Skip to main content
Log in

Nanoscale Delivery System for Nutraceuticals: Preparation, Application, Characterization, Safety, and Future Trends

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Nutraceuticals are an emerging food category defined as food or parts of food that provide medical or health benefits, including the prevention and treatment of disease. The potential disease prevention and health promotion of many nutraceuticals are not fully realized because they are susceptible to the changes in the external environment and the gastrointestinal tract environment. Consequently, the great potential of nanoscale delivery systems in the nutraceutical industry is being rapidly established, especially in the encapsulation, protection, and delivery of nutraceuticals. This article first introduces the challenges of incorporating nutraceuticals into foods. Then, various nanoscale delivery systems (nanoemulsions, nanoliposomes, polymer nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, and nanosuspension) including their advantages and disadvantages, preparation, characterization, and application are described. Finally, the safety and future trends of nanoscale delivery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbas S, Hayat K, Karangwa E, Bashari M, Zhang X (2013) An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng Rev 5:139–157

    CAS  Google Scholar 

  2. Aditya NP, Yang H, Kim S, Ko S (2015) Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids Surf B: Biointerfaces 127:114–121

    CAS  PubMed  Google Scholar 

  3. Ahire E, Thakkar S, Darshanwad M, Misra M (2018) Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B 8:733–755

    PubMed  PubMed Central  Google Scholar 

  4. Ahmed TA, Aljaeid BM (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design Dev Ther 10:483–507

    CAS  Google Scholar 

  5. Akhavan S, Assadpour E, Katouzian I, Jafari SM (2018) Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 74:132–146

    CAS  Google Scholar 

  6. Al-Okbi SY, Mohamed DA, Hamed TE-S, Kassem AA, El-Alim SHA, Mostafa DM (2017) Enhanced prevention of progression of non alcoholic fatty liver to steatohepatitis by incorporating pumpkin seed oil in nanoemulsions. J Mol Liq 225:822–832

    CAS  Google Scholar 

  7. Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377:142–147

    CAS  PubMed  Google Scholar 

  8. Arora D, Jaglan S (2016) Nanocarriers based delivery of nutraceuticals for cancer prevention and treatment: a review of recent research developments. Trends Food Sci Technol 54:114–126

    CAS  Google Scholar 

  9. Augustin MA, Sanguansri L (2015) Challenges and solutions to incorporation of nutraceuticals in foods. Annu Rev Food Sci Technol 6:463–477

    CAS  PubMed  Google Scholar 

  10. Ayse K, Beraat O, Qingrong H (2014) Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem 62:1852–1859

    Google Scholar 

  11. Baby C, Gopal K, Nazia K, Ansari SH (2013) Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res 4:4–8

    Google Scholar 

  12. Beloqui A et al (2016) A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf B: Biointerfaces 143:327–335

    CAS  PubMed  Google Scholar 

  13. Bernal J, Mendiola JA, Ibáñez E, Cifuentes A (2011) Advanced analysis of nutraceuticals. J Pharm Biomed Anal 55:758–774

    CAS  PubMed  Google Scholar 

  14. Bhandari R, Paliwal JK, Kuhad A (2018) Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J Funct Foods 47:361–375

    CAS  Google Scholar 

  15. Bitterlich A et al (2015) Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. Eur J Pharm Biopharm 92:171–179

    CAS  PubMed  Google Scholar 

  16. Burgain J, Petit J, Scher J, Rasch R, Bhandari B, Gaiani C (2017) Surface chemistry and microscopy of food powders. Prog Surf Sci 92:409–429

    CAS  Google Scholar 

  17. Campardelli R, Reverchon E (2015) α-Tocopherol nanosuspensions produced using a supercritical assisted process. J Food Eng 149:131–136

    CAS  Google Scholar 

  18. Chandra Hembram K, Prabha S, Chandra R, Ahmed B, Nimesh S (2016) Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif Cells Nanomed Biotechnol 44:305–314

    CAS  PubMed  Google Scholar 

  19. Chang C, Wang T, Hu Q, Luo Y (2017) Zein/caseinate/pectin complex nanoparticles: Formation and characterization. Int J Biol Macromol 104:117–124

    CAS  PubMed  Google Scholar 

  20. Chen X, Zou LQ, Niu J, Liu W, Peng SF, Liu CM (2015) The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20:14293–14311

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Colas JC, Shi W, Rao VS, Omri A, Mozafari MR, Singh H (2007) Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 38:841–847

    CAS  PubMed  Google Scholar 

  22. da Costa JP (2017) A current look at nutraceuticals – key concepts and future prospects. Trends Food Sci Technol 62:68–78

    Google Scholar 

  23. da Silva SV, Badan Ribeiro AP, Andrade Santana MH (2019) Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res Int 122:610–626

    Google Scholar 

  24. Davidov-Pardo G, Joye IJ, Espinal-Ruiz M, McClements DJ (2015a) Effect of maillard conjugates on the physical stability of zein nanoparticles prepared by liquid antisolvent coprecipitation. J Agric Food Chem 63:8510–8518

    CAS  PubMed  Google Scholar 

  25. Davidov-Pardo G, Pérez-Ciordia S, Marín-Arroyo MR, Mcclements DJ (2015b) Improving resveratrol bioaccessibility using biopolymer nanoparticles and complexes: impact of protein-carbohydrate maillard conjugation. J Agric Food Chem 63:3915–3923

    CAS  PubMed  Google Scholar 

  26. Defrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X (2018) Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci 19:1717

    PubMed Central  Google Scholar 

  27. Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y (2015) Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm 495:738–749

    CAS  PubMed  Google Scholar 

  28. Dumay E, Chevalier-Lucia D, Picart-Palmade L, Benzaria A, Gràcia-Julià A, Blayo C (2013) Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci Technol 31:13–26

    CAS  Google Scholar 

  29. Durán N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48:1127–1134

    Google Scholar 

  30. Eerdenbrugh BV, Mooter GVD, Augustijns P (2008) Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75

    PubMed  Google Scholar 

  31. El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA (2019) Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B: Biointerfaces 177:389–398

    CAS  PubMed  Google Scholar 

  32. El-Say KM, El-Sawy HS (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–691

    CAS  PubMed  Google Scholar 

  33. Esfanjani AF, Jafari SM (2016) Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B: Biointerfaces 146:532–543

    Google Scholar 

  34. Esfanjani AF, Jafari SM, Assadpoor E, Mohammadi A (2015) Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J Food Eng 165:149–155

    CAS  Google Scholar 

  35. Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    CAS  Google Scholar 

  36. Fathi M, Varshosaz J, Mohebbi M, Shahidi F (2013) Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: preparation, characterization, and modeling. Food Bioprocess Technol 6:1464–1475

    CAS  Google Scholar 

  37. Fei L et al (2016) Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocoll 57:291–300

    Google Scholar 

  38. Gao X, Lowry GV (2018) Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact 9:14–30

    CAS  Google Scholar 

  39. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X (2012) Drug nanocrystals: in vivo performances. J Control Release 160:418–430

    CAS  Google Scholar 

  40. Ghosh A, Mandal AK, Sarkar S, Panda S, Das N (2009) Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci 84:75–80

    CAS  PubMed  Google Scholar 

  41. Gibis M, Ruedt C, Weiss J (2016) In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Res Int 88:105–113

    CAS  PubMed  Google Scholar 

  42. Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech 21:167–193

    PubMed  PubMed Central  Google Scholar 

  43. Gonçalves RFS, Martins JT, Duarte CMM, Vicente AA, Pinheiro AC (2018) Advances in nutraceutical delivery systems: from formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci Technol 78:270–291

    Google Scholar 

  44. Gong KJ et al (2016) Preparation of nanoliposome loaded with peanut peptide fraction: stability and bioavailability. Food Funct 7:2034–2042

    CAS  PubMed  Google Scholar 

  45. Gulsun T, Borna SE, Vural I, Sahin S (2018) Preparation and characterization of furosemide nanosuspensions. J Drug Deliv Sci Technol 45:93–100

    CAS  Google Scholar 

  46. Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251

    Google Scholar 

  47. Gye Hwa S, Seoung Kyun C, Jun Tae K, Hee Joung J, Hyun Jin P (2013) Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. J Agric Food Chem 61:11119–11126

    Google Scholar 

  48. Harbourne N, Marete E, Jacquier JC, O’Riordan D (2013) Stability of phytochemicals as sources of anti-inflammatory nutraceuticals in beverages — a review. Food Res Int 50:480–486

    CAS  Google Scholar 

  49. Hasheminejad N, Khodaiyan F, Safari M (2019) Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem 275:113–122

    CAS  PubMed  Google Scholar 

  50. Hatanaka J, Chikamori H, Sato H, Uchida S, Debari K, Onoue S, Yamada S (2010) Physicochemical and pharmacological characterization of alpha-tocopherol-loaded nano-emulsion system. Int J Pharm 396:188–193

    CAS  PubMed  Google Scholar 

  51. He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24:671–681

    CAS  PubMed  Google Scholar 

  52. Holst B, Williamson G (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol 19:73–82

    CAS  PubMed  Google Scholar 

  53. Hu B, Huang Q-r (2013) Biopolymer based nano-delivery systems for enhancing bioavailability of nutraceuticals. Chin J Polym Sci 31:1190–1203

    CAS  Google Scholar 

  54. Hu B, Liu X, Zhang C, Zeng X (2017) Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J Food Drug Anal 25:3–15

    CAS  PubMed  Google Scholar 

  55. Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:R50–R57

    CAS  PubMed  Google Scholar 

  56. Hudson D, Margaritis A (2014) Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit Rev Biotechnol 34:161–179

    CAS  PubMed  Google Scholar 

  57. Israeli-Lev G, Livney YD (2014) Self-assembly of hydrophobin and its co-assembly with hydrophobic nutraceuticals in aqueous solutions: towards application as delivery systems. Food Hydrocoll 35:28–35

    CAS  Google Scholar 

  58. Israeli-Lev G, Pitchkhadze M, Nevo S, Fahoum L, Meyron-Holtz E, Livney YD (2017) Harnessing proteins to control crystal size and morphology, for improved delivery performance of hydrophobic bioactives, using genistein as a model. Food Hydrocoll 63:97–107

    CAS  Google Scholar 

  59. Jain AK, Thanki K, Jain S (2014) Novel self-nanoemulsifying formulation of quercetin: implications of pro-oxidant activity on the anticancer efficacy. Nanomedicine 10:e959–e969

    Google Scholar 

  60. Jain K, Mehra NK, Jain NK (2015) Nanotechnology in drug delivery: safety and toxicity issues. Curr Pharm Des 21:4252–4261

    CAS  PubMed  Google Scholar 

  61. Jain A, Sharma G, Ghoshal G, Kesharwani P, Singh B, Shivhare US, Katare OP (2018) Lycopene loaded whey protein isolate nanoparticles: an innovative endeavor for enhanced bioavailability of lycopene and anti-cancer activity. Int J Pharm 546:97–105

    CAS  PubMed  Google Scholar 

  62. Jin SE, Bae JW, Hong S (2010) Multiscale observation of biological interactions of nanocarriers: from nano to macro. Microsc Res Tech 73:813–823

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones OG, Decker EA, Mcclements DJ (2010) Comparison of protein–polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation. J Colloid Interface Sci 344:21–29

    CAS  PubMed  Google Scholar 

  64. Joye IJ, Mcclements DJ (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci 19:417–427

    CAS  Google Scholar 

  65. Joye IJ, Davidov-Pardo G, McClements DJ (2014) Nanotechnology for increased micronutrient bioavailability. Trends Food Sci Technol 40:168–182

    CAS  Google Scholar 

  66. Kalra EK (2003) Nutraceutical-definition and introduction. AAPS PharmSciTech 5:27–28

    Google Scholar 

  67. Karimi N, Ghanbarzadeh B, Hamishehkar H, Mehramuz B, Kafil HS (2018) Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). Colloid Interf Sci Commun 22:18–24

    CAS  Google Scholar 

  68. Katouzian I, Faridi Esfanjani A, Jafari SM, Akhavan S (2017) Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci Technol 68:14–25

    CAS  Google Scholar 

  69. Khorasani S, Danaei M, Mozafari MR (2018) Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci Technol 79:106–115

    CAS  Google Scholar 

  70. Kim HY, Park SS, Lim ST (2015) Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B: Biointerfaces 126:607–620

    CAS  PubMed  Google Scholar 

  71. Leong TSH, Wooster TJ, Kentish SE, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16:721–727

    CAS  PubMed  Google Scholar 

  72. Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z (2012) Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomedicine 7:5995–6002

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Z, Jiang H, Xu C, Gu L (2015) A review: using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll 43:153–164

    CAS  Google Scholar 

  74. Liandong H, Yanhong J, Feng N, Zheng J, Xun Y, Kuiliang J (2012) Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J Agric Food Chem 60:7137–7141

    Google Scholar 

  75. Liang J, Yan H, Wang X, Zhou Y, Gao X, Puligundla P, Wan X (2017) Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem 231:19–24

    CAS  PubMed  Google Scholar 

  76. Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    CAS  PubMed  Google Scholar 

  77. Lin Y et al (2018) Formulation and characterization of chitosan hydrochloride and carboxymethyl chitosan encapsulated quercetin nanoparticles for controlled applications in foods system and simulated gastrointestinal condition. Food Hydrocoll 84:450–457

    Google Scholar 

  78. Linhan Z, Hayes DG, Guoxun C, Qixin Z (2013) Transparent dispersions of milk-fat-based nanostructured lipid carriers for delivery of β-carotene. J Agric Food Chem 61:9435–9443

    Google Scholar 

  79. Liu GY, Wang JM, Xia Q (2012) Application of nanostructured lipid carrier in food for the improved bioavailability. Eur Food Res Technol 234:391–398

    CAS  Google Scholar 

  80. Livney YD (2008) In: Garti N (ed) Delivery and controlled release of bioactives in foods and nutraceuticals, 1st edn. Woodhead Publishing, UK

    Google Scholar 

  81. Livney YD (2015) Nanostructured delivery systems in food: latest developments and potential future directions. Curr Opin Food Sci 3:125–135

    Google Scholar 

  82. Lu CC, Yen GC (2015) Antioxidative and anti-inflammatory activity of functional foods. Curr Opin Food Sci 2:1–8

    Google Scholar 

  83. Lu M, Yong C, Ho CT, Huang Q (2016) Organogel-derived capsaicin nanoemulsion has improved bioaccessibility and reduced gastric mucosa irritation. J Agric Food Chem 64:4735–4741

    CAS  PubMed  Google Scholar 

  84. Lu M, Ho CT, Huang Q (2017) Improving quercetin dissolution and bioaccessibility with reduced crystallite sizes through media milling technique. J Funct Foods 37:138–146

    CAS  Google Scholar 

  85. Luykx DMAM, Peters RJB, van Ruth SM, Bouwmeester H (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56:8231–8247

    CAS  PubMed  Google Scholar 

  86. Marcone MF, Wang S, Albabish W, Nie S, Somnarain D, Hill A (2013) Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res Int 51:729–747

    CAS  Google Scholar 

  87. Markman G, Livney YD (2012) Maillard-conjugate based core–shell co-assemblies for nanoencapsulation of hydrophobic nutraceuticals in clear beverages. Food Funct 3:262–270

    CAS  PubMed  Google Scholar 

  88. Mcclements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297–2316

    CAS  Google Scholar 

  89. Mcclements DJ (2012) Nanoemulsions microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729

    CAS  Google Scholar 

  90. Mcclements DJ (2013) Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Ther Deliv 4:841–857

    CAS  PubMed  Google Scholar 

  91. Mcclements DJ (2015) Nanoscale nutrient delivery systems for food applications: improving bioactive dispersibility, stability, and bioavailability. J Food Sci 80:N1602–N1611

    CAS  PubMed  Google Scholar 

  92. Mcclements J, Mcclements DJ (2016) Standardization of nanoparticle characterization: methods for testing properties, stability, and functionality of edible nanoparticles. C R C Criticl Rev Food Technol 56:1334–1362

    CAS  Google Scholar 

  93. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330

    CAS  PubMed  Google Scholar 

  94. Mineart KP, Kelley EG, Nagao M, Prabhu VM (2017) Processing–structure relationships of poly(ethylene glycol)-modified liposomes. Soft Matter 13:5228–5232

    CAS  PubMed  Google Scholar 

  95. Mozafari MR, Reed CJ, Rostron C (2007) Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Pharmazie 62:205–209

    CAS  PubMed  Google Scholar 

  96. Nazemiyeh E, Eskandani M, Sheikhloie H, Nazemiyeh H (2016) Formulation and physicochemical characterization of lycopene-loaded solid lipid nanoparticles. Adv Pharm Bull 6:235–241

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Nazir M, Arif S, Khan RS, Nazir W, Khalid N, Maqsood S (2019) Opportunities and challenges for functional and medicinal beverages: current and future trends. Trends Food Sci Technol 88:513–526

    CAS  Google Scholar 

  98. Neda N, Hadi V, Parvin ZM (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5:305–313

    Google Scholar 

  99. Nihei T et al (2016) Development of a novel nanoparticle formulation of thymoquinone with a cold wet-milling system and its pharmacokinetic analysis. Int J Pharm 511:455–461

    CAS  PubMed  Google Scholar 

  100. Nino T, Myriam LF, Monika G, Jörg H, Jochen W (2012) Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Food Funct 3:290–301

    Google Scholar 

  101. Nunes S, Madureira AR, Campos D, Sarmento B, Gomes AM, Pintado M, Reis F (2015) Solid lipid nanoparticles as oral delivery systems of phenolic compounds: overcoming pharmacokinetic limitations for nutraceutical applications. C R C Criticl Rev Food Technol 57:1863–1873

    Google Scholar 

  102. Onoue S et al (2015) Self-nanoemulsifying particles of coenzyme Q 10 with improved nutraceutical potential. Pharmanutrition 3:153–159

    CAS  Google Scholar 

  103. Pan K, Chen H, Baek SJ, Zhong Q (2018) Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chem 246:82–89

    CAS  PubMed  Google Scholar 

  104. Pangeni R, Kang S-W, Oak M, Park EY, Park JW (2017) Oral delivery of quercetin in oil-in-water nanoemulsion: in vitro characterization and in vivo anti-obesity efficacy in mice. J Funct Foods 38:571–581

    CAS  Google Scholar 

  105. Papageorgiou F, Pippa N, Naziris N, Demetzos C (2018) Physicochemical study of the protein-liposome interactions: influence of liposome composition and concentration on protein binding. J Liposome Res. https://doi.org/10.1080/08982104.2018.1468774

    PubMed  Google Scholar 

  106. Pathakoti K, Manubolu M, Hwang H-M (2017) Nanostructures: current uses and future applications in food science. J Food Drug Anal 25:245–253

    CAS  PubMed  Google Scholar 

  107. Penalva R, Esparza I, Agüeros M, Gonzalez-Navarro CJ, Gonzalez-Ferrero C, Irache JM (2015) Casein nanoparticles as carriers for the oral delivery of folic acid. Food Hydrocoll 44:399–406

    CAS  Google Scholar 

  108. Penalva R, González-Navarro CJ, Gamazo C, Esparza I, Irache JM (2017) Zein nanoparticles for oral delivery of quercetin: pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine 13:103–110

    CAS  PubMed  Google Scholar 

  109. Perazzo A, Preziosi V, Guido S (2015) Phase inversion emulsification: Current understanding and applications. Adv Colloid Interf Sci 222:581–599

    CAS  Google Scholar 

  110. Qasim C et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258

    Google Scholar 

  111. Rabea P, Sanjula B, Javed A, Alka A, Sayeed A (2015) Stability studies of silymarin nanoemulsion containing Tween 80 as a surfactant. J Pharm Bioallied Sci 7:321–324

    Google Scholar 

  112. Rajput R, Wairkar S, Gaud R (2018) Nutraceuticals for better management of osteoporosis: an overview. J Funct Foods 47:480–490

    CAS  Google Scholar 

  113. Ren D, Qi J, Xie A, Jia M, Yang X, Xiao H (2017) Encapsulation in lysozyme/ A. sphaerocephala Krasch polysaccharide nanoparticles increases stability and bioefficacy of curcumin. J Funct Foods 38:100–109

    CAS  Google Scholar 

  114. Ron N, Zimet P, Bargarum J, Livney YD (2010) Beta-lactoglobulin–polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int Dairy J 20:686–693

    CAS  Google Scholar 

  115. Sachdeva AK, Misra S, Pal Kaur I, Chopra K (2015) Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: behavioral and biochemical evidence. Eur J Pharmacol 747:132–140

    CAS  PubMed  Google Scholar 

  116. Sangsen Y, Wiwattanawongsa K, Likhitwitayawuid K, Sritularak B, Wiwattanapatapee R (2015) Modification of oral absorption of oxyresveratrol using lipid based nanoparticles. Colloids Surf B: Biointerfaces 131:182–190

    CAS  PubMed  Google Scholar 

  117. Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2019) A practical guide for designing effective nutraceutical combinations in the form of foods, beverages, and dietary supplements against chronic degenerative diseases. Trends Food Sci Technol 88:179–193

    Google Scholar 

  118. Satalkar P, Elger BS, Hunziker P, Shaw D (2016) Challenges of clinical translation in nanomedicine: a qualitative study. Nanomed Nanotechnol Biol Med 12:893–900

    CAS  Google Scholar 

  119. Scicchitano P et al (2014) Nutraceuticals and dyslipidaemia: beyond the common therapeutics. J Funct Foods 6:11–32

    CAS  Google Scholar 

  120. Shade CW (2016) Liposomes as advanced delivery systems for nutraceuticals. Integr Med 15:33–36

    Google Scholar 

  121. Shen P, Zhang R, McClements DJ, Park Y (2019) Nanoemulsion-based delivery systems for testing nutraceutical efficacy using Caenorhabditis elegans: demonstration of curcumin bioaccumulation and body-fat reduction. Food Res Int 120:157–166

    CAS  PubMed  Google Scholar 

  122. Shin GH, Kim JT, Park HJ (2015) Recent developments in nanoformulations of lipophilic functional foods. Trends Food Sci Technol 46:144–157

    CAS  Google Scholar 

  123. Shishir MRI, Xie L, Sun C, Zheng X, Chen W (2018) Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 78:34–60

    CAS  Google Scholar 

  124. Shpigelman A, Shoham Y, Israeli-Lev G, Livney YD (2014) β-Lactoglobulin–naringenin complexes: nano-vehicles for the delivery of a hydrophobic nutraceutical. Food Hydrocoll 40:214–224

    CAS  Google Scholar 

  125. Siddiqui IA et al (2014) Excellent anti-proliferative and pro-apoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine 10:1619–1626

    CAS  PubMed  Google Scholar 

  126. Silva HD (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867

    CAS  Google Scholar 

  127. Singh B, Singh JP, Kaur A, Singh N (2017) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16

    CAS  PubMed  Google Scholar 

  128. Singh MK, Pooja D, Ravuri HG, Gunukula A, Kulhari H, Sistla R (2018) Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability. Phytomedicine 40:48–54

    CAS  PubMed  Google Scholar 

  129. Solans C, Solé I (2012) Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 17:246–254

    CAS  Google Scholar 

  130. Solè I, Maestro A, Gonzalez C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir Acs J Surf Colloids 22:8326–8332

    Google Scholar 

  131. Soleimanian Y, Goli SAH, Varshosaz J, Maestrelli F (2018) Propolis wax nanostructured lipid carrier for delivery of β sitosterol: effect of formulation variables on physicochemical properties. Food Chem 13:112–117

    Google Scholar 

  132. Srinivas PR, Philbert M, Vu TQ, Huang Q, Kokini JL, Saltos E, Chen H, Peterson CM, Friedl KE, McDade-Ngutter C, Hubbard V, Starke-Reed P, Miller N, Betz JM, Dwyer J, Milner J, Ross SA (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140:119–124

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun B, Yeo Y (2012) Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Curr Opin Solid State Mater Sci 16:295–301

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innovative Food Sci Emerg Technol 19:29–43

    CAS  Google Scholar 

  135. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2017) Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze–thawing. J Food Sci Technol 54:3132–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tan C, Xie J, Zhang X, Cai J, Xia S (2016) Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll 57:236–245

    CAS  Google Scholar 

  137. Tavakoli H, Hosseini O, Jafari SM, Katouzian I (2018) Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. J Agric Food Chem 66:9231–9240

    CAS  PubMed  Google Scholar 

  138. Ting Y, Jiang Y, Ho CT, Huang Q (2014) Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 7:112–128

    CAS  Google Scholar 

  139. Uner M (2006) Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie Die 61:375–386

    CAS  Google Scholar 

  140. Wang L, Zhang Y (2017) Eugenol nanoemulsion stabilized with zein and sodium caseinate by self-assembly. J Agric Food Chem 65:2990–2998

    CAS  PubMed  Google Scholar 

  141. Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q (2008) Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 108:419–424

    CAS  PubMed  Google Scholar 

  142. Wang L, Du J, Zhou Y, Wang Y (2017a) Safety of nanosuspensions in drug delivery. Nanomedicine 13:455–469

    CAS  PubMed  Google Scholar 

  143. Wang ST, Chou CT, Su NW (2017b) A food-grade self-nanoemulsifying delivery system for enhancing oral bioavailability of ellagic acid. J Funct Foods 34:207–215

    CAS  Google Scholar 

  144. Weilin L, Jianhua L, Wei L, Ti L, Chengmei L (2013) Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate-chitosan-coated nanoliposomes. J Agric Food Chem 61:4133–4144

    Google Scholar 

  145. Weiss J, Decker EA, Mcclements DJ, Kristbergsson K, Helgason T, Awad T (2008) Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys 3:146–154

    Google Scholar 

  146. Xiong S et al (2019) Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J Pharm Sci. https://doi.org/10.1016/j.ajps.2019.04.003

  147. Xue J, Zhong Q (2014) Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin. J Agric Food Chem 62:9900–9907

    CAS  PubMed  Google Scholar 

  148. Yang N, Sampathkumar K, Loo SCJ (2017) Recent advances in complementary and replacement therapy with nutraceuticals in combating gastrointestinal illnesses. Clin Nutr 36:968–979

    CAS  PubMed  Google Scholar 

  149. Yu H, Huang Q (2012) Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 60:5373–5379

    CAS  PubMed  Google Scholar 

  150. Zagury Y, Chen S, Edelman R, Karnieli E, Livney YD (2019) β-Lactoglobulin delivery system for enhancing EGCG biological efficacy in HFD obesity mice model. J Funct Foods 59:362–370

    CAS  Google Scholar 

  151. Zhang Z, Zhang R, Mcclements DJ (2016) Encapsulation of β-carotene in alginate-based hydrogel beads: impact on physicochemical stability and bioaccessibility. Food Hydrocoll 61:1–10

    Google Scholar 

  152. Zhang Y, Zhou F, Zhao M, Lin L, Ning Z, Sun B (2018) Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability. Food Hydrocoll 74:62–71

    CAS  Google Scholar 

  153. Zhang L, Zhang F, Fan Z, Liu B, Liu C, Meng X (2019) DHA and EPA nanoemulsions prepared by the low-energy emulsification method: Process factors influencing droplet size and physicochemical stability. Food Res Int 121:359–366

    CAS  PubMed  Google Scholar 

  154. Zimet P, Livney YD (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll 23:1120–1126

    CAS  Google Scholar 

  155. Zou L et al (2014) Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J Agric Food Chem 62:934–941

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the fund of the Top Young Talents Program of Hebei Province, the Scientific Research Project of Hebei Provincial High School (No. ZD2016136), the Hebei Provincial Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 201810075086) and Key Research and Development Plan of Hebei Province (No. 19272701D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liandong Hu.

Ethics declarations

This research did not include any human subjects and animal experiments.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Hu, L. Nanoscale Delivery System for Nutraceuticals: Preparation, Application, Characterization, Safety, and Future Trends. Food Eng Rev 12, 14–31 (2020). https://doi.org/10.1007/s12393-019-09208-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-019-09208-w

Keywords

Navigation