okoshi MP, Nakayama M, et al. Heterozygous knockout of neuregulin-1 gene in mice exacerbates doxorubicin-induced heart failure. Am J Physiol Heart Circ Physiol. 2005;289:H660–6. https://doi.org/10.1152/ajpheart.00268.2005.

    Article  CAS  PubMed  Google Scholar 

  32. Bulten BF, Sollini M, Boni R, Massri K, de Geus-Oei LF, van Laarhoven HWM, et al. Cardiac molecular pathways influenced by doxorubicin treatment in mice. Sci Rep. 2019;9:2514. https://doi.org/10.1038/s41598-019-38986-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seino H, Ono S, Miura H, Morohashi S, Wu Y, Tsushima F, et al. Hypoxia is important in F-18 FDG accumulation in thecoma-fibroma tumors on F-18 FDG PET/CT scans. Mol Med Rep. 2016;13:3821–7. https://doi.org/10.3892/mmr.2016.5016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Todorova VK, Beggs ML, Delongchamp RR, Dhakal I, Makhoul I, Wei JY, et al. Transcriptome profiling of peripheral blood cells identifies potential biomarkers for doxorubicin cardiotoxicity in a rat model. PLoS One. 2012;7:e48398. https://doi.org/10.1371/journal.pone.0048398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial 18F fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23:244–52. https://doi.org/10.1007/s12350-015-0226-0.

    Article  Google Scholar 

  36. Chen W, Sajadi MM, Dilsizian V. Merits of FDG PET/CT and functional molecular imaging over anatomic imaging with echocardiography and CT angiography for the diagnosis of cardiac device infections. JACC Cardiovasc Imaging. 2018;11:1679–91. https://doi.org/10.1016/j.jcmg.2018.08.026.

    Article  PubMed  Google Scholar 

  37. Genovesi D, Bauckneht M, Altini C, Popescu CE, Ferro P, Monaco L, et al. The role of positron emission tomography in the assessment of cardiac sarcoidosis. Br J Radiol. 2019;92:20190247. https://doi.org/10.1259/bjr.20190247.

    Article  PubMed  Google Scholar 

  38. Bauckneht M, Morbelli S, Fiz F, Ferrarazzo G, Piva R, Nieri A, Sarocchi M, Spallarossa P, Canepari M, Arboscello E, Bellodi A, Massaia M, Gallamini A, Bruzzi P, Marini C, Sambuceti G A score-based approach to 18F-FDG PET images as a tool to describe metabolic predictors of myocardial doxorubicin susceptibility. Diagnostics (Basel) 2017;7. Doi: https://doi.org/10.3390/diagnostics7040057.

    Article  Google Scholar 

  39. Keyes JW. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bauckneht.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauckneht, M., Cossu, V., Miceli, A. et al. FDG-PET Imaging of Doxorubicin-Induced Cardiotoxicity: a New Window on an Old Problem. Curr Cardiovasc Imaging Rep 12, 41 (2019). https://doi.org/10.1007/s12410-019-9517-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-019-9517-1

Keywords

Navigation