Skip to main content
Log in

Molecular Imaging of Macrophages in Atherosclerosis

  • Cardiac Molecular Imaging (F Jaffer, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Macrophages contribute to the initiation, progression, and acute complications of atherosclerosis. Imaging of macrophages during disease progression provides new insights into the mechanisms of atherosclerosis. Advanced imaging techniques may serve as sensitive diagnostic tools for early detection of the disease to identify individuals with subclinical plaques and to prevent devastating complications. Furthermore, molecular imaging may monitor the effects of therapeutic interventions. Development of fully integrated molecular imaging requires dynamic multidisciplinary collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  2. Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol. 2004;13:125–38.

    Article  PubMed  Google Scholar 

  3. Aikawa M, Libby P. Atherosclerotic plaque inflammation: the final frontier? Can J Cardiol. 2004;20:631–4.

    PubMed  CAS  Google Scholar 

  4. • New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 2011;108:1381–91. This is one of the most recent reviews on molecular imaging of cardiovascular inflammation.

    Article  PubMed  CAS  Google Scholar 

  5. Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circulation. 2007;116:1052–61.

    Article  PubMed  Google Scholar 

  6. • Jaffer FA, Libby P, Weissleder R. Optical and multimodality molecular imaging: Insights into atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:1017–24.This comprehensive review provides broad aspects of molecular imaging of atherosclerosis.

    Article  PubMed  CAS  Google Scholar 

  7. Choudhury RP, Carrelli AL, Stern JD, Chereshnev I, Soccio R, Elmalem VI, Fallon JT, Fisher EA, Reis ED. Effects of simvastatin on plasma lipoproteins and response to arterial injury in wild-type and apolipoprotein-e-deficient mice. J Vasc Res. 2004;41:75–83.

    Article  PubMed  CAS  Google Scholar 

  8. Aikawa M, Rabkin E, Sugiyama S, Voglic S, Fukumoto Y, Furukawa Y, Shiomi M, Schoen F, Libby P. An HMG-COA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation. 2001;103:276–83.

    PubMed  CAS  Google Scholar 

  9. Aikawa M, Voglic SJ, Rabkin E, Shiomi M, Libby P. An HMG-COA reductase inhibitor (cerivastatin) suppresses accumulation of macrophages expressing matrix metalloproteinases and tissue factor in atheroma of whhl rabbits. Circulation. 1998;98:I–47.

    Google Scholar 

  10. • Tahara N, Imaizumi T, Virmani R, Narula J. Clinical feasibility of molecular imaging of plaque inflammation in atherosclerosis. J Nucl Med. 2009;50:331–4. This recent review discusses clinical translation of molecular imaging of atherosclerosis, particularly the usefulness of nuclear imaging.

    Article  PubMed  CAS  Google Scholar 

  11. Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J Nucl Med. 2010;51 Suppl 1:51S–65S.

    Article  PubMed  Google Scholar 

  12. Ogawa M, Magata Y, Kato T, Hatano K, Ishino S, Mukai T, Shiomi M, Ito K, Saji H. Application of 18f-fdg PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med. 2006;47:1845–50.

    PubMed  CAS  Google Scholar 

  13. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnstrom P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL. Imaging atherosclerotic plaque inflammation with [18f]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  14. Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind JF, Wahl RL. Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[f-18]fluoro-2-deoxy-d-glucose. Cancer Res. 2003;63:6252–7.

    PubMed  CAS  Google Scholar 

  15. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, Nikolaou K, Reiser MF, Bartenstein P, Hacker M. 18f-fdg PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.

    Article  PubMed  Google Scholar 

  16. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117:379–87.

    Article  PubMed  CAS  Google Scholar 

  17. Tekabe Y, Li Q, Luma J, Weisenberger D, Sedlar M, Harja E, Narula J, Johnson LL. Noninvasive monitoring the biology of atherosclerotic plaque development with radiolabeled annexin v and matrix metalloproteinase inhibitor in spontaneous atherosclerotic mice. J Nucl Cardiol. 2010;17:1073–81.

    Article  PubMed  Google Scholar 

  18. Ohshima S, Petrov A, Fujimoto S, Zhou J, Azure M, Edwards DS, Murohara T, Narula N, Tsimikas S, Narula J. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein E or low-density-lipoprotein receptor. J Nucl Med. 2009;50:612–7.

    Article  PubMed  CAS  Google Scholar 

  19. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, Smialek J, Virmani R. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol. 2000;157:1259–68.

    Article  PubMed  CAS  Google Scholar 

  20. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin v-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.

    Article  PubMed  Google Scholar 

  21. Ishino S, Kuge Y, Takai N, Tamaki N, Strauss HW, Blankenberg FG, Shiomi M, Saji H. 99mtc-annexin a5 for noninvasive characterization of atherosclerotic lesions: imaging and histological studies in myocardial infarction-prone watanabe heritable hyperlipidemic rabbits. Eur J Nucl Med Mol Imaging. 2007;34:889–99.

    Article  PubMed  Google Scholar 

  22. Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CP, Hofstra L, Narula J. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin v: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation. 2003;108:3134–9.

    Article  PubMed  CAS  Google Scholar 

  23. Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, Narula J. Noninvasive detection of plaque instability with use of radiolabeled annexin a5 in patients with carotid-artery atherosclerosis. N Engl J Med. 2004;350:1472–3.

    Article  PubMed  CAS  Google Scholar 

  24. Ishino S, Mukai T, Kuge Y, Kume N, Ogawa M, Takai N, Kamihashi J, Shiomi M, Minami M, Kita T, Saji H. Targeting of lectinlike oxidized low-density lipoprotein receptor 1 (lox-1) with 99mtc-labeled anti-lox-1 antibody: potential agent for imaging of vulnerable plaque. J Nucl Med. 2008;49:1677–85.

    Article  PubMed  CAS  Google Scholar 

  25. Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled mda2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol. 1999;6:41–53.

    Article  PubMed  CAS  Google Scholar 

  26. Bates SM, Lister-James J, Julian JA, Taillefer R, Moyer BR, Ginsberg JS. Imaging characteristics of a novel technetium tc 99 m-labeled platelet glycoprotein iib/iiia receptor antagonist in patients with acute deep vein thrombosis or a history of deep vein thrombosis. Arch Intern Med. 2003;163:452–6.

    Article  PubMed  CAS  Google Scholar 

  27. Sakuma T, Sari I, Goodman CN, Lindner JR, Klibanov AL, Kaul S. Simultaneous integrin alphavbeta3 and glycoprotein iib/iiia inhibition causes reduction in infarct size in a model of acute coronary thrombosis and primary angioplasty. Cardiovasc Res. 2005;66:552–61.

    Article  PubMed  CAS  Google Scholar 

  28. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.

    Article  PubMed  CAS  Google Scholar 

  29. Dijkgraaf I, Beer AJ, Wester HJ. Application of rgd-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci. 2009;14:887–99.

    Article  PubMed  CAS  Google Scholar 

  30. Dobrucki LW, Sinusas AJ. PET and SPECT in cardiovascular molecular imaging. Nat Rev Cardiol. 2010;7:38–47.

    Article  PubMed  Google Scholar 

  31. Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging. 2006;5:85–92.

    PubMed  Google Scholar 

  32. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219:316–33.

    PubMed  CAS  Google Scholar 

  33. McConnell MV, Aikawa M, Maier SE, Ganz P, Libby P, Lee RT. MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. Arterioscler Thromb Vasc Biol. 1999;19:1956–9.

    Article  PubMed  CAS  Google Scholar 

  34. Trogan E, Fayad ZA, Itskovich VV, Aguinaldo JG, Mani V, Fallon JT, Chereshnev I, Fisher EA. Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia. Arterioscler Thromb Vasc Biol. 2004;24:1714–9.

    Article  PubMed  CAS  Google Scholar 

  35. Skinner MP, Yuan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA, Ross R. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nat Med. 1995;1:69–73.

    Article  PubMed  Google Scholar 

  36. Yonemura A, Momiyama Y, Fayad ZA, Ayaori M, Ohmori R, Higashi K, Kihara T, Sawada S, Iwamoto N, Ogura M, Taniguchi H, Kusuhara M, Nagata M, Nakamura H, Tamai S, Ohsuzu F. Effect of lipid-lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. J Am Coll Cardiol. 2005;45:733–42.

    Article  PubMed  CAS  Google Scholar 

  37. Morris JB, Olzinski AR, Bernard RE, Aravindhan K, Mirabile RC, Boyce R, Willette RN, Jucker BM. P38 mapk inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment. Arterioscler Thromb Vasc Biol. 2008;28:265–71.

    Article  PubMed  CAS  Google Scholar 

  38. Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, Jaffer FA, Aikawa M, Weissleder R. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116:2841–50.

    Article  PubMed  CAS  Google Scholar 

  39. •• Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010;122:1707–15. This original report demonstrated that iron nanoparticles can quantitatively identify macrophage accumuation in atherosclerotic plaques and monitor changes during a statin therapy.

    Article  PubMed  CAS  Google Scholar 

  40. Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, Ntziachristos V, Libby P, Weissleder R. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation. 2008;118:1802–9.

    Article  PubMed  Google Scholar 

  41. Makowski MR, Wiethoff AJ, Blume U, Cuello F, Warley A, Jansen CH, Nagel E, Razavi R, Onthank DC, Cesati RR, Marber MS, Schaeffter T, Smith A, Robinson SP, Botnar RM. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17:383–8.

    Article  PubMed  CAS  Google Scholar 

  42. Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, Mehta JL, Beller GA, Glover DK, Meyer CH. Molecular imaging of atherosclerotic plaques targeted to oxidized ldl receptor lox-1 by spect/ct and magnetic resonance. Circ Cardiovasc Imaging. 2010;3:464–72.

    Article  PubMed  CAS  Google Scholar 

  43. Briley-Saebo KC, Cho YS, Shaw PX, Ryu SK, Mani V, Dickson S, Izadmehr E, Green S, Fayad ZA, Tsimikas S. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol. 2011;57:337–47.

    Article  PubMed  CAS  Google Scholar 

  44. Briley-Saebo KC, Cho YS, Tsimikas S. Imaging of oxidation-specific epitopes in atherosclerosis and macrophage-rich vulnerable plaques. Curr Cardiovasc Imaging Rep. 2011;4:4–16.

    Article  PubMed  Google Scholar 

  45. Cai K, Caruthers SD, Huang W, Williams TA, Zhang H, Wickline SA, Lanza GM, Winter PM. Mr molecular imaging of aortic angiogenesis. JACC Cardiovasc Imaging. 2010;3:824–32.

    Article  PubMed  Google Scholar 

  46. Qiu B, Yang X. Molecular mri of hematopoietic stem-progenitor cells: in vivo monitoring of gene therapy and atherosclerosis. Nat Clin Pract Cardiovasc Med. 2008;5:396–404.

    Article  PubMed  CAS  Google Scholar 

  47. Sosnovik DE, Nahrendorf M, Panizzi P, Matsui T, Aikawa E, Dai G, Li L, Reynolds F, Dorn 2nd GW, Weissleder R, Josephson L, Rosenzweig A. Molecular mri detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging. 2009;2:468–75.

    Article  PubMed  Google Scholar 

  48. Sosnovik DE, Garanger E, Aikawa E, Nahrendorf M, Figuiredo JL, Dai G, Reynolds F, Rosenzweig A, Weissleder R, Josephson L. Molecular mri of cardiomyocyte apoptosis with simultaneous delayed-enhancement mri distinguishes apoptotic and necrotic myocytes in vivo: potential for midmyocardial salvage in acute ischemia. Circ Cardiovasc Imaging. 2009;2:460–7.

    Article  PubMed  Google Scholar 

  49. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, Weissleder R. In vivo imaging of proteolytic activity in atherosclerosis. Circulation. 2002;105:2766–71.

    Article  PubMed  Google Scholar 

  50. Jaffer FA, Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ Res. 2004;94:433–45.

    Article  PubMed  CAS  Google Scholar 

  51. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007;115:377–86.

    Article  PubMed  CAS  Google Scholar 

  52. •• Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, Fukuda D, Kohler RH, Shi GP, Jaffer FA, Weissleder R. Arterial and aortic valve calcification abolished by elastolytic cathepsin s deficiency in chronic renal disease. Circulation. 2009;119:1785–94. This study used near-infrared molecular imaging to provide direct in vivo evidence that cathepsin S–induced elastolysis, derived from macrophages, promotes osteogenic activity and calcification in atherosclerotic arteries and aortic valves.

    Article  PubMed  CAS  Google Scholar 

  53. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation. 2006;114:55–62.

    Article  PubMed  Google Scholar 

  54. • Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, Weissleder R, Aikawa E. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: A role for inflammation. Eur Heart J. 2010;31:1975–84. Using optical imaging and micro CT, this study demonstrated in vivo that macrophage burden and calcification are associated with each other in arteries and aortic valves, whereas inflammation inversly correlates with bone mineralization.

    Article  PubMed  CAS  Google Scholar 

  55. Quillard T, Tesmenitsky Y, Croce K, Travers R, Shvartz E, Koskinas KC, Sukhova G, Aikawa E, Aikawa M, Libby P. Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atheromas. Arterioscler Thromb Vasc Biol. 2011.

  56. Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, Kohler RH, Shi GP, Libby P, Weissleder R. Optical visualization of cathepsin k activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation. 2007;115:2292–8.

    Article  PubMed  CAS  Google Scholar 

  57. Hjortnaes J, Gottlieb D, Figueiredo JL, Melero-Martin J, Kohler RH, Bischoff J, Weissleder R, Mayer J, Aikawa E. Intravital molecular imaging of small-diameter tissue-engineered vascular grafts: a feasibility study. Tissue Eng Part C Methods. 2009.

  58. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9:123–8.

    Article  PubMed  CAS  Google Scholar 

  59. Jaffer FA. Intravital fluorescence microscopic molecular imaging of atherosclerosis. Methods Mol Biol. 2011;680:131–40.

    Article  PubMed  Google Scholar 

  60. Suter MJ, Nadkarni SK, Weisz G, Tanaka A, Jaffer FA, Bouma BE, Tearney GJ. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging. 2011;4:1022–39.

    Article  PubMed  Google Scholar 

  61. Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011;3:84ra45.

    Article  PubMed  CAS  Google Scholar 

  62. New SE, Aikawa E. Cardiovascular calcification: an inflammatory disease. Circ J. 2011;75:1305–13.

    Article  PubMed  CAS  Google Scholar 

  63. Tintut Y, Patel J, Parhami F, Demer LL. Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the camp pathway. Circulation. 2000;102:2636–42.

    PubMed  CAS  Google Scholar 

  64. Demer LL, Tintut Y. Mineral exploration: search for the mechanism of vascular calcification and beyond: the 2003 Jeffrey M. Hoeg award lecture. Arterioscler Thromb Vasc Biol. 2003;23:1739–43.

    Article  PubMed  CAS  Google Scholar 

  65. Towler DA. Oxidation, inflammation, and aortic valve calcification peroxide paves an osteogenic path. J Am Coll Cardiol. 2008;52:851–4.

    Article  PubMed  CAS  Google Scholar 

  66. Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117:2938–48.

    Article  PubMed  Google Scholar 

  67. Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B, Demer LL. Tgf-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest. 1994;93:2106–13.

    Article  PubMed  CAS  Google Scholar 

  68. Tintut Y, Morony S, Demer LL. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol. 2004;24:e6–10.

    Article  PubMed  CAS  Google Scholar 

  69. Otto CM. Calcific aortic stenosis–time to look more closely at the valve. N Engl J Med. 2008;359:1395–8.

    Article  PubMed  CAS  Google Scholar 

  70. Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ, Detrano RC, Dunstan CR, Shah PK, Rajavashisth TB. Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A. 2003;100:11201–6.

    Article  PubMed  CAS  Google Scholar 

  71. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24:1161–70.

    Article  PubMed  CAS  Google Scholar 

  72. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103:1051–6.

    PubMed  CAS  Google Scholar 

  73. Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O’Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: Not simply a degenerative process: a review and agenda for research from the national heart and lung and blood institute aortic stenosis working group * executive summary: calcific aortic valve disease - 2011 update. Circulation. 2011;124:1783–91.

    Article  PubMed  Google Scholar 

  74. Parhami F, Basseri B, Hwang J, Tintut Y, Demer LL. High-density lipoprotein regulates calcification of vascular cells. Circ Res. 2002;91:570–6.

    Article  PubMed  CAS  Google Scholar 

  75. Radcliff K, Tang TB, Lim J, Zhang Z, Abedin M, Demer LL, Tintut Y. Insulin-like growth factor-i regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways. Circ Res. 2005;96:398–400.

    Article  PubMed  CAS  Google Scholar 

  76. Towler DA. Imaging aortic matrix metabolism: Mirabile visu! Circulation. 2007;115:297–9.

    Article  PubMed  Google Scholar 

  77. Chen IY, Wu JC. Cardiovascular molecular imaging: focus on clinical translation. Circulation. 2011;123:425–43.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Aikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aikawa, E., New, S.E.P., Miyazaki, T. et al. Molecular Imaging of Macrophages in Atherosclerosis. Curr Cardiovasc Imaging Rep 5, 45–52 (2012). https://doi.org/10.1007/s12410-011-9118-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-011-9118-0

Keywords

Navigation