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Abstract The development of bio-based nanostructures

as nanocarriers of bioactive compounds to specific body

sites has been presented as a hot topic in food, pharma-

ceutical and nanotechnology fields. Food and pharmaceu-

tical industries seek to explore the huge potential of these

nanostructures, once they can be entirely composed of

biocompatible and non-toxic materials. At the same time,

they allow the incorporation of lipophilic and hydrophilic

bioactive compounds protecting them against degradation,

maintaining its active and functional performance. Never-

theless, the physicochemical properties of such structures

(e.g., size and charge) could change significantly their

behavior in the gastrointestinal (GI) tract. The main chal-

lenges in the development of these nanostructures are the

proper characterization and understanding of the processes

occurring at their surface, when in contact with living

systems. This is crucial to understand their delivery and

absorption behavior as well as to recognize potential

toxicological effects. This review will provide an insight

into the recent innovations and challenges in the field of

delivery via GI tract using bio-based nanostructures. Also,

an overview of the approaches followed to ensure an ef-

fective deliver (e.g., avoiding physiological barriers) and to

enhance stability and absorptive intestinal uptake of

bioactive compounds will be provided. Information about

nanostructures’ potential toxicity and a concise description

of the in vitro and in vivo toxicity studies will also be

given.
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Introduction

Food industry is constantly looking for novel technologies

to improve the nutritional value, taste, flavor, shelf life and

food safety of their food products. However, addition of

micronutrients and bioactive compounds to food products

is a major technological challenge. Many of these bioactive

ingredients are chemically and physically vulnerable to

production conditions and to digestion process. These may

lead to detrimental effects on food properties, particularly

changing food sensory properties and limiting bioactive

compounds efficiency (i.e., bioaccessibility and bioavail-

ability). In fact, a considerable number of bioactive com-

pounds showed irrelevant or unsatisfactory therapeutic

effects when orally administered in a free state once they

were rapidly degraded losing their bioactivity [47].
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In recent years, nanotechnology has become an answer

to many of these problems, as it offers the ability to de-

velop delivery structures (at submicron/subcellular size)

for bioactive compounds’ (e.g., vitamins and antioxidants).

This enables protecting bioactive compounds against

degradation and controlling delivery at specific sites in the

body [169].

Gastrointestinal (GI) tract is a particularly attractive

targeting site due to its large surface area, in addition to its

high potential to absorb (e.g., nutrients, bioactive com-

pounds) and deliver it through the bloodstream [160]. One

of the advantages of site-specific delivery to the GI tract

will likely be for treatment of local conditions of the gut

since there is a direct contact with the material being

ingested. Such gut health conditions includes chronic in-

flammatory diseases (e.g., Crohn’s disease and ulcerative

colitis), gastric and duodenal ulcers, GI infections and

gastric and colon cancers [127]. However, GI tract delivery

of bioactive ingredients is a great challenge owing to pe-

culiar physiological barriers and physicochemical proper-

ties, such as metabolism and gastrointestinal instability. An

ideal GI tract delivery nanostructure system should be ca-

pable of (1) maintaining its integrity until it reaches the site

of absorption, (2) attaching itself to the GI mucosa through

specific interactions, releasing the bioactive compound at

the target absorption site, and (3) holding inside the GI

tract independently of its environmental conditions [53].

Each one of these issues is of utmost importance for an

efficient bioactive compound delivery strategy.

Recent advances in nanotechnology-based delivery

systems showed potential for achieving these goals. Many

of the polymeric materials used in the development of

nanostructures for bioactive compounds delivery are nat-

ural, non-toxic, biocompatible and biodegradable such as

proteins, polysaccharides and lipids [9, 46]. With the de-

velopment of novel technologies, including permeability

enhancers, it is expected that the number of bioactive

compounds safely and efficiently delivered into the GI tract

mucosa will increase.

At the same time, it is noteworthy that materials ma-

nipulation at the nanoscale can lead to the formation of

novel structures with potential toxic characteristics. Their

dimension allows penetrating biological tissues, which

could cause the disruption of their normal function or cell

death. Examples of toxic effects include tissue inflamma-

tion and modification of cellular redox balance [6]. Current

knowledge on the toxicity of macro- and microstructures

may not be reliable in predicting toxic forms of nanos-

tructures, and thus further studies to evaluate ‘‘nan-

otoxicity’’ are mandatory.

The present review will focus in the current research on

bio-based nanostructures for bioactive compounds delivery

that could improve GI tract interactions and absorption.

The review will be divided in five main sections:

1. An overview of the main challenges and characteristics

of the GI system and how those may influence the

passage and integrity of nanostructures will be pre-

sented. In addition, the potential transport mechanisms

of these nanostructures once they reach the intestine

will be also discussed;

2. The bio-based nanostructures that are currently being

developed and their main physicochemical character-

istics will also be highlighted. Each different nanos-

tructure has been further subdivided according to its

material, structural design and function. Consequently,

strategies to improve these nanostructures in order to

fulfill their primary function of transporting bioactive

compounds during transit and absorption processes in

the GI system will be addressed;

3. The separation, purification and characterization tech-

niques of bio-based nanostructures following digestion

and absorptionwill be highlighted. These techniques can

be of great help for researchers providing a new insight

on the behavior and integrity of developed nanostruc-

tures during their passage through the GI tract;

4. A thorough understanding of the interactions and

potential risks of bio-based nanostructures with

biological systems (e.g., cells of the immune system)

using in vitro and in vivo models will be also

addressed;

5. Lastly, a brief section on regulation will mention the

problem of missing regulatory definitions and global

consistency concerning nanostructures.

Delivery Challenges in GI Tract

Overall, the main GI tract function is to digest (through a

dissolving and breaking down process) food into molecular

forms that can be absorbed, i.e., that are able to cross the

intestinal epithelium.

During the passage through the GI tract, nanostructures

find several physiological and morphological barriers (e.g.,

enzymes present in the gut lumen and in brush border

membrane, the mucus layer and epithelial cell lining) that

play a key role in the bioactive compounds delivery

(Fig. 1) [47]. Also, at the nanometer scale, the biological

fate of the delivery systems and bioactive compounds in-

corporated within may be altered [104]. In contrast to

microparticles that are too large to pass through epithelium

and must release the bioactive compounds in the GI tract,

nanostructures can be taken up and cross the intestinal

barrier [31].
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The uptake of nanostructures in the GI tract and the

consequent bioactive compounds delivery depends on dif-

fusion and accessibility through mucus, initial contact with

the gut epithelium and various uptake and translocation

processes [13, 117].

GI Barriers

The GI system comprises the GI tract (mouth, pharynx,

esophagus, stomach, small intestine and large intestine)

and accessory organs (salivary glands, liver, gallbladder

and pancreas) that secrete substances into the GI tract via

connecting ducts [166].

Immediately after the ingestion, nanostructures are

mixed with saliva being influenced by digestive enzymes,

pH, ionic strength and temperature changes. Therefore,

even at this early stage of digestion, the initial size and

interfacial characteristics of bio-based nanostructures can

be changed.

After reaching the stomach, ingested nanostructures are

mixed with enzymes such as gastric lipases that initiate

lipid digestion and proteases that initiate protein digestion.

The nanostructures are exposed to a highly acidic medium

(pH 1–3) and to a peristalsis process. This process consists

in an advancing walls contractile wave of a flexible conduit

forcing their contents to move forward [77]. At this stage,

original interfacial characteristics (e.g., charge and thick-

ness) of ingested nanostructures may be changed, as well as

their size (i.e., may no longer be at nanometric scale) due to

pH, ionic composition changes and digestive enzymes

[104].

Then, ingested structures move to the small intestine,

where most of absorption occurs. At this stage, the

nanostructures are mixed with bile salts, phospholipids,

pancreatin, colipase and bicarbonate, and mixture pH in-

creases, being almost neutral. The digestive enzymes pre-

sent may hydrolyze the components that constitute the

nanostructures (e.g., pancreatic lipase hydrolyzes triacyl-

glycerols into monoacylglycerols and free fatty acids, and

proteases hydrolyze proteins into peptides and amino

acids). Within the small intestine, besides the digestion

process, other phenomena can occur (e.g., particle aggre-

gation or competitive adsorption process) resulting in

changes in particle size and interfacial characteristics of

nanostructures (Fig. 1) [127].

After digestion, the small molecules produced move

from the lumen of the GI tract across a layer of epithelial

cells into blood or lymph [166]. The small intestine is di-

vided into three segments, i.e., duodenum, jejunum and

ileum, designed to maximize absorption. Human intestinal

epithelium is composed of villi that increase the total ab-

sorptive surface area to about 300–400 m2 [47]. Villi are

covered by enterocytes (absorptive) and goblet cells (mu-

cus secreting), which are interspersed with follicle-associ-

ated epithelium (FAE). FAE is the interface between the

luminal environment and the lymphoid tissue associated to

the gut composing Peyer’s patches [124]. These lymphoid

regions are covered with M cells which play a significant

role in absorption of nanostructures and bioactive com-

pounds, since they are relatively less protected by mucus

and have a high transcytotic capacity [124]. The mucus

layers, which are mainly composed of gel-forming mucins

(glycoproteins), are considered to be significant barriers to

nanostructures penetration [82]. Mucus is continuously

secreted to protect epithelial surface against pathogens by

rapidly removing foreign particles from the GI tract and to

Fig. 1 Potential physiological

and physicochemical changes of

nanostructures within the

digestive tract from

consumption stage to body

elimination. Adapted from

Szakal et al. [154]
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lubricate the epithelium as material passes through.

Therefore, nanostructures residence time decreases being

unable to penetrate the mucus layer [47].

In addition to the GI mucus layer, the microbiota within

the gut can also play an important role on the interaction

with nanostructures. GI microbiota is responsible for a

series of activities such as protection against potential

pathogens, digestion of polysaccharides (e.g., chitosan and

pectins), enzymatic hydrolysis, biosynthesis of vitamins (K

and B), modulation of immune system and regulation of fat

storage [10, 78]. Adherence of microbiota to gut wall can

result in biofilm formation due to exopolymers secretion

and subsequent gut protection from contact with nanos-

tructures [113].

Transport Mechanisms

GI tract barriers, in particular intestinal epithelium, highly

limit absorption and consequent efficient delivery of

nanostructures (i.e., entering bloodstream). Intestinal ep-

ithelium acts as a selective barrier that tightly mediates

transport from intestinal lumen into the bloodstream [161].

There are two main transport mechanisms of biomolecules

across intestinal epithelium: (1) between cells via tight

junctions (TJs)—paracellular route and (2) through in-

testinal membrane cells—transcellular route. Transport by

paracellular route is mainly passive, whereas transcellular

pathway includes passive diffusion, active carrier-mediated

and endocytosis transport mechanisms (Fig. 2) [92].

Each pathway will depend on absorbing molecule phy-

sicochemical characteristics (e.g., size, charge and inter-

facial chemistry), physical (e.g., TJs and lipid composition)

and biochemical barriers (e.g., presence of enzymes, efflux

and influx transporters) of cell membrane, which are able

to metabolize or expel the biomolecules from the cell

[160]. In the scope of studying transport mechanisms of

nanostructures, two types of intestinal cells are mainly

considered: enterocytes and M cells, which are the primary

intestinal cells for the transport of a wide range of nanos-

tructures [31, 61]. It is probable that both paracellular and

transcellular routes contribute to the absorption of a single

biomolecule or of more complex systems, i.e., bio-based

nanostructures [57, 176].

In the literature, it is possible to find several research

reports where bio-based nanostructures were able to cross

the intestinal barrier via paracellular transport mechanism

(Fig. 2), e.g., glyceride-based colloidal nanosystems, as

delivery system for doxorubicin [76], nanohydrogel as

carrier of salmon calcitonin [163], nanoparticles self-

assembled by chitosan and PGA for delivery of tea cate-

chins [156].

On the other hand, bio-based nanostructures can be

absorbed by simple transcellular mechanism (passive

transport) or by active carrier-mediated transport (Fig. 2).

Certain nanostructures can also enter the cell through en-

docytosis (phagocytosis or pinocytosis) [74]. Guri et al.

[58] showed that curcumin-loaded solid lipid nanoparticles

were able to rapidly permeate through Caco-2 cell mono-

layer using simple diffusion mechanism. Feng et al. [50]

demonstrated that clathrin-dependent endocytosis played

an important role in transcellular transport of chi-

tosan/carboxymethyl chitosan nanohydrogels carrying the

anticancer compound, doxorubicin hydrochloride. Inter-

nalization of nanostructures by pinocytosis includes

Fig. 2 Schematic representation of the different pathways for

intestinal epithelium transport: a Paracellular Transport (restricted/

limited to small hydrophilic molecules with molecular mass

\100–200 Daltons that can cross tight junctions of the epithelial cell

layer); Transcellular b carrier-mediated (carriers recognize target

molecules through membrane receptors and transport them across the

GI epithelium), c receptor-mediated (molecules act either as a

receptor-specific ligand for surface-attached receptors or as a receptor

for surface-attached ligands), d Endocytosis (particles are transported

through the cells by vesicular transport mechanism) and e M cell-

mediated transport (M cells, located within the epithelium of Peyer’s

patches, possess a high endocytosis capacity and could transport a

wide variety of nanomaterials)
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receptor-mediated endocytosis (RME) [136]. Teng et al.

[158] reported that curcumin transport using folic acid/soy

protein nanoparticles was enhanced. They assume that folic

acid could have targeted folate receptor protein, thus im-

proving curcumin REM transport. Other well-known re-

ceptor is lactoferrin (Lf) receptor, expressed on apical

surface of intestinal cells. Zhang et al. [180] studied the

absorption mechanism of gambogic acid-Lf nanoparticles

(GL-NPs), where Lf receptor seems to play an important

role in the GL-NPs transport through the membrane.

After providing an overview of GI tract challenges that

need to be addressed when encapsulating bioactive com-

pounds, the next section will describe how food-grade

nanostructures can be designed to meet these challenges.

Features of Bio-Based Nanostructures for GI Tract

Delivery

Effects of Nanostructures’ Physicochemical Properties

on Absorption

Absorption, metabolism, distribution and excretion pro-

cesses depend on nanostructures’ composition and physi-

cochemical properties such as size, shape, charge and

hydrophobicity. Nanostructures physicochemical charac-

teristics determine their fate once they have entered ep-

ithelium cell. They may be (1) digested by cellular

enzymes into their constituent parts which may be ab-

sorbed; (2) transported directly out of the cell, and into the

blood or lymph systems; or (3) accumulated within specific

locations in the cell [104].

Nanostructures particle size significantly affects their

absorption and biodistribution. It has been found that par-

ticle size can affect efficiency and pathway of cellular

uptake once it influences structure adhesion and interaction

with cells [98]. Nanostructures have shown to increase GI

uptake and the level of translocation to lymphatic organs,

when compared to microstructures [32]. For example,

biodegradable structures of different sizes were produced

using PLGA and bovine serum albumin as a model protein.

Nano- and microstructures uptake was evaluated in situ

with a rat intestinal loop model. Compared with larger

particle sizes, uptake efficacy of 100 nm particles by the

intestinal tissue was found to be 15- to 250-fold higher,

depending on the type and location of tissue collected.

Also, histological evaluation of tissue sections showed that

100 nm particles diffused through submucosal layers,

while microparticles were predominantly localized in ep-

ithelial layer tissue [32].

It has been demonstrated that cells can take up nanos-

tructures with various shapes including spheres, rods, tubes

and sheets. However, there is some controversy about the

influence of particle shape on nanostructures translocation.

Thus, efforts should be done to clarify this effect [63].

When comparing spherical and rod-like nanostructures

cellular uptake, it was found that spherical nanostructures

were more easily endocytosed by HeLa cells [21]. On the

other hand, Alemdaroglu et al. [5] investigated whether the

shape of micelle aggregates influences the internalization.

They observed that rod-like polymeric particles were taken

up 12 times more efficiently than their spherical counter-

parts, although they were composed with the same

constituents.

Nanostructures cellular uptake can be divided in two

steps: first, a binding step on the cell membrane and sec-

ond, an internalization step. Nanostructures’ binding to cell

membrane seems to be dependent on nanostructure surface

charge. However, there is not an agreement on the optimal

charge for translocation. Cationic nanostructures have been

shown to be absorbed more readily than anionic ones. The

interactions between anionic membrane and cationic

nanostructures facilitate their binding to cell membrane and

consequently their uptake. It has been shown that cationic

polymers such as chitosan can form nanostructures that

maintain a prolonged contact time with the intestinal layer.

This leads to a larger absorptive surface and subsequently,

enhanced absorption rates [95]. Contrarily, Patil et al. [118]

showed that nanostructures with the highest negative

charge values have the highest cellular uptake compared

with other formulations with less negative or positive

surface charge. The authors concluded that the high cel-

lular uptake of negatively charged nanostructures is related

firstly to the nanostructures non-specific adsorption to

cell membrane, and secondly, to nanostructures’ clusters

formation.

Particle absorption is also believed to depend on

nanostructure surface hydrophobicity. Although there is

not a very clear tendency, uptake of nanostructures pre-

pared from hydrophobic polymers seems to be higher than

that of structures with more hydrophilic surfaces [70].

Norris and Sinko [114] suggested that increasing hy-

drophobicity leads to an increase in permeability through

mucin, but also to a decrease in the translocation across the

cell interior, which has a more hydrophilic environment.

Bio-Based Nanostructures Delivery Systems

Multifunctional nanostructures using biomaterials with

distinctive architectures have been designed and evaluated

for bioactive compound delivery applications [68].

Biopolymer architecture, composition and stability are

important factors which will influence bioactive compound

delivery carriers’ effectiveness. Moreover, biopolymer

nanostructure dimensions change its functional attributes in

foods and GI tract. For instance, nanostructure architecture

Food Eng Rev (2015) 7:491–513 495
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influences physicochemical properties of foods (e.g., sta-

bility), encapsulation characteristics (e.g., loading and re-

lease), and behavior within the Gl tract (e.g., interaction

with the environment and degradation) [2]. Therefore, ap-

propriate nanostructures need to be designed rationally

according to specific applications and needs.

Most of the publications focus on the synthesis and

study of core–shell structures [23]. These structures are

obtained from polymers of different sizes and shapes and

can be functionalized with stimuli-responsive polymers

(e.g., proteins) [110]. The most common shape of food-

grade nanostructures suitable for encapsulation is spheroid

(Fig. 3). Nanoemulsions, for instance, tend to be ap-

proximately spherical, and may have a variety of internal

organization, such as homogeneous or dispersion struc-

tures, depending on the material and preparation method

used [68].

Multilayer nanostructured systems could also be pro-

duced with multiple layers of emulsifiers and/or polyelec-

trolytes by the layer-by-layer (LbL) technique (Fig. 3).

Additionally, hollow multilayered nanostructures can be

obtained using colloidal templates (e.g., polystyrene

nanoparticles). After LbL deposition procedure, the tem-

plate could be dissolved using an acid or a solvent. These

nanostructures can be applied as delivery systems of

bioactive compounds, being those compounds either

entrapped inside the core or adsorbed on the surface of

nanocapsule [15].

In this section, a selected group of bio-based nanos-

tructures (i.e., nanoemulsion, nanohydrogel and nanocap-

sules) that have been most commonly used in bioactive

compounds GI tract delivery applications are reviewed.

Nanoemulsions

Oil-in-water nanoemulsions are a mixture of two immis-

cible liquids, where a thin interfacial layer is created due to

the adsorption of the emulsifier molecules surrounding the

oil droplets. The emulsifier promotes the dispersion of the

oil phase in the continuous phase either using low-energy

or high-energy techniques [1, 146]. In water-in-oil na-

noemulsions, the oil is the continuous phase, where the

emulsifier surrounds the water droplets (disperse phase).

The emulsifiers can also be dispersed in the continuous

phase or in the dispersed phase, depending on their hy-

drophilic–lipophilic balance [75].

Due to the emulsifier ability to decrease the interfacial

tension between two immiscible liquids, emulsifiers play a

major role in the formation of the nanoemulsions, creating

an interfacial layer able to protect the oil droplets [146].

Thickening agents such as starch, flour and gums can also

be used to stabilize emulsions. These agents act by

�Nanoemulsionsmaterial:

-Core

NANOEMULSIONS NANOHYDROGELS NANOCAPSULES

Nanohydrogel Nanocapsule Mul�layered
Nanocapsule

: monoacylglycerols, 
triacylglycerols, waxes, mineral oils, oil-
soluble vitamins, nutraceu�cals
-Shell: Surfactant, phospholipids, 
proteins

�Main role/characteris�cs:

-Carrier of lipophilic molecules;
-Protec�on of sensi�ve molecules;
-Increased bioavailability

�Nanohydrogelsmaterial:

-Proteins (whey-proteins, gela�n)
-Polysaccharides (carrageenan, pec�n, 
dextran)

�Main role/characteris�cs:

-Carrier of hydrophobic and hydrophilic
molecules;
-Protec�on of chemically labile bioac�ve 
ingredients;
-Controlled release

�Main role/characteris�cs:

-Carrier of hydrophobic and hydrophilic
molecules;
-Protec�on of sensi�ve molecules;
-Controlled release

�Nanocapsulesmaterial:

-Core: polystyrene nanopar�cles, 
vitamins, carotenoids, nutraceu�cals
-Shell: protein (zein, casein), 
polysaccharides (chitosan, alginate, 
cellulose)

Mul�layered
Nanoemulsion

Nanoemulsion
Mul�layered
Nanohydrogel

LbL assembly
(biopolymers)

LbL assembly
(biopolymers)

LbL assembly
(biopolymers)

Fig. 3 Representative bio-based nanostructures for bioactive compounds gastrointestinal tract delivery, and their main characteristics [15, 68,

69, 71, 103, 110]
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increasing the viscosity of the medium, which helps sta-

bilizing the suspension of droplets of the dispersed phase

preventing them from moving around and coalescing [34].

Nanoemulsion normally presents a core–shell structure

and may be manufactured from a great variety of food-

grade ingredients (Fig. 3). For example, the core may be

formed from nonpolar components, including monoacyl-

glycerols, diacylglycerols, triacylglycerols, waxes, mineral

oils, oil-soluble vitamins and nutraceuticals [103]. The

shell is typically formed from one or more surface-active

components, including small molecule surfactants, phos-

pholipids, proteins (e.g., whey proteins) and polysaccha-

rides (e.g., chitosan) [135]. The materials that comprise the

core and shell may be more or less digestible within dif-

ferent regions of the human GI tract, which plays an im-

portant role in determining their biological fate.

Nanoemulsion technology can be used to encapsulate,

protect and deliver lipophilic bioactive compounds, such as

essential oils (e.g., x-3-rich oils), antioxidants (e.g., quer-

cetin), antimicrobials (e.g., thymol) and vitamins (e.g.,

vitamin A) [139]. Nevertheless, hydrophilic and am-

phiphilic bioactive compounds can also be incorporated

[11]. This technology allows improving the solubility and

bioavailability of these compounds, also preventing the

degradation against light and oxidation using only food-

grade ingredients, by simple process operations (Table 1).

By controlling the composition and structure of na-

noemulsions, it is possible to create different rheological

properties and release profiles in response to environmental

triggers [105].

The main challenges in nanoemulsion technology are: (1)

proper selection of the emulsifier, due to the limited number

of food-grade emulsifiers that can be used in its formation,

restricting the ability to create nanoemulsions with different

release characteristics; (2) their physical instability under

environmental stresses, such as freeze-thawing, pH, salt,

heating, dehydration and chilling; (3) limited control over

oxidation of the bioactive compounds due to the very thin

interfacial layer; and (4) ability to provide better protection

and stability for encapsulated bioactive compounds during

the GI passage (Table 1) [38, 105]. One strategy aimed at

overcoming these limitations is to create one or more layers

of a polyelectrolyte surrounding the nanoemulsion through

the LbL technique [59]. This strategy may offer potential

advantages due to: (1) the ability to control the order and

location of multiple polymer layers with nanoscale preci-

sion; (2) the ability to define the concentrations of incor-

porated materials simply by varying the number of

polyelectrolyte layers [153]; and (3) possibility to use a wide

range of polymers, which increase its potential application.

Biopolymers (such as proteins and polysaccharides) are of

high interest because of their unique characteristics:

naturally available, nontoxic and biocompatible. Conse-

quently, an exceptionally broad range of biopolymer com-

ponents, morphological characteristics, functional

responses, variety of interactions and versatility in assembly

approaches enhance the use of LbL technique [29]. LbL

technique consists in the deposition of polyelectrolytes on

charged surfaces due to strong electrostatic attractions be-

tween the surface and the charged polyelectrolytes, thus

building a ‘‘new’’ layer. This technique also allows that

further layers can be built by simple addition of oppositely

charged polyelectrolytes in solution, promoting the ad-

sorption of the polyelectrolytes on the top of the first layer.

Repetition of this adsorption steps leads to the formation of

multilayers (Fig. 3) [59]. The number of layers will be de-

fined by the final application of these systems [87, 122].

Charged nanoemulsions can be used as substrate, allowing

the development of a new system (i.e., multilayer na-

noemulsion) [105]. Salminen and Weiss [137] showed,

through the production of a whey protein–pectin multilayer

nanoemulsion, that it is possible to improve its stability to

different environmental stresses: salt (0–500 mMNaCl) and

heat (40–90 �C, 30 min). These authors demonstrated that

emulsions saturated with biopolymer complexes exhibited

good stability (no aggregation) to salt (up to 200 mM) and

heat (up to 90 �C) at pH 3.5–4.5. However, the biopolymer

complex layer adsorbed to the emulsion interface was not

able to prevent instability after freeze-thawing cycles

(-20 �C, 22 h). Li and McClements [86] built an alginate

layer on Tween 20 and b-lactoglobulin nanoemulsions. This

layer reduced lipid digestion inhibiting lipase access to the

lipid in the nanoemulsion.

The modification of nanoemulsion composition and

structural characteristics such as particle size, emulsifier

and oil and polymer type can change the digestion rate.

Therefore, the effects of these characteristics are being

widely studied [87, 122]. Li et al. [87] examined the in-

fluence of chitosan (intermediate layer), pectin and alginate

(outer layer) layers in the digestibility of the multilayer

system using an in vitro digestion model. They evaluated

the effect of composition and structure of the biopolymer

on the digestion rate, accessing the release of free fatty

acids from the nanoemulsions and multilayer nanoemul-

sions (first and second layer). Nanoemulsions were di-

gested between 30 and 40 min, which show that lipase

adsorbed to the nanoemulsions promotes the lipolysis of

triacylglycerols. For the multilayer nanoemulsions the di-

gestion rate was significantly slower, where only 40 % of

the lipids where digested after the same time (i.e., 40 min).

The authors hypothesized that biopolymers layers protect-

ed the lipid droplets restricting the access of the lipase to

triacylglycerols, retarding the lipolysis reaction and there-

fore delaying the lipid digestibility.
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Pinheiro et al. [122] studied the effect of different charged

emulsifiers—Tween 20 (non-ionic), sodium dodecyl sulfate

(anionic) and dodecyltrimethylammonium bromide (ca-

tionic)—in the behavior of curcumin nanoemulsions during

in vitro digestion. Nanoemulsions were produced by high-

pressure homogenization, and an in vitro digestion model

was used. All emulsifiers used formed stable nanoemulsions

within the nanometric scale. Nevertheless, during simulated

digestion, all nanoemulsions increased their sizes, being this

attributed to aggregation, coalescence or flocculation due to

the action of digestive enzymes, as well as to changes in pH

and ionic strength. The emulsions producedwith the cationic

emulsifier were the least stable. The positive charge of the

cationic emulsifier may have promoted the adsorption of

anionic lipase and anionic bile salts to the oil–water inter-

face. The emulsifier type had also impact in curcumin

bioavailability. Nanoemulsions stabilized with the non-ionic

emulsifier increased curcumin bioavailability during diges-

tion time, which can be due to the formation of digestion

products (ability to formmixedmicelles). On the other hand,

the use of cationic emulsifier allowed achieving only a very

low bioavailability during simulated intestinal conditions,

i.e., emulsions became unstable, leading to phase separation.

Nanohydrogels

Nanohydrogels are three-dimensional hydrophilic or am-

phiphilic biopolymer nanosized networks that can swell

and hold a large amount of water. However, they are pre-

vented from dissolving due to their chemically or

physically cross-linked structure [19] (Fig. 3). The swel-

ling ability is attributed to the presence of hydrophilic

moieties groups (e.g., hydroxyl, carboxyl, ethers, amines

and sulfates) in the polymers forming the nanohydrogel

structure, which is responsible for the soft and pliable

characteristic of such nanostructure [120].

Bio-based nanohydrogels can be prepared from several

polysaccharides (e.g., alginate, chitosan, pectin, pullulan

and dextran) and proteins (e.g., whey proteins and colla-

gen) with different techniques; being the most commonly

used method the gelation process [164]. Gelation is a

process that typically encompasses two stages: (1) partial

unfolding of the native structure leading to dissociation of

intramolecular bonds that can be induced by several envi-

ronmental conditions (e.g., temperature) and (2) formation

of new bonds, leading to a progressively larger em-

branchment of molecules. The continuous cross-linking

increased the size of the ramified polymer chains (in

nanometer range) decreasing their solubility, which results

in the formation of a gel structure [133].

Their reduced size enables a controlled release of

bioactive compounds and improved bioavailability of those

compounds with poor absorption rates. Moreover, they

specified delivery to the associated tissues, reducing the GI

mucosa irritation caused by continuous contact with some

compounds, and assured their stability in the GI tract [116].

In addition, nanohydrogels allow overcoming some draw-

backs inherent to other nanostructures (e.g., preparation

procedure and relatively low loading capacity). They can

be produced without the interference of the bioactive

compounds and designed to spontaneously load bioactive

molecules. Electrostatic, van der Waals and/or hydropho-

bic interactions between bioactive compounds and polymer

matrix, during gel folding process, lead to formation of

stable nanostructures’ [15]. Furthermore, these structures’

ability to produce a response (e.g., swelling) to environ-

mental stimuli (e.g., temperature, pH, ionic strength or

enzymatic conditions) makes them crucial systems to de-

liver bioactive compounds locally to specific sites and at a

particular time in the GI tract [91]. On the other hand, these

structures may present some limitations if produced by

physical gelation. Once nanohydrogels contain labile bonds

in polymer networks, they are susceptible to be disrupted

under physiological conditions in the GI tract [62].

It is possible to find in the literature different works

reporting protein nanohydrogel’s ability to incorporate and

release hydrophilic and lipophilic bioactive compounds

such as drugs, unsaturated fatty acids, vitamins, as well as

peptides [152]—see Table 1. Depending on bioactive

compound characteristics, it is possible to obtain different

release mechanisms during digestion process. Hydrophilic

compounds release from a protein matrix by diffusion,

whereas lipophilic compounds are released mainly by en-

zymatic degradation of the protein matrix in the GI tract

[170]. Examples of bioactive compounds efficiently in-

corporated into bio-based nanohydrogels, techniques used

in their encapsulation and their main limitations are sum-

marized in Table 1.

One of the challenges of these nanostructures is to de-

liver encapsulated components at the desired point (e.g.,

mouth, stomach, small intestine and colon) without being

destroyed. Therefore, it is important to design and

manufacture biopolymer nanohydrogels with specific

compositions, which can be able to resist to severe envi-

ronmental conditions, for example, resistance to gastric

fluids, if nanohydrogel is designed to deliver a bioactive

compound in the colon. Nanostructures composed by

peptides or proteins have a high level of GI degradation by

digestive enzymes [37]. In order to preserve functionality

and integrity, nanohydrogels must resist to the harsh gastric

conditions (i.e., low pH and presence of digestive en-

zymes). A major drawback of these biopolymeric nanos-

tructures is their tendency to decrease their interfacial

surface area leading to the formation of aggregates [155].

One of the strategies for preventing aggregation or de-

struction include nanohydrogels coated with foreign
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coating agents and/or tailoring particle surface charges to

create separation through electrostatic repulsion (Fig. 3).

LbL assembly of polyelectrolyte multilayers has been

demonstrated on various templates, from hard and planar to

rigid particles, and more recently, to soft and porous tem-

plates, such as thermoresponsive nanohydrogels [175]. The

possibility of assembling any charged polyelectrolytes on

nanohydrogels shows their potential exploitation as

bioactive compound storage, transport, target and con-

trolled delivery system. Tan et al. [155] demonstrated the

successful preparation of coated nanohydrogels with en-

capsulated drugs using the LbL approach. These authors

observed that the initial burst release behavior observed in

nanohydrogels was minimized and eliminated by the in-

troduction of several polyelectrolyte layers. Through this

LbL approach, the permeability of nanohydrogels was al-

tered with each additional layer. These authors also con-

cluded that swelling behavior of coated nanohydrogels

decreased with increasing polyelectrolytes layers resulting

in a slower release of bioactive compounds. The applica-

tion of polyelectrolyte layers also shows to be a successful

technique to turn nanostructures more stable under

physiological conditions [165]. Interaction between

biopolymers, such as polysaccharide protein, also allows

producing nanohydrogels more resistant to gastric fluids.

Chen and Subirade [18] developed a biopolymeric

nanohydrogel based on alginate–whey protein interactions

to be used as a vehicle for riboflavin. These authors ob-

served that alginate–whey protein isolate nanohydrogels

have the ability to delay the compound’s release in the

stomach and allow complete release in the small intestine.

Nanocapsules

The development of nanocapsules for the delivery of

bioactive compounds has been widely studied since the

1970s aiming at the development of nanostructures for oral

drug delivery [22, 129].

A great number of structures have been developed using

synthetic and/or natural polymers, where different

methodologies were used for their production (e.g., ionic

pre-gelation/coacervation, polymerization and dispersion

of preformed polymers) possibly influencing their main

properties [15].

Ionic pre-gelation/coacervation is based on the ability of

polyelectrolytes to cross-link in the presence of a counter-

ion (cationic or polyanionic) to form nanocapsules [15]

(see Table 1). Nanoparticles can also be directly synthe-

sized by the polymerization of monomers using various

polymerization techniques (such as emulsion and disper-

sion polymerization) [123]. In this method, the bioactive

compound is incorporated either by being dissolved in

the polymerization medium or by adsorption onto the

nanoparticles after the polymerization [151]. On the other

hand, nanoparticles could be prepared by dispersion of

preformed polymers through different techniques such as

self-assembly, nanoprecipitation, salting-out and using su-

percritical fluids [108, 130]. For example, the self-assem-

bly method involves the spontaneous formation of compact

and stable nanocapsules without the help of external

agents. Materials such as zein, chitosan and casein are

examples of polymers that can be used in this method [15]

(see Table 1).

In the last years, the main focus in the development of

nanocapsules has been the use of natural, biocompatible

and edible bio-based materials for their production. The use

of these materials brings a great number of challenges

concerning the production of nanostructures such as: dif-

ferent materials, molecular structure complexity and con-

trol of their properties (i.e., particle size, size distribution,

encapsulation efficiency and release behavior).

Two of the most studied bio-based materials for the

production of nanocapsules are chitosan and alginate, ei-

ther used as main materials or as ionic cross-linkers applied

after nanocapsule production. Das et al. [25] developed an

alginate–chitosan–pluronic composite for the delivery of

curcumin in cancer cells through ionotropic pre-gelation

followed by polycationic cross-linking—see Table 1.

In order to overcome the instability and fast release of

bioactive compounds under specific environmental condi-

tions, different methodologies have been used to tailor and

control their release (i.e., by diffusion and/or by matrix

degradation) from nanocapsules. Some of the possibilities

are as follows: cross-linking processes used in the formed

nanocapsules [115] and formation of a layer with other

material surrounding the nanocapsules [28].

Other main focus on the study of nanostructures delivery

is their bioavailability, where bioactive compounds solu-

bility, mass transfer rate and retention time in GI tract play

an important role in their successful use [1]. Some of the

methodologies pointed as possibilities to increase

bioavailability of nanocapsules are as follows: (1)

the formation of nanocapsules through the LbL technique

which allows the deposition of an outer layer on formed

nanocapsules (Fig. 3) according to the desired application

[15] and (2) the functionalization of the nanocapsules

surface for the control of cellular uptake [107].

Strategies for Enhancing Nanostructures Delivery

in GI—Absorption/Permeation Enhancers

Various strategies have been applied to enhance perme-

ation of bioactive compounds, such as (1) modification of

their surface or (2) the alternative approach where the

compounds are not chemically altered. Here the bioactive

compounds are combined with another targeting functional
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agent or with a specific formulation (e.g., micro/nanopar-

ticles), termed as absorption enhancers (AE) [8]. Therefore,

this section will be focused on the second approach, the

utilization of AE as a strategy to improve bioactive com-

pounds’ absorption.

AE, also termed as bioavailability enhancers, are func-

tional agents or formulations used to improve GI absorp-

tion of bioactive compounds by specifically facilitating

their membrane permeation [8]. In the last years, several

AE have been proposed; however their utility is often

limited by their restricted biological effect and toxicity.

Table 2 summarizes some approaches used to enhance

absorption of bioactive compounds. Among all approaches,

the use of chitosan as a AE has been extensively reviewed

[20, 89]. Moreover, plant origin compounds have been

stated as AE such as quercetin, curcumin, ginger and

niaziridin [73, 157]. Also sodium caprate has being used as

absorption-enhancing agent since it acts on TJs opening,

modulating paracellular transport of bioactive compounds

[184]. Krug et al. [80] demonstrated that caprate was able

to open the paracellular pathway of molecules up to

10 kDa, supporting the application of caprate as an effec-

tive AE.

One of the main advantages of utilizing AE for poorly

membrane-permeable compounds is the development of

non-injection formulations (i.e., oral route), which are

considered to be the most comfortable and convenient

route of administration. Moreover, from an economic point

of view, as AE will promote efficient systemic absorption,

the waste of costly compounds is likely to be reduced [7].

Although several AE have been successful used, a part

of them come with hurdles that limit their commercial use.

Table 2 Absorption enhancers used in nanostructured formulations to promote bioactive compounds intestinal absorption

Absorption enhancers Nanostructure materials Bioactive compound Outcome References

Chitosan Chitosan oligomers LMWH : LMWH intestinal absorption (via electrostatic

interactions); low toxicity

[181]

Chitosan/carboxymethyl

chitosan

DOX : DOX paracellular (by chelating Ca2?) and

transcellular (via active endocytosis) intestinal

transports

[51]

Lecithin Chitosan Melatonin : melatonin permeability [60]

Sodium taurocholate HPMC Granisetron : granisetron permeation (in vitro) than

granisetron alone; low cytotoxicity in vitro and

in vivo

[36]

CSKSSDYQC peptide Trimethyl chitosan

chloride

Insulin : insulin permeation; : insulin bioavailability

(1.5-fold higher when compared to non-

conjugated ones)

[66]

Lectin WGA and PLGA TP : TP absorption; : interaction with intestinal

membrane (1.8–4.2 fold compared with the

non-conjugated ones)

[178]

WGA Bufalin : adhesion of NPs to intestinal membrane; : oral

availability (2.7-fold improvement compared

to bufalin suspensions)

[93]

WGA, chitosan and

Poly(lactic acid)

b-galactosidase : interaction with intestinal membrane; : NPs

adhesion to intestinal mucosa for prolonged

periods ([6 h) (in vivo data)

[144]

Folic acid Soy protein Curcumin : cellular uptake (in vitro studies); no significant

toxicity

[159]

PLGA Paclitaxel : transport across intestinal membrane in vitro

(eightfold compared to free paclixatel);

membrane integrity not affect significantly

[131]

Vitamin-B12 Dextran Insulin ; blood glucose level (70–75 %) after insulin

loaded-Vitamin B12-NPs absorption (in vivo

studies)

[16]

Biotin Liposomes Insulin : insulin absorption (in vitro and ex vivo

studies); : bioavailability

[182]

b-cyclodextrin Nanosponge Paclitaxel : paclitaxel in plasma; : bioavailability (2.5-fold

higher than paclitaxel alone)

[162]

: increase, ; decrease, LMWH low-molecular-weight heparin, DOX doxorubicin hydrochloride, NPs nanoparticles, WGA wheat germ agglutinin,

PLGA poly(lactic-co-glycolic acid), HPMC hydroxypropyl methylcellulose and TP thymopentin
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For example, some AE have been demonstrated to cause

damage and irritation of intestinal mucosa [140]. Addi-

tionally, large-scale production is one of the main chal-

lenges for nanostructured AE production, mainly because it

is harder to maintain size and composition, while avoiding

agglomeration of these compounds during a scaling-up

process [73]. Despite the presented disadvantages, several

intestinal AE have registered progresses in terms of their

application, being a few already in clinical trials [8]. The

main barrier to the commercialization of AE seems to rely

on the demonstration of safety and improved biological

activity. Although this strategy may enable development of

bioactive compounds with specific biological activity, all

data indicate that AE will gradually become more broadly

accepted in food and medical markets.

Nevertheless, scarce information has been found re-

garding characterization of biopolymeric nanostructures

during the digestion process. Therefore, appropriate tech-

niques to characterize these nanostructures during the

passage through the GI tract in order to understand how

they can resist to harsh conditions and their behavior dur-

ing release of bioactive compounds to specific sites will be

highlighted.

Separation, Purification and Characterization of Bio-

Based Nanostructures Following Digestion

and Absorption

Regulation for the use of nanostructures in the food in-

dustry led to a long and hard path in order to determine

their safety for consumers. Despite the significant amount

of work developed in the last years, it is not obvious how

nanostructures behave after ingestion and digestion pro-

cesses and how they will change their characteristics/

properties after the absorption.

Several techniques and methodologies have been pre-

sented in the last years for the characterization of nanos-

tructures [e.g., dynamic light scattering, size exclusion

chromatography, confocal scanning light microscopy

(CLSM), scanning electron microscopy, transmission

electron microscopy (TEM)] being unanimous used for

virtually all types of nanostructures [90, 121]. While

characterization methodologies are established among

scientific community, separation and purification tech-

niques of nanostructures from foods, after the passage

through GI systems and in human fluids are not consensual.

Recently, the existing methods for separation, purifica-

tion and characterization of nanostructures in foods have

been summarized [12, 79, 90, 121, 179]. Also, research

projects were focused in development and validation of

screening methods for the determination of nanostructures

in food matrices [112].

It is known that nanostructures, besides food matrices,

also interact with gastric fluids, leading to a change of their

main characteristics. This change can happen due to the

interaction with proteins (e.g., changing their charge and

agglomeration state) [84] and pH values under GI condi-

tions (e.g., leading to agglomeration) [122]. Several

separation and purification methods have been explored in

the last years for the characterization of nanostructures

after ingestion, passage through GI systems and once in-

corporated in human fluids. Inorganic nanostructures (e.g.,

gold and silver) and others from synthetic materials have

been the most studied [4, 111]. However, few works de-

scribe methodologies and useful techniques for separation

and purification of bio-based nanostructures. Their unique

characteristics in terms of composition (e.g., polysaccha-

rides, proteins and lipids), shape (e.g., spherical or planar),

size (e.g., from 20 to 200 nm), charge (e.g., neutral, posi-

tive and negative) and degradability (e.g., acid or medium)

make them a challenge for analytical and chemistry sci-

ence. Thus, techniques and methodologies used should be

chosen based on their characteristics and behavior.

M-M et al. [126] used an online flow field flow frac-

tionation (FlFFF) with inductively coupled plasma mass

spectrometry (ICP-MS) for the determination of particle

size of selenium nanostructures (stabilized by pectin,

mixed alginate/pectin, ovalbumin and b-lactoglobulin)
after GI tract passage. Results showed good agreement of

particle size observed by FlFFF and the images obtained by

TEM. The stability of different kinds of polymeric micelles

(composed of polyethylene glycol (PEG), poly(lactic acid)

and Tween 80) was evaluated in human serum, using

fluorescence-based approach (Forster Resonance Energy

Transfer). Asymmetrical Flow Field Flow Fractionation

(AF4) was used for the separation of the micelles (further

characterized by light scattering) [106]. In other interesting

work, Lee et al. [84] evaluated chitosan nanostructures

integrity after GI tract passage and when in contact with a

Caco-2 cell monolayer. The disintegration degree of chi-

tosan nanostructures was determined by free chitosan

quantification (using fluorescein isothiocyanate (FITC)-la-

beled chitosan) separated through ultracentrifugation. At

the same time, nanostructure mean diameter and zeta po-

tential were determined. CLSM was used to visualize

chitosan nanostructures after their transport through Caco-2

cell monolayer allowing to understand the behavior of

these nanostructures in cells. David-Birman et al. [26]

evaluated the in vitro digestion of Lf-based nanostructures

with anionic low-methoxy pectin (LMP), high-methoxy

pectin (HMP), sodium alginate (ALG) and iota-car-

rageenan (CAR). The proteolysis products were charac-

terized by sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE). These authors observed the

structures’ integrity during gastric and duodenal digestion.
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They observed that these structures coated with HMP did

not protect Lf from gastric proteolysis once intact Lf band

was not detectable even after short digestion periods. The

same authors concluded that ALG extends Lf resistance to

proteolysis beyond that of LMP. Lf intact band was de-

tected even after 40 min of gastric digestion. The digestion

experiments revealed that Lf proteolysis leads to the for-

mation of peptides, with specific SDS-PAGE bands.

However, Lf-based nanostructures were relatively persis-

tent and even reached the duodenal experiments.

It is expected that in the next few years, new studies

exploring the detection and characterization of nanostruc-

tures under different environmental conditions will be

achieved. This will allow improved traceability and eval-

uation exposure of these nanostructures to human body.

Nanotoxicity Assessment in GI Tract

The production of nanostructured systems presents an in-

creasing risk of exposure to both nano-sized systems and

associate products at concentration levels that could exceed

those naturally present in the body. In some cases, nanos-

tructure parts could be retained in the body for a long-term

period due to incomplete excretion. Consequently, it may

disturb normal functions of organs or tissues inducing

metabolic toxicity, immunotoxicity or even genotoxicity

[127]. Thus, in order to minimize and even prevent possible

health risks, potential toxicity of these nanostructures has to

be assessed in depth before their use in oral administration.

The interactions of engineered nanostructures with

biological systems and the consequent toxicity are due to

materials themselves and also to their nano-size-related

physicochemical characteristics (e.g., size, shape, aggre-

gation, charge and surface properties). For instance, Loh

et al. [94] reported that in vitro cytotoxicity of chitosan

nanostructures against Caco-2 cells is less dependent on

positive surface charges than on the particle size.

Several topics need to be addressed in studies of

nanostructures toxicity, namely dose metric, standardized

assays and reference materials, to draw general conclusions

regarding toxicity of nanostructures [10]. Also, it is crucial

to design a study by using a wide range of doses (e.g.,

doses resulting from biokinetic studies in vivo), so that a

careful analysis of the dose–response correlations can be

performed. An exposure and dose metric for engineered

nanostructures, which have a range of either chemical

compositions or structures, or even both, will depend on

the mechanism of their pharmacokinetic and toxicological

behavior [83].

Many toxicological studies (in vitro and in vivo) have

been conducted on engineered nanostructures. Neverthe-

less, the absorption, distribution, metabolism and excretion

processes of these nanostructures have not been completely

addressed and understood to date. Additionally, current

testing and toxicity studies are mainly performed using a

wide range of cell lines (e.g., Caco-2 cells), as well as

in vivo models (e.g., mice). These circumstances led to an

extensive number of tested nanostructures, experimental

designs and model systems, which consequently result on

several contradictory experimental data. Thus, standard-

ized test protocols to permit risk assessment of nanos-

tructures, especially dose thresholds, need to be regulated

and established [10, 167]. The European Food Safety

Authority (EFSA) provides a comprehensive document

with key issues to be considered. Topics addressed include

risk assessment, toxicological studies used for hazard

identification and characterization of nanomaterials and a

dose–response assessment [44].

Nanostructure small size confers a very large surface-to-

volume ratio, which could lead to some undesired results

after entering into the body. Possible nanostructure–cellu-

lar interactions may induce cytotoxicity and other physio-

logical outcomes to GI tract. For example, oxidative stress,

inflammation and immune responses (phagocytosis, com-

plement activation and recruitment of inflammatory cells)

[187], mitochondrial perturbation, ‘‘corona’’ formation

(please see ‘‘Protein corona’’ section), protein denaturation

[147], DNA damage and cell death [33, 81, 97]. Although

some of these responses could be beneficial for some

purposes, such as the activation of specific immune re-

sponses by nanostructures carrying antigens on vaccines

[128, 168], some of those could have harmful effects.

Despite the very scarce data on bio-based nanostructures’

immunological or cellular responsiveness of the GI tract,

some of the potential biological mechanisms that could

happen with these structures will be discussed.

Biological Mechanisms Induced by Nanostructures

Protein Corona

After the entry of nanostructures into the bloodstream,

potential interaction with biological molecules (e.g.,

phospholipids, DNA and serum proteins) could affect the

normal function of the body and consequently lead to

toxicity effects. The binding of a mixture of cellular pro-

teins to nanostructures forming the so-called protein corona

could change the structure, stability and dynamic behavior

of the nanostructures. This may provide different physio-

logical responses of an organism [174]. For example, the

protein corona can influence cell membrane endocytosis

and exocytosis of nanostructures, as well as promote their

uptake by phagocytes [119, 134].

The size, charge and type of coating on nanostructure

surface have a strong influence on how they are going to be
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recognized by the cells [109]. Also, whether the particles

are agglomerated or not on the biological fluids [33, 101]

could strongly modify their uptake. Moreover, nanoparti-

cles can induce conformational changes in proteins, af-

fecting their physiological function [147]. Thus, in vivo

fate of nanostructures and the biological responses could be

altered when compared with in vitro studies.

The formation of a protein corona is believed to be the

principal factor influencing its pattern of in vivo biodis-

tribution, and thus its pharmacokinetic profile. There is still

discussion on the advantages and disadvantages of ad-

sorbed proteins [10, 30]. In some circumstances, it is useful

to have these bound proteins as they can direct or target the

nanoparticles to a specific area of the body [39]. Also,

protein corona could play an important role in modulating

toxicity of nanostructures [171]. For example, Peng et al.

[119] reported that formation of a nanostructure-albumin

complex is an effective and feasible means to prolong the

nanostructure circulation time and reduce their toxicity. On

the other hand, binding of proteins has also been shown to

be correlated with rapid uptake into the liver and spleen,

and clearance of the particles by the reticuloendothelial

system [174]. This can be a negative effect if one of the

aims is to increase nanostructures circulation and the re-

tention time in the body.

However, further studies are needed to understand in-

teraction and potential impact of nanostructures with other

cellular components (e.g., polysaccharides, proteins).

Oxidative Stress

The increased production of reactive oxygen species

(ROS), revealing oxidative stress, has been proposed as a

model for the assessment of toxicity induced by nanos-

tructures [102]. High ROS levels could damage cells by

peroxidizing lipids, inducing inflammation, changing DNA

and other proteins and interfering with signaling and gene

functions [143]. Oxidative stress induced by nanostructures

is described to enhance inflammation through regulation of

redox-sensitive transcription factors comprising nuclear

factor kappa B (NFjB), activating protein 1 (AP-1), ex-

tracellular signal regulated kinases (ERK), c-Jun N-termi-

nal kinases (JNK) and p38 mitogen-activated protein

kinases pathways [3].

ROS can be originated from several sources such as in

the phagocytic cell response to foreign material, scarce

amounts of antioxidants, presence of transition metals,

environmental factors and physicochemical properties

(e.g., surface properties and size) of some nanostructures

[6, 72]. Yan et al. [177] reported two pathways for the

intracellular ROS production by nanostructures. ROS could

indirectly be produced when nanostructures disturb the

endogenous biochemical/physiological equilibrium of

cells, damaging the structure of cellular organelles, such as

mitochondria. One the other hand, ROS production de-

pends on the direct contact of nanostructures with cellular

components. Highly reactive nanoparticle surface dangling

bonds can accept electrons from electron-donor groups,

thus oxidizing cellular components.

Activation of the Immune System and Inflammation

Response

The immune response includes both innate and adaptive

defense mechanisms, which activate different cell popula-

tions. Monocytes, tissue macrophages, dendritic cells and

neutrophils are some of the cellular components of the

innate immune response. They carry out phagocytosis and

produce inflammatory mediators, ROS and antimicrobial

peptides [56]. Interaction between nanostructured systems

and the innate immune system can induce undesirable ef-

fects such as cytotoxicity or inflammation. As previously

stated, physicochemical characteristics of nanostructures

could affect the way that immune system detects and reacts

to them. The exposure of the body to ‘‘external’’ nanos-

tructured systems could lead to harmful immune (activa-

tion or suppression) actions. When in contact with the

blood, they can activate the complement system (which is a

part of the innate humoral immune response), priming the

surface of nanostructures with opsonic complement frag-

ments (C3b, iC3b) for recognition and clearance by

phagocytic cells [17, 187]. The adaptive immune response

is mediated by antigen-specific lymphocytes (T and B

cells). Both innate and adaptive immune responses can

participate with their cells and secreted products. These

humoral factors include inflammatory cytokines, e.g., in-

terleukin (IL)-1b, IL-6, interferon (INF)-c, tumor necrosis

factor-a (TNF-a) and antibodies [45]. Semete et al. [141]

studied the uptake of chitosan and PEG-coated PLGA

nanostructures and the immunological response of Balb/C

mice within 24 h of oral administration. An evaluation of

the subsequent immune reaction by analyzing secreted pro-

and anti-inflammatory cytokines concentration profile was

conducted. The expression of pro-inflammatory cytokines

IL-2, IL-6, IL-12p70 and TNF-a in plasma was found to

remain at low concentration in PLGA nanostructures

treated mice. The anti-inflammatory cytokines IL-10 and

chemokines INF-c, IL-4 and IL-5 remained at normal

levels in the PLGA-treated mice. The authors stated that

these results claim against an immunological contraindi-

cation for the oral administration of PLGA nanostructures

in mice.
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In Vitro and In Vivo Responses to Bio-Based

Nanostructures

In vitro models can generate valuable data as a pre-stage

for in vivo animal studies, therefore reducing the number

of animal tests. The use of in vitro human cell lines of

intestinal mucosa is very valuable to assess the behavior of

orally delivered nanostructures [6].

Wang et al. [172] studied in vitro the anti-colorectal

cancer activity of puerarin nanosuspensions of lecithin and

hydroxypropyl methylcellulose (HPMC) in the human

colon cancer HT-29 cell line. Cytotoxicity assay, obser-

vation of morphological changes and early apoptosis re-

vealed that puerarin nanosuspensions could significantly

enhance the in vitro anti-proliferation effect against HT-29

cells compared to the puerarin-free solution (Table 3). In

another study, Leonard et al. [85] developed a 3D inflamed

intestinal mucosa equivalent, based on the co-culture of

intestinal epithelial Caco-2 cells, blood-derived macro-

phages and dendritic cells as components of the intestinal

innate immune system (Table 3). The cells were all located

on the porous membrane of a transwell insert. Inflamma-

tion was stimulated by the inflammatory cytokine IL-1b.
The model was assayed with two different types of delivery

vehicles (polymeric PLGA nanoparticles and liposomes)

for glucocorticoid budesonide (a standard treatment for

inflammatory bowel diseases). Glucocorticoid budesonide-

loaded PLGA nanostructures showed low toxicity and good

efficacy for recovery from inflammation, as indicated by

transepithelial electrical resistance (TEER) value and pro-

inflammatory protein release quantification. Additionally,

PLGA nanoparticles only adhered to affected parts of the

GI tract. Other examples of in vitro nanotoxicity studies are

reported in Table 3.

The methods for the in vitro toxicity evaluation are

capable of providing adequate data for many bulk materi-

als. However, the in vivo interaction of nanostructures with

the biological system is much more complicated and dy-

namic. Animal models (e.g., rats and mice) would be

particularly useful to study aspects in vivo that cannot be

obtained with in vitro systems, such as toxicokinetics in the

body (i.e., absorption, distribution, metabolism and

elimination) [52]. Toxicity of nanostructures can be in-

vestigated in greater detail in animal models and with

minimal risk, time and cost compared to human clinical

trials. Although there are some in vivo toxicity data

available, most of them are related to acute or chronic

exposure to nanomaterials used on inhalation, intra-

venously or by intraperitoneal administration, and very few

after oral exposure [183]. Thus, the study of toxic effects

induced by nanomaterials on animal models using this

route is strongly needed. Feng et al. [50] investigated the

ability of polyelectrolyte complex nanoparticles (CS/

CMCS-NPs), composed of chitosan (CS) and o-car-

boxymethyl chitosan (CMCS) as a pH responsive carrier,

for the oral delivery of doxorubicin hydrochloride (DOX)

(Table 3). The in vivo test using rats further confirmed the

efficiency and safety of DOX:CS/CMCS-NPs as oral drug

delivery system. Table 3 shows selected contributions to

the in vivo studies of nanotoxicity of bio-based nanos-

tructures in the GI tract.

Despite the fact that in vitro and in vivo studies in GI

tract had been conducted, some questions and doubts per-

sist, regarding dose selection, dose metrics, assay format,

species of cells and matrices and lack of nano-relevant

controls [35]. Moreover, a high number of in vivo explo-

rations have been conducted in rodent models, which

cannot fully mimic the complexity of the human physiol-

ogy (e.g., intestine length) and human diseases [64].

Regulatory Considerations

The design of bio-based structures, through the use of

nanotechnology, for oral delivery of bioactive compounds

has been accepted by scientific community and several

industrial organizations as a possible solution for some of

the challenges faced by the food and pharmaceutical in-

dustry [15]. This technology is most commonly used to

refer to the engineering (i.e., deliberate manipulation,

manufacture, processing or selection) of materials, struc-

tures, devices and systems by controlling shape and size at

the nanometer scale with modified or new functionalities,

as compared to the same materials at macro- and mi-

croscale [15].

However, until now, there is not a globally recognized

regulatory definition of nanotechnology or related terms

(e.g., nanoscale or engineered nanomaterials). The Na-

tional Nanotechnology Initiative Program defines nan-

otechnology as the understanding and control of matter at

dimensions between approximately 1 and 100 nm, where

unique phenomena enable novel applications [49], while

Food and Drug Administration (FDA) has not established,

to date, a regulatory definition [49]. Currently, FDA de-

veloped a framework based in two major points for con-

sidering whether products include nanomaterials or

otherwise involved nanotechnology: (1) whether an engi-

neered material or end product has at least one dimension

in the nanoscale range (approximately 1–100 nm) or (2)

whether an engineered material or end product exhibits

properties or phenomena, including physical or chemical

properties or biological effects, that are attributable to its

dimension(s), even if these dimensions fall outside the

nanoscale range, up to one micrometer [49]. The European

Union (EU), through the Commission Regulation (EU)

report No 1363/2013 that replaces the report No 1169/2011
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of the European Parliament and of the Council, published

the definition of engineered nanomaterials as any inten-

tionally manufactured material containing particles in an

unbound state, or as an aggregate or agglomerate and

where, for 50 % or more of the particles in the number size

distribution, one or more external dimensions is in the size

range of 1–100 nm [42].

In terms of the current regulatory approaches in the EU,

it is generally considered that the existing regulatory

framework will cover potential uses of nanotechnologies in

the food, either by the principles of the general food law

(EC 178/2002) or by specific approval processes. Major

gaps in existing regulations were not identified in a review

undertaken by the UK Food Standards Agency [54], but

there is uncertainty in some areas as to whether a number

of specific applications of nanotechnologies would be

picked up consistently, for example, the introduction of

nanoscale preparations of existing food ingredients, or

currently approved food additives. A review recently

completed by the commission has indicated that the ex-

isting EU legislation is broadly adequate to cover potential

risks of nanotechnology-based products. Although, in some

areas, specific supporting instruments (e.g., guidelines and

standardized protocols) may be needed. Moreover, some

provisions should be clarified or adapted, in order to ensure

the full effectiveness of the existing legislation in practice

[40].

The Task Force on Novel Foods and Nanotechnology of

the European Branch of the International Life Sciences

Institute (ILSI Europe) set up an expert group to develop

practical guidance on how to approach the safety assess-

ment of products of nanotechnology. This guidance is

aimed at scientists involved in the research and develop-

ment of such products specifically for food applications.

Much of the debate on the safe use of nanotechnology for

food applications has focused on the doubts, unknowns and

lack of available information.

Engineered nanostructures, as with all materials added to

foods, are a distinct group with individual chemical, biolo-

gical, physiological, pharmacological and toxicological

profiles. Several bodies and organizations have considered

the terminology to be applied to this family of materials for

the purposes of evaluation from different perspectives [43,

48, 65], and there is still an ongoing debate to achieve

working definitions to ensure consistency [41].

Concluding Remarks

This review describes basic principles but also emerging

trends and future challenges for designing the next gen-

eration of nanostructures. As previously stated, biopoly-

meric multilayer nanostructures assembled using LbL

technique are promising candidates for more complex tasks

of protection, encapsulation and release. Thus, these

structures can be engineered and functionalized with de-

sired characteristics. However, one of the major concerns

of using engineered nanostructures in food is that there is

insufficient knowledge on how physicochemical properties

(at nanoscale) may change the biological fate of ingested

bio-based materials (even if the bulk material is the same)

and bioavailability of encapsulated bioactive compounds.

This could influence their toxicological properties and

may lead to adverse effects on human health. Evidence that

engineered nanostructures can cross natural barriers within

the body is increasing. Although the health implications of

this, if any, remain unclear and have to be linked with the

background exposure to nanostructures (e.g., proteins,

carbohydrates and fats) found naturally in food, and which

are part of human daily diet, nanoscale proteins, carbohy-

drates and fats are unlikely to be a source of toxicity in

their own right. However, scarce information is available

about the possible interactions of engineered nanostruc-

tures with components of food. Moreover, potential toxic

effects on GI tract or at systemic level, maintenance of

their integrity following passage through the digestive

system, or how they are absorbed, distributed and excreted

from the body need to be assessed.

A great number of studies focused on the development

of nanostructured systems for bioactive compounds deliv-

ery based in inorganic materials. However, few studies

have focused on bio-based nanostructures behavior fol-

lowing oral ingestion. At the present stage, a better fun-

damental understanding of the mechanisms of action of

these structures at the molecular level will provide a basis

for their further optimization to ensure design of ideal

nanocarriers. This will open more exciting opportunities

for their use in the area of bioactive compounds delivery.

While a range of in vitro screening tests have been de-

veloped, few in vivo studies in animals have been carried

out, particularly via the oral route which is the only rele-

vant route for prediction of risks in food. Therefore, it is

critical to develop predictive and validated toxicological

tests that can be used to screen potential human risks as

well as new methodologies for measurement of engineered

nanostructures in biological matrices.

The study of existing literature regarding biological ef-

fects following ingestion of bio-based nanostructures al-

lows concluding that they can modulate biological

responses. The exact determination of these effects still

remains to be clearly identified, although intrinsic physi-

cochemical characteristics of bio-based nanostructures

such as size, surface nature and dispersion state (aggrega-

tion or agglomerated) seem to be of outmost importance.

A tool that could contribute to the explanation of

nanostructures’ modes of action and potential nanotoxicity
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would be the use of toxicogenomics in combination with

traditional approaches and other—omic technologies (i.e.,

proteomics and metabolomics) [2, 125]. In particular, sys-

tems biology technology has been developed to integrate all

information at mRNA, protein and metabolite levels. This

can generate pathway information and provide the capacity

to measure subtle perturbations of pathways caused by

nanostructures [132]. For instance, the measurement of the

pattern of gene expression levels upon exposure to nanos-

tructures can provide useful information about the

mechanism of action of bio-based nanostructures [125].

Therefore, it is fundamental to understand the complex

in vitro, in vivo and in silico biological systems data inte-

gration and computational modeling. These data could al-

low risk assessment, disease prevention, diagnosis and

treatment of complex biological pathologies [55]. Addi-

tionally, fundamental advances in -omics structure–prop-

erty–process relationships (i.e., materiomics) of biological

systems contribute to the mechanistic understanding of

certain diseases and facilitate the development of novel

biomaterials for applications in nanotechnology (e.g.,

medicine and food fields) [14]. The application of these

technologies will enable a deeper understanding of bio-

chemical pathways and cellular responses to nanostructures.

Finally, the acceptance of these nanostructures in food

products by the consumer is strongly dependent on the

assurance that this novel technology is safe for human

health. Furthermore, governments and international

regulators need to promote and regulate this new tech-

nology successfully.
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blood cell cytotoxic responses to inorganic nanoparticles and

nanoparticle aggregates. Small 4:2025–2034

34. Dickinson E (2009) Hydrocolloids as emulsifiers and emulsion

stabilizers. Food Hydrocoll 23:1473–1482

35. Dobrovolskaia MA, McNeil SE (2013) Understanding the cor-

relation between in vitro and in vivo immunotoxicity tests for

nanomedicines. J Control Release 172:456–466

36. Doh H-J, Jung Y, Balakrishnan P, Cho H-J, Kim D-D (2013) A

novel lipid nanoemulsion system for improved permeation of

granisetron. Colloids Surf B Biointerfaces 101:475–480

37. Donato-Capel L, Garcia-Rodenas CL, Pouteau E, Lehmann U,

Srichuwong S, Erkner A, Kolodziejczyk E, Hughes E, Wooster

TJ, Sagalowicz L (2014) Technological means to modulate food

digestion and physiological response. In: Boland M, Golding M,

Singh H (eds) Food structures, digestion and health, 1st edn.

Academic Press, San Diego

38. Drusch S (2007) Sugar beet pectin: a novel emulsifying wall

component for microencapsulation of lipophilic food ingredients

by spray-drying. Food Hydrocoll 21:1223–1228

39. Dufort S, Sancey L, Coll J-L (2012) Physico-chemical pa-

rameters that govern nanoparticles fate also dictate rules for

their molecular evolution. Adv Drug Del Rev 64:179–189

40. EC (2008) Commission Recommendation of 07/02/2008 on a

Code of Conduct for Responsible Nanosciences and Nanotech-

nologies Research 1-10

41. EC (2011) Commission recommendation of 18 October 2011 on

the definition of nanomaterial. Off J Eur Union 275:38–40

42. EC (2013) Commission delegated regulation (EU) no 1363/2013

of 12 December 2013 amending regulation (EU) no 1169/2011

of the European Parliament and of the Council on the provision

of food information to consumers as regards the definition of

‘engineered nanomaterials’. Off J Eur Union 343:26–28

43. EFSA (2009) Scientific Opinion of the Scientific Committee.

The potential risks arising from nanoscience and nanotech-

nologies on food and feed safety. EFSA J 958:1–39

44. EFSA (2011) Guidance on the risk assessment of the application

of nanoscience and nanotechnologies in the food and feed chain.

EFSA J 9:2140

45. Elsabahy M, Wooley KL (2013) Cytokines as biomarkers of

nanoparticle immunotoxicity. Chem Soc Rev 42:5552

46. Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based

nanocarriers as promising drug and gene delivery systems.

J Control Release 161:38–49

47. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with

polymeric nanoparticles: the gastrointestinal mucus barriers.

Adv Drug Del Rev 64:557–570

48. FAO/WHO (2010) FAO/WHO expert meeting on the applica-

tion of nanotechnologies in the food and agriculture sectors:

potential food safety implications: Meeting Report, Rome

49. FDA (2014) Considering whether an FDA-regulated product

involves the application of nanotechnology. http://www.fda.gov/

regulatoryinformation/guidances/ucm257698.htm. Accessed 08

May 2014

50. Feng C, Wang Z, Jiang C, Kong M, Zhou X, Li Y, Cheng X,

Chen X (2013) Chitosan/o-carboxymethyl chitosan nanoparti-

cles for efficient and safe oral anticancer drug delivery: in vitro

and in vivo evaluation. Int J Pharm 457:158–167

51. Feng C, Sun G, Wang Z, Cheng X, Park H, Cha D, Kong M,

Chen X (2014) Transport mechanism of doxorubicin loaded

chitosan based nanogels across intestinal epithelium. Eur J

Pharm Biopharm 87:197–207

52. Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need

for in vivo study. Curr Opin Biotechnol 18:565–571

53. Fischer KE, Jayagopal A, Nagaraj G, Daniels RH, Li EM, Sil-

vestrini MT, Desai TA (2011) Nanoengineered surfaces enhance

drug loading and adhesion. Nano Lett 11:1076–1081

54. FSA (2006) Draft Food Standards Agency regulatory review on

nanotechnology in food: issue for comment. http://www.food.

gov.uk/multimedia/pdfs/int060401a.pdf. Accessed 08-05-2014

55. Genot AJ, Fujii T, Rondelez Y (2013) In vitro regulatory models

for systems biology. Biotechnol Adv 31:789–796

56. Giese C, Marx U (2014) Human immunity in vitro—solving

immunogenicity and more. Adv Drug Del Rev 69–70:103–122

57. Grassi M, Grassi G, Lapasin R, Colombo I (2007) Under-

standing drug release and absorption mechanisms: a physical

and mathematical approach. CRC Press, Boca Raton

58. Guri A, Gülseren I, Corredig M (2013) Utilization of solid lipid

nanoparticles for enhanced delivery of curcumin in cocultures of

HT29-MTX and Caco-2 cells. Food Funct 4:1410–1419

59. Guzey D, McClements DJ (2006) Characterization of b-lac-
toglobulin–chitosan interactions in aqueous solutions: a

calorimetry, light scattering, electrophoretic mobility and solu-

bility study. Food Hydrocoll 20:124–131
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