Skip to main content
Log in

Assessing Exposure of Fullerenes/Functionalized Fullerenes from Water: Risk, Challenges, and Knowledge Gaps

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Fullerenes may be introduced to water during the life cycle/processing/disposal of products leading to the exposure of fullerene to human beings. The review of human health risk assessment (HHRA) studies indicated that very few studies have focused on exposures of specific carbon-based materials from water medium, indicating a knowledge gap. To understand difficulty in conducting HHRA, this study focused on identifying knowledge gaps in occurrence and toxicity data for assessing exposure risks of fullerenes in water using published studies. Knowledge gaps in four important areas were observed: (i) levels of fullerenes in water and fish tissues, (ii) oral exposure of fullerene, (iii) dermal exposure of fullerene, and (iv) conditions used in toxicity studies. This study proposed suggestions for addressing these knowledge gaps which could aid in assessing health risks of fullerene exposures from water route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Article  CAS  Google Scholar 

  • Andrievsky GV, Marina VK, Vovk KM, Shelkovsky VS, Vashchenko LA (1995) On the production of an aqueous colloidal solution of fullerenes. J Chem Soc Chem Commun 12:1281–1282

    Article  Google Scholar 

  • Andrievsky GV, Klochkov V, Derevyanchenko L (2005) Is the C60 fullerene molecule toxic fullerenes, nanotubes, and carbon. Nanostructures 13:363–376

    CAS  Google Scholar 

  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Lang T, Hankin SM, Peters SA, Christensen FM (2010) Review of fullerene toxicity and exposure—appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473

    Article  CAS  Google Scholar 

  • Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2:639–649

    CAS  Google Scholar 

  • Barcelo D, Farre M, Sanchis J (2010) Nanomaterial residues in aquatic ecosystems. Engineered Nanoparticles in the EnvironmentAnalysis, Occurrence and Impacts 19–20 Oct, Koblenz

  • Benn TM, Westerhoff P, Herckes P (2011) Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut 159:1334–1342

    Article  CAS  Google Scholar 

  • Berube DM (2008) Rhetorical gamesmanship in the nano debates over sunscreens and nanoparticles. J Nanopart Res 10:23–37

    Article  CAS  Google Scholar 

  • Bosi S, Feruglio L, Da Ros T et al (2004) Hemolytic effects of water-soluble fullerene derivatives. J Med Chem 47:6711–6715

    Article  CAS  Google Scholar 

  • Boxall A, Chowdhury Q, Sinclair C, Jones A, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Sand Hutton

    Google Scholar 

  • Brant JA, Labille J, Robichaud CO, Wiesner M (2007) Fullerol cluster formation in aqueous solutions: implications for environmental release. J Colloid Interface Sci 314:281–288

    Article  CAS  Google Scholar 

  • Brettreich M, Hirsch A (1998) A highly water-soluble dendro[60]fullerene. Tetrahedron Lett 39:2731–2734

    Article  CAS  Google Scholar 

  • Bullard-Dillard R, Creek KE, Scrivens WA, Tour JM (1996) Tissue sites of uptake of 14C labelled C60. Bioorg Chem 24:376–385

    Article  CAS  Google Scholar 

  • Chawla J, Kumar A (2013) Ranking carbon based nanomaterials using cytotoxicity to minimize public health risks. Int J Environ Eng Manag 4:301–308

    Google Scholar 

  • Chen HH, Yu C, Chiang LY, Ueng TH, Chen S, Chen BJ, Huang KJ (1998) Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol 26:143–151

    Article  CAS  Google Scholar 

  • Chen Y, Cai RF, Chen S et al (2001) Synthesis and characterization of fullerol derived from C60n-precursors. J Phys Chem Solids 62:999–1001

    Article  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  Google Scholar 

  • Crystal YU, Stacey LH, Robert LT (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898

    Article  CAS  Google Scholar 

  • Dhawan A, Sharma A (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  Google Scholar 

  • Dhawan A, Taurozzi JS, Pandey AL, Shan W, Mille SM, Hashsham SA, Tarabara VM (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Toxicol 40:7394–7401

    CAS  Google Scholar 

  • Farre M, Pereza S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barcelo D (2010) First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C-60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383:44–51

    Article  CAS  Google Scholar 

  • Fiorito S, Serafino A, Andreola F, Bernier P (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 44:1100–1105

    Article  CAS  Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C-60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316

    Article  CAS  Google Scholar 

  • Friedman SH, DeCamp DL, Sijbesma RP et al (1993) Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am ChemSoc 115:6506–6509

    Article  CAS  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Article  Google Scholar 

  • Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JC (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples:effects of water chemical composition. Environ Sci Technol 43:3322–3328

    Article  CAS  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  CAS  Google Scholar 

  • Gottschalk F, Sondered T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gottschalk F, Kost E, Nowack B (2013) Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–1287

    Article  CAS  Google Scholar 

  • Grozdanov A (2008) Personal experience regarding nanoosis. Polimeri 3:161–163

    Google Scholar 

  • Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Nanotechnol Risk Soc 9:125–144

    Google Scholar 

  • Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS (2007) Attributing effects of aqueous nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 115:1059–1065

    Article  CAS  Google Scholar 

  • Heymann D (1996) Solubility of fullerenes C60 and C70 in water. Lunar Planet Sci 27:543–544

    Google Scholar 

  • Horie M, Nishio K, Kato H, Shinohara N, Nakamura A, Fujita K, Kinugasa S, Endoh S, Yamamoto K, Yamamoto O, Niki E, Yoshida Y, Iwahashi HJ (2010) In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. J Biochem 148:289–298

    Article  CAS  Google Scholar 

  • Hu Y, Balachandran S, Pachon JE, Baek J, Ivey J, Holmes H, Odman MT, Mulholland JA, Russel AG (2014) Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach. Chem Phys 14:5415–5431

    CAS  Google Scholar 

  • Hyung H, Kim JH (2009) Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Res 43:2463–2470

    Article  CAS  Google Scholar 

  • Isaacson CW, Kleber M, Field JA (2009) Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review. Environ Sci Technol 43:6463–6474

    Article  CAS  Google Scholar 

  • Isakovic A, Markovic Z, Nikolic N, Todorovic BM, Djuric V et al (2006) Inactivation of nano-crystalline C60 cytotoxicity by gamma-irradiation. Bio-Mater 27:5049–5058

    CAS  Google Scholar 

  • Iwata N, Mukai T, Yamakoshi TN, Hara S, Yanase T, Shoji M, Endo T, Miyata N (1998) Effects of C60, a fullerene, on the activities of glutathione s-transferase and glutathione-related enzymes in rodent and human livers. Fuller Sci Technol 6:213–226

    CAS  Google Scholar 

  • Jaekeun L, Sangwon C, Yujin H, Han-Jong C, Changgun L, Youngmin CK, Hyeongkook L, Byeongchul L, Donghan K, Soo HK (2009) Application of fullerene added nanooil for lubrication enhancement in friction surfaces. Tribol Int 42:440–447

    Article  CAS  Google Scholar 

  • Jafvert CT, Kulkarni PP (2008) Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ Sci Technol 42:5945–5950

    Article  CAS  Google Scholar 

  • Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem 4:767–779

    Article  CAS  Google Scholar 

  • Jorge FE, Morigaki MK, Jorge SS (2012) Quantum chemical investigations on determination of electronic, structural and electric properties of some even carbon cage fullerenes. Indian J Chem 51:911–916

    Google Scholar 

  • Jung H, Wang CU, Jang W (2009) Nano-C60 and hydroxylated C60: their impacts on the environment toxicol. Environ Health Sci 1:132–139

    Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H, Mittal JP (1998) Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes. Chem Biol Interact 114:145–159

    Article  CAS  Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61

    Article  CAS  Google Scholar 

  • Kim KT, Jang MH, Kim JY, Kim SD (2010) Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos. Sci Total Environ 408:5606–5612

    Article  CAS  Google Scholar 

  • Kim KT, Jang MH, Kim JY, et al (2012) Embryonic toxicity changes of organic nanomaterials in the presence of natural organic matter. Sci Total Environ 426:423–429

    Article  CAS  Google Scholar 

  • Kiser M, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44:4105–4114

    Article  CAS  Google Scholar 

  • Kovochich M, Espinasse B, Auffan M, Hotze EM, Wessel L, XiaT Neland AE, Wiesner MR (2009) Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ Sci Technol 43:6378–6384

    Article  CAS  Google Scholar 

  • Kruger A (2010) Carbon materials and nanotechnology. Wiley-VCH, Weinheim, pp 33–122

    Book  Google Scholar 

  • Lens M (2011) Recent progresses in application of fullerenes in cosmetics. Recent Pat Biotechnol 5:67–73

    Article  CAS  Google Scholar 

  • Li D, Fortner JD, Johnson DR, Chen C, Li Q, Alvarez PJ (2010) Bioaccumulation of C60 by the earthworm Eiseniafetida. Environ Sci Technol 44:9170–9175

    Article  CAS  Google Scholar 

  • Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52

    Article  CAS  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137

    Article  CAS  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez JJ (2006) Antibacterial activity of fullerene water suspensions: effect of preparation method and particle size. Environ Sci Technol 40:4360–4366

    Article  CAS  Google Scholar 

  • Marchesan S, Da RT, Spalluto G et al (2005) Anti-HIV properties of cationic fullerene derivatives. Bioorg Med Chem Lett 15:3615–3618

    Article  CAS  Google Scholar 

  • Minchenko SV, Prylutska MM, Minchenko OH, Prylutskyy DO et al (2013) Effect of C60 fullerene on the expression of ERN1 signaling related genes in human astrocytes. Materialwiss Werkst 44:2–3

    Google Scholar 

  • Mirkov SM, Djordjevic AN, Andric NL, Andric SA, Kostic TS, Bogdanovic GM et al (2004) Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C60(OH)24. Nitric Oxide 11:201–207

    Article  CAS  Google Scholar 

  • Mori T, Takada H, Ito S, Matsubayashi K, Miwa N, Sawaguchi T (2006) Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225:48–54

    Article  CAS  Google Scholar 

  • Moussa F, Chre´tien P, Pressac M, Trivin F, Szwarc H, Ce´olin R (1997) Preliminary study of the influence of cubic C60 on cultured human monocytes: lack of interleukin-1b secretion. Fuller Sci Technol 5:503–510

    Article  CAS  Google Scholar 

  • Nakagawa Y, Suzuki T, Ishii H, Nakae D, Ogata A (2011) Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction. Arch Toxicol 85:1429–1440

    Article  CAS  Google Scholar 

  • Nakajima N, Nishi C, Li FM et al (1996) Photo-induced cytotoxicity of water-soluble fullerene. Fuller Sci Technol 41:19

    Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nikolic N, Vranjes-Ethuric S, Jankovic D, Ethokic D, Mirkovic M, Bibic N, Trajkovic V (2009) Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnology 20:1–7

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  Google Scholar 

  • Oberdorster E (2004) Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile Largemouth Bass. Environ Health Perspect 112:1058–1062

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  • Oberdorster E, Zhu SQ, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120

    Article  CAS  Google Scholar 

  • Pakarinen K, Petersen EJ, Alvila L, Waissi-Leinonen GC, Akkanen J, Leppänen MT, Kukkonen JV (2013) A screening study on the fate of fullerenes (nC60) and their txic implications in natural freshwaters. Environ Toxicol Chem 32:1224–1232

    Article  CAS  Google Scholar 

  • Pierson HO (1993) Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications. Noyes Publications, Park Ridge, pp 200–235

    Google Scholar 

  • Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD (1996) Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 40:2262–2265

    CAS  Google Scholar 

  • Rancan F, Rosan S, Boehm K, Fernandez E, Hidalgo ME et al (2002) Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. J Photochem Photobiol B 67:157–162

    Article  CAS  Google Scholar 

  • Raoof M, Mackeyev Y, Cheney MA, Wilson LJ, Curley SA (2012) Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex. Biomaterials 33:2952–2960

    Article  CAS  Google Scholar 

  • Rouse JG, Yang J, Barron AR, Monteiro-Riviere NA (2006) Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol In Vitro 20:1313–1320

    Article  CAS  Google Scholar 

  • Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7:155–160

    Article  CAS  Google Scholar 

  • Saathoff JG, Inman AO, Xia XR, Riviere JE, Monteiro-Riviere NA (2011) In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol In Vitro 25:2105–2112

    Article  CAS  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao Y, Sitharaman B, Wilson L, Hughes J, West J, Colvin V (2004) The differential cytotoxicity of water soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595

    Article  CAS  Google Scholar 

  • Scrivens WA, Tour JM, Creek KE, Pirisi L (1994) Synthesis of 14C-labelled C60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc 116:4517–4518

    Article  CAS  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:1–5

    Article  CAS  Google Scholar 

  • Shimizu K, Kubota R, Kobayashi N, Tahara M, Sugimoto N, Nishimura T, Ikarashi Y (2013) Cytotoxic effects of hydroxylated fullerenes in three types of liver cells. Materials 6:2713–2722

    Article  CAS  Google Scholar 

  • Sijbesma R, Srdanov G, Wudl F et al (1993) Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc 115:6510–6511

    Article  CAS  Google Scholar 

  • Sitharaman B, Asokan S, Rusakova I, WongMS Wilson LJ (2004) Nanoscale aggregation properties of neuroprotective carboxyfullerene (C3) in aqueous solution. NanoLett 4:1759–1762

    Article  CAS  Google Scholar 

  • Song M, Yuan S, Yin J, Wang X, Meng Z, Wang H, Jiang G (2012) Size dependent toxicity of nano C60 aggregates: more sensitive indication by apoptosis related bax translocation in cultured human cells. Environ Sci Technol 46:3457–3464

    Article  CAS  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  Google Scholar 

  • Tao X, He Y, Zhang B, Chen Y, Hughes JB (2011) Effects of stable aqueous fullerene nanocrystal (nC60) on Daphnia magna: evaluation of hop frequency and accumulations under different conditions. J Environ Sci (China) 23:322–329

    Article  CAS  Google Scholar 

  • Tervonen K, Waissi G, Petersen EJ, Akkanen J, Kukkonen JV (2010) Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in daphnia magna. Environ Toxicol Chem 29:1072–1078

    CAS  Google Scholar 

  • Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y (1993) Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc 115:7918–7919

    Article  CAS  Google Scholar 

  • Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N (1996) Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 393:139–145

    Article  Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, Part IV: Risk assessment of nanoparticles. Toxicol Sci 89:42–50

    Article  CAS  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229:44–55

    Article  CAS  Google Scholar 

  • Varna M, Ratajczak P, Ferreira I, Leboeuf C, Bousquet G, Janin A (2012) In vivo distribution of inorganic nanoparticles in preclinical models. J Biomater Nanobiotechnol 3:269–279

    Article  CAS  Google Scholar 

  • Verma A, Stellacci F (2009) Effect of surface properties on nanoparticle-cell interactions nanomaterial–cell interactions. Small 6:12–21

    Article  CAS  Google Scholar 

  • Wang C, Shang C, Ni M, Dai J, Jiang F (2012) Photochlorination-induced physicochemical transformation of aqueous fullerene nC60Environ. Sci Technol 46:9398–9405

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  • Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F (1995) In vivo biological behavior of water-miscible fullerenes14C-labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2:385–389

    Article  CAS  Google Scholar 

  • Yamakoshi YN, Yagami T, Fuhuhara K, Sueyoshi S, Miyata N (1994) Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc Chem Commun 4:517–518

    Article  Google Scholar 

  • Yamakoshi Y, Umezawa N, Ryu A et al (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines. J Am Chem Soc 125:12803–12809

    Article  CAS  Google Scholar 

  • Yang XL, Fan CH, Zhu HS (2002) Photo-induced cytotoxicity of malonic acid [C60]fullerene derivatives and its mechanism. Toxicol In Vitro 16:41–46

    Article  CAS  Google Scholar 

  • Zhang BL, Xu CH, Wang CZ, Chan CT, Ho KM (1992) Systematic study of structures and stabilities of fullerenes. Phys Rev B 46:7333–7733

    Article  CAS  Google Scholar 

  • Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9 Suppl

    Article  CAS  Google Scholar 

  • Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJJ (2009) Developmental toxicity in zebrafish (Daniorerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26:976–979

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Indian Institute of Technology Delhi, India and Manav Rachna International University Faridabad, India for providing infrastructure and support to write this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, J., Kumar, A. Assessing Exposure of Fullerenes/Functionalized Fullerenes from Water: Risk, Challenges, and Knowledge Gaps. Expo Health 8, 177–192 (2016). https://doi.org/10.1007/s12403-015-0190-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-015-0190-6

Keywords

Navigation