Skip to main content

Advertisement

Log in

Radiofrequency Identification and Surface Acoustic Wave Technologies for Developing the Food Intelligent Packaging Concept

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The food intelligent packaging (IP) technologies are reviewed with a particular emphasis on the possibilities of radiofrequency identification (RFID) and surface acoustic wave (SAW) technologies for developing the food IP concept. Passive RFID and SAW technologies are the more promising ones to achieve a food IP that can wirelessly communicate the food quality to the different agents of the food chain. However, some drawbacks and cost of these technologies are limiting their massive use in food IP. This is the reason why a lot of research works are being currently performed that focus on increasing functionality (e.g., enabling the tag antenna as a sensing device) and reducing costs of components and materials of these RFID and SAW systems. Furthermore, benefits can be also achieved by means of integrating the RFID, SAW, and other sensing technologies. The RFID and SAW technologies can be embedded in a wireless sensor network (WSN), and the corresponding tags and readers can build more intelligent networks by sharing the sensing, logic, and transmission capabilities of the sensor networks. The above two technologies can be integrated in two different ways: sensor-enabled tags—RFID or SAW (or RFID or SAW sensor tags)—and RFID and/or SAW-embedded WSN. The application of these technologies on secondary packages, as the paperboard packages, can dilute the costs of application on primary packaging and allow the massive use of these technologies in the food supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abad E, Zampolli S, Marco S, Scorzoni A, Mazzolai B, Juarros A, Gómez D, Elmi I, Cardinali GC, Gómez JM, Palacio F, Cicioni M, Mondini A, Becker T, Sayhan I (2007) Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sens Actuators B 127:2–7

    CAS  Google Scholar 

  2. Abad E, Palacio F, Nuin M, Zárate A, Juarros A, Gómez JM, Marco S (2009) RFID smart tag for traceability and cold chain monitoring of foods: demonstration in an intercontinental fresh fish logistic chain. J Food Eng 93(4):394–399

    Google Scholar 

  3. Abarca A, De la Fuente M, Abril JM, García A, Pérez-Ocón F (2009) Intelligent sensor for tracking and monitoring of blood temperature and hemoderivatives used for transfusions. Sens Actuators A 152(2):241–247

    CAS  Google Scholar 

  4. ABI Research (2014) RFID-enabled food safety and traceability systems. http://www.abiresearch.com. Accessed 11 Jan 2014

  5. Afzal A, Iqbal N, Mujahid A, Schirhagl R (2013) Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review. Anal Chim Acta 787:36–49

    CAS  Google Scholar 

  6. Ahvenainen R (2003) Novel food packaging techniques. Woodhead Publishing Ltd., Cambridge

    Google Scholar 

  7. AIP (2014). http://www.researchandmarkets.com/reports/1533377/global_active_smart_and_intelligent_packaging. Accessed 11 Jan 2014

  8. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422

    Google Scholar 

  9. Along K, Chenrui Z, Luo Z, Xiaozheng L, Tao H (2010) SAW RFID enabled multi-functional sensors for food safety applications. In: RFID-technology and applications (RFID-TA), 2010 IEEE international conference on IEEE, pp 200–204

  10. Amin Y, Prokkola S, Shao B, Hallstedt J, Tenhunen H, Zheng LR (2009) Inkjet printed paper based quadrate bowtie antennas for UHF RFID tags. In: Advanced communication technology, 11th IEEE international conference ICACT 2009, vol 1, pp 109–112

  11. Amin E, Bhuiyan M, Karmakar N, Winther-Jensen B (2014) Development of a low cost printable chipless rfid humidity sensor. IEEE Sens J 14(1):140–149

    CAS  Google Scholar 

  12. Barge P, Gay P, Merlino V, Tortia C (2014) Item-level radio-frequency identification for the traceability of food products: application on a dairy product. J Food Eng 125:119–130

    Google Scholar 

  13. Berkenpas E, Bitla S, Millard P, Pereira da Cunha M (2004) Pure shear horizontal SAW biosensor on langasite. IEEE Trans Ultrason Ferroelectr Freq Contl 51(11):1404–1411

    Google Scholar 

  14. Berkenpas E, Millard P, Pereira Da Cunha M (2006) Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosens Bioelectron 21:2255–2262

    CAS  Google Scholar 

  15. Bhattacharyya R, Floerkemeier C, Sarma S (2010) Low-cost, ubiquitous RFID-tag-antenna-based sensing. Proc IEEE 98(9):1593–1600

    Google Scholar 

  16. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22(11):604–610

    CAS  Google Scholar 

  17. Brandl M, Grabner J, Kellner K, Seifert F, Nicolics J, Grabner S, Grabner G (2009) A low-cost wireless sensor system and its application in dental retainers. IEEE Sens J 9(3):255–262

    CAS  Google Scholar 

  18. Bulst WE, Fischerauer G, Reindl L (2001) State of the art in wireless sensing with surface acoustic waves. IEEE Trans Ind Electron 48(2):265–271

    Google Scholar 

  19. Burnell J (2007a) Getting a read on RFID smart packaging. www.rfidupdate.com. Accessed 11 Jan 2014

  20. Burnell J (2007b) New smart boxes provide alternative to RFID labels. www.rfidupdate.com. Accessed 11 Jan 2014

  21. Butler P (2001) Smart packaging: intelligent packaging for food, beverages. Pharmaceuticals and household products. Mater World 9(3):11–13

    CAS  Google Scholar 

  22. Campbell CK (1998) Surface acoustic wave devices for mobile and wireless communications. Academic Press, Waltham

    Google Scholar 

  23. Campbell CK, Burgess JC (1991) Surface acoustic wave devices and their signal processing applications. J Acous Soc Am 89(3):1479–1480

    Google Scholar 

  24. Campbell CK, Edmonson PJ (2002) Wireless communication system using surface acoustic wave (SAW) single-phase unidirectional transducer (SPUDT) techniques. US Patent No. 6,462,698

  25. Cartasegna D, Cito A, Conso F, Donida A, Grassi M, Malvasi L, Rescio G, Malcovati P (2009) Smart RFID label for monitoring the preservation conditions of food. In: Circuits and systems, ISCAS 2009 IEEE international symposium, pp 1161–1164

  26. Cartasegna D, Conso F, Donida A, Grassi M, Picolli L, Rescio G, Malcovati P, Perretti G, Regnicoli GF (2011) Integrated microsystem with humidity, temperature and light sensors for monitoring the preservation conditions of food. In: Sensors 2011 IEEE conference, pp. 1859–1862

  27. Chandler S (2003) Vision of the future for smart packaging for brand owners. In: Proceedings international conference on smart and intelligent packaging, Barcelona, Spain, October 28–29, pp 253–269

  28. Chao CC, Yang JM, Jen WJ (2007) Determining technology trends and forecasts of RFID by a historical review and bibliometric analysis from 1991 to 2005. Technovation 27:268–279

    Google Scholar 

  29. Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):595–603

    CAS  Google Scholar 

  30. Chen L, Ba H, Heinzelman W, Cote A (2013) RFID range extension with low-power wireless edge devices. In: Computing, networking and communications (ICNC), 2013 IEEE international conference, pp. 524–528

  31. Cho J, Shim Y, Kwon T, Choi Y, Pack S, Kim S (2007) SARIF: a novel framework for integrating wireless sensor and RFID networks. IEEE Wirel Commun 14(6):50–56

    Google Scholar 

  32. Conso F, Grassi M, Picolli L, Cartasegna D, Donida A, Rescio G, Regnicoli GF, Perretti G, Malcovati P (2014) A fully-integrated multi-sensor system for food tracing and quality certification providing temperature, light intensity, and humidity exposure history of samples. Sensor Lecture Notes Elect Eng 162:509–514

    Google Scholar 

  33. Corso CD, Csete ME, Dickherber A, Edmonson PJ, Hunt WD (2010) Acoustic wave sensor assembly utilizing a multi-element structure. US Patent No. 7,771,987

  34. Costa C, Antonucci F, Pallottino F, Aguzzi J, Sarria D, Menesatti P (2013) A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol 6(2):353–366

    CAS  Google Scholar 

  35. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46

    CAS  Google Scholar 

  36. De Abreu DAP, Cruz JM, Losada PP (2012) Active and intelligent packaging for the food industry. Food Rev Int 28(2):146–187

    Google Scholar 

  37. EC (2009) EU guidance to the commission regulation on active and intelligent materials and articles intended to come into contact with food. European Commission

  38. Edmonson PJ, Hunt WD (2004) Surface acoustic wave sensor: attributes and advantages. In: Proceedings of radio and wireless IEEE conference, pp 47–50

  39. Edmonson PJ, Hunt W, Campbell C (2006) Surface acoustic wave sensor or identification device with biosensing capability. Patent CA 2532835

  40. EPCGEN2 (2014) Class 1 generation 2 UHF air interface protocol standard version:1.2.0 “Gen 2”. http://www.epcglobalinc.org/standards. Accessed 12 Jan 2014

  41. EPCGlobal (2014) http://www.gs1.org/epcglobal. Accessed 11 Jan 2014

  42. Fachberger R, Bruckner G, Hauser R, Reindl L (2006) Wireless SAW based high-temperature measurement systems. In: IEEE international frequency control symposium and exposition, pp 358–367

  43. FDA (2014) http://www.fda.gov/Food/FoodSafety/fsma/default.htm. Accessed 11 Jan 2014

  44. Feng ZC, Chicone C (2003) A delay differential equation model for surface acoustic wave sensors. Sens Actuat A 104(2):171–178

    CAS  Google Scholar 

  45. Ferrer-Vidal A, Rida A, Basat S, Yang L, Tentzeris MM (2006) Integration of sensors and RFID’s on ultra-low-cost paper-based substrates for wireless sensor networks applications. In: 2nd IEEE workshop on wireless mesh networks, WiMesh 2006, pp 126–128

  46. Fiddes LK, Yan N (2013) RFID tags for wireless electrochemical detection of volatile chemicals. Sens Actuators B 186:817–823

    CAS  Google Scholar 

  47. Fiddes LK, Chang J, Yan N (2014) Electrochemical detection of biogenic amines during food spoilage using an integrated sensing RFID Tag. Sens Actuat B 202:1298–1304

    CAS  Google Scholar 

  48. Finkenzeller K (2003) RFID handbook: fundamentals and applications in contactless smart cards and identification, 2nd edn. Wiley, Colorado

    Google Scholar 

  49. Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647

    Google Scholar 

  50. Gardner JW, Varadan VK, Awadelkarim OO (2007) MEMS and smart devices. Wiley, Colorado

    Google Scholar 

  51. Gaso MIR, Jiménez Y, Francis LA, Arnau A (2013) Love wave biosensors: a review. In: Rinken T (ed) State of the art in biosensors—general aspects, InTech. doi: 10.5772/53077. http://www.intechopen.com/books/state-of-the-art-in-biosensors-general-aspects/love-wave-biosensors-a-review. Accessed 9 Jan 2014

  52. González Castilla S (2009) Tecnologías de fabricación de microsistemas electromecánicos actuados piezoeléctricamente con nitruro de aluminio, Doctoral dissertation, Telecomunicacion

  53. Grate JW, Stephen JM, Richard MW (1993) Acoustic wave microsensors. Anal Chem 65:848A–940A

    Google Scholar 

  54. GS1 (2014) http://www.gs1.org/traceability. Accessed 11 Jan 2014

  55. Guth H, Grosh W (1994) Identification of the character impact odorants of stewed beef juice by instrumental analyses and sensory studies. J Agric Food Chem 42:2862–2866

    CAS  Google Scholar 

  56. Ha Z, Zhou K, Chen X, Yang Z, He L (2007) Study of a piezoelectric SAW immunosensor for the detection of alpha-fetoprotein. In: 1st International conference on bioinformatics and biomedical engineering, ICBBE 2007, pp 49–52

  57. Hakola L (2005) Benefits of inkjet printing for printed electronics. www3.vtt.fi/liitetiedostot/cluster5_metsa_kemia_ymparisto/PIRA%20Printed%20Electronics%202005%20Hakola.pdf. Accessed 9 Jan 2014

  58. Harrington R (2010) Future trends for active and intelligent packaging. www.foodproductiondaily.com/Packaging/Future-trends-for-active-and-intelligent-packaging. Accessed 9 Jan 2014

  59. Harrington R (2011) Global market for active and intelligent packaging to double by 2021-report. www.foodproductiondaily.com/Packaging/Global-market-for-active-and-intelligent-packaging-to-double-by-2021-report. Accessed 9 Jan 2014

  60. Harrington R (2012) Active and intelligent packaging public database launches. www.foodproductiondaily.com/Packaging/Active-and-intelligent-packaging-public-database-5launches. Accessed 9 Jan 2014

  61. Hartmann CS, Claiborne LT (2006) Anti-collision interrogation pulse focusing system for use with multiple surface acoustic wave identification tags and method of operation thereof. US Patent 7084768

  62. Hobbs PJ, Misselbrook TH, Pain BF (1995) Assessment of odors from livestock wastes by a photoionization detector, an electronic nose, olfactometry and gas-chromatography mass spectrometry. J Agric Eng Res 60:137–144

    Google Scholar 

  63. Hoummady M, Campitelli A, Wlodarski W (1997) Acoustic wave sensors: design, sensing mechanism and applications. Smart Mater Struct 6(647–657):1997

    Google Scholar 

  64. IEEE (2007) IEEE Standard 802.15.4 for Information technology Part 15.4: Specifications for Low-Rate Wireless Personal Area Networks (LRWPANs). Print: ISBN 0-7381-3686-7 SH9512713-040864-6

  65. ISO (2014) .http://www.iso.org/iso/home/standards.htm. Accessed 11 Jan 2014

  66. Jedermann R, Behrens C, Westphal D, Lang W (2006) Applying autonomous sensor systems in logistics: combining sensor networks, RFIDs and software agents. Sensor and Actuators A 132:370–375

    CAS  Google Scholar 

  67. Jha SK, Yadava RDS (2010) Development of surface acoustic wave electronic nose using pattern recognition system. Def Sci J 60(4):364–376

    Google Scholar 

  68. Jiang HJ, Moon K, Wong CP (2007) Low temperature carbon nanotube film transfer via conductive polymer composites. Nanotechnology 18(12):125203

    Google Scholar 

  69. Jiang HJ, Moon K, Wong CP (2007) The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production. Carbon 45(3):655–661

    CAS  Google Scholar 

  70. Jin H, Zhou J, He X, Wang W, Guo H, Dong S, Wang D, Xu Y, Geng J, Luo JK, Milne WI (2013) Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications. Sci Rep 3:2140

    Google Scholar 

  71. Jung JY, Yeo JH, Lee HS, Pyo CS (2007) Technology trend of RFID sensor tags. Electron Telecommun Trends 22(3):33–45

    Google Scholar 

  72. Kang YS, Jin H, Ryou O, Lee YH (2012) A simulation approach for optimal design of RFID sensor tag-based cold chain systems. J Food Eng 113(1):1–10

    Google Scholar 

  73. Kerry J, Butler P (eds) (2008) Smart packaging technologies for fast moving consumer goods. Wiley, Colorado

    Google Scholar 

  74. Kerry J, Hogan SA (2008) Smart Packaging of Meat and Poultry Products. In: Kerry J, Butler P (eds) Smart packaging technologies for fast moving consumer goods. Wiley, Colorado

    Google Scholar 

  75. Kerry JP, O´Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74:113–130

    CAS  Google Scholar 

  76. Knoben W, Zevenbergen MA, Brongersma SH (2012) Ionic liquid based electrochemical ethylene sensor for fruit and vegetable monitoring. Proceeding of IMCS 2012—The 14th international meeting on chemical sensors, pp 675–678

  77. Konstas Z, Rida A, Vyas R, Katsibas K, Uzunoglu N, Tentzeris MM (2009) A novel “Green” inkjet-printed Z-shaped monopole antenna for RFID applications. In: Proceedings of 3rd European IEEE conference on antennas and propagation, EuCAP 2009, pp 2340–2343

  78. Koptioug A, Jonsson P, Sidén J, Olsson T, Gulliksson M (2003) On the behavior of printed RFID tag antennas using conductive paint. In: Proceedings of Antenna ´03, Kalmar, Sweden

  79. Kruijf ND, Beest MV, Rijk R, Sipiläinen-Malm T, Losada PP, Meulenaer BD (2002) Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam 19(S1):144–162

    Google Scholar 

  80. Kumar P, Reinitz HW, Simunovic J, Sandeep KP, Franzon PD (2009) Overview of RFID technology and its applications in the food industry. J Food Sci 74(8):R101–R106

    CAS  Google Scholar 

  81. Kuswandi B, Wicaksono Y, Abdullah A, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens Instrum Food Qual Saf 5(3–4):137–146

    Google Scholar 

  82. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519

    Google Scholar 

  83. Lee Y (1999) Antenna circuit design for RFID applications. Microchips Technology Inc, USA

    Google Scholar 

  84. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O´Kennedy R (2003) Advances in biosensor for detection of pathogens in food and water. Enzyme Microb Technol 32:3–13

    CAS  Google Scholar 

  85. Leung J, Cheung W, Chu SC (2014) Aligning RFID applications with supply chain strategies. Inf Manag 51(2):260–269

    Google Scholar 

  86. Lieberzeit PA, Palfinger C, Dickert FL, Fischerauer G (2009) SAW RFID-tags for mass-sensitive detection of humidity and vapors. Sensors 9(12):9805–9815

    CAS  Google Scholar 

  87. López-Gómez A, Fernandez PS, Palop A, Periago PM, Martinez-López A, Marin-Iniesta F, Barbosa-Cánovas GV (2009) Food safety engineering: an emergent perspective. Food Eng Rev 1(1):84–104

    Google Scholar 

  88. LoPrinzi, S (2008) Active, controlled and intelligent packaging for foods and beverages. Report ID: FOD038B, January 2008. www.bccresearch.com. Accessed 11 Jan 2014

  89. Mainetti L, Patrono L, Stefanizzi ML, Vergallo R (2013) An innovative and low-cost gapless traceability system of fresh vegetable products using RF technologies and EPCglobal standard. Comput Electron Agric 98:146–157

    Google Scholar 

  90. Manohar G (2012) Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity. Doctoral dissertation, University of South Florida, USA

  91. Mennecke B, Townsend A (2005) Radio frequency identification tagging as a mechanism of creating a viable producer’s brand in the cattle industry. Midwest agribusiness trade research and information center, Iowa State University, MATRIC Research Paper 05-MRP 8, pp 1–27

  92. Merilampi S, Ukkonen L, Sydänheimo L, Ruuskanen P, Kivikoski M (2007) Analysis of silver ink bow-tie RFID tag antenas printed on paper substrates. Int J Antennas Propag. vol 2007, Article ID 90762, p 9. doi:10.1155/2007/90762

  93. Miltz J, Passy N, Mannheim CH (1995) Trends and applications of active packaging systems. Spec Publ Roy Soc Chem 162:201–210

    Google Scholar 

  94. Montoya A, Ocampo A, March C (2008) Fundamentals of piezoelectric immunosensors. In: ArnauVives A (ed) Piezoelectric transducers and applications. Springer, Berlin, pp 289–306

    Google Scholar 

  95. Murphy A, Millar N, Cuney S (2003) Active and Intelligent Packaging. The kitchen of the future. Presentation to innovation day, 4th Nov 2003. Cambridge Consultants Ltd. www.CambridgeConsultants.com. Accessed 11 Jan 2014

  96. Myny K, Steudel S, Vicca P, Smout S, Beenhakkers MJ, van Aerle NA, Furthner F, van der Putten B, Tripathi AK, Gelinck GH, Genoe J, Dehaene W, Heremans P (2013) Organic RFID Tags. In: Cantatore E (ed) Applications of organic and printed electronics. Springer, US, pp 133–155

    Google Scholar 

  97. Ngai EWT, Moon KKL, Riggins FJ, Yi CY (2008) RFID research: an academic literature review (1995–2005) and future research directions. Int J Prod Econ 112:510–520

    Google Scholar 

  98. O´Connor MC(2007) RFID-enabled boxes inch closer to production. www.rfidjournal.com. Accessed 11 Jan 2014

  99. Occhiuzzi C, Cippitelli S, Marrocco G (2010) Modeling, design and experimentation of wearable RFID sensor tag. IEEE Trans Antennas Propag 58(8):2490–2498

    Google Scholar 

  100. Occhiuzzi C, Rida A, Marrocco G, Tentzeris M (2011) RFID passive gas sensor integrating carbon nanotubes. IEEE Trans Microw Theory Tech 59(10):2674–2684

    CAS  Google Scholar 

  101. Oprea A, Courbat J, Bârsan N, Briand D, De Rooij NF, Weimar U (2009) Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sens Actuators B Chem 140(1):227–232

    CAS  Google Scholar 

  102. Pault H (1995) Brain boxes or simply packed. Food Process UK 64:23–26

    Google Scholar 

  103. Peris M, Escuder-Gilabert L (2009) A 21st century technique for food control: electronic noses. Anal Chim Acta 638(1):1–15

    CAS  Google Scholar 

  104. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355

    CAS  Google Scholar 

  105. Platform, AIP Competence (2014) http://activepackaging.eu/index/platform. Accessed 11 Jan 2014

  106. Plessky V, Reindl L (2010) Review on SAW RFID tags. IEEE Trans Ultrason Ferroelectr Freq Control 57(3):654–668

    Google Scholar 

  107. Pohl A (2000) A review of wireless SAW sensors. IEEE Trans Ultrason Ferroelectr Freq Control 47(2):317–332

    Google Scholar 

  108. Potyrailo RA, Surman C (2013) A passive radio-frequency identification (RFID) gas sensor with self-correction against fluctuations of ambient temperature. Sens Actuators B Chem 185:587–593

    CAS  Google Scholar 

  109. Potyrailo RA, Mouquin H, Morris WG (2008) Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. Talanta 75(3):624–628

    CAS  Google Scholar 

  110. Potyrailo RA, Surman C, Chen R, Go S, Dovidenko K, Morris WG, Holwitt E, Sorola V, Kiel JL (2009) Label-free biosensing using passive radio-frequency identification (RFID) sensors. IEEE Int Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2009:2378–2380

    Google Scholar 

  111. Potyrailo RA, Surman C, Go S, Lee Y, Sivavec T, Morris WG (2009) Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors. J Appl Phys 106(12):124902

    Google Scholar 

  112. Potyrailo RA, Burns A, Surman C, Lee DJ, McGinniss E (2012) Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate. Analyst 137(12):2777–2781

    CAS  Google Scholar 

  113. Potyrailo RA, Nagraj N, Tang Z, Mondello FJ, Surman C, Morris W (2012) Battery-free radio frequency identification (RFID) sensors for food quality and safety. J Agric Food Chem 60(35):8535–8543

    CAS  Google Scholar 

  114. Ranky PG (2006) An introduction to radio frequency identification (RFID) methods and solutions. Assembly Autom 26(1):28–33

    Google Scholar 

  115. Rao KS, Nikitin PV, Lam SF (2005) Antenna design for UHF RFID tags: a review and a practical application. IEEE Trans Antennas Propag 53(12):3870–3876

    Google Scholar 

  116. Rao KS, Nikitin PV, Lam SF (2005b). Impedance matching concepts in RFID transponder design. In: Automatic identification advanced technologies, 2005. Fourth IEEE Workshop on IEEE, pp 39–42

  117. Regattieri A, Gamberi M, Manzini R (2007) Traceability of food products: general framework and experimental evidence. J Food Eng 81:347–356

    Google Scholar 

  118. Reyes PI, Li J, Duan Z, Yang X, Cai Y, Huang Q, Lu Y (2013) ZnO surface acoustic wave sensors built on Zein-coated flexible food packages. Sensor Lett 11(3):539–544

    CAS  Google Scholar 

  119. Rida A, Yang L, Vyas R, Basat S, Bhattacharya SK, Tentzeris MM (2007a) Novel manufacturing processes for ultra-low-cost paper-based RFID tags with enhanced “wireless intelligence”. IEEE 2007 electronic components and technology conference, pp 773–776

  120. Rida A, Yang L, Vyas R, Bhattacharya SK, Tentzeris MM (2007b) Design and integration of inkjet-printed paper-based UHF components for RFID and ubiquitous sensing applications. Proceeding of 37th European microwave conference. October 2007, Munich, Germany

  121. Riva M, Piergiovanni L, Schiraldi A (2001) Performances of time–temperature indicators in the study of temperature exposure of packaged fresh foods. Pack Technol Sci 14(1):1–9

    Google Scholar 

  122. Robertson G (2006) Food packaging principles and practices. Taylor & Francis, Boca Raton

    Google Scholar 

  123. Rooney ML (1995) Overview of active food packaging. In: Rooney ML (ed) Active food packaging. Springer, Berlin, US, pp 1–37

    Google Scholar 

  124. Ruhanen A, Hanhikorpi M, Bertuccelli F, Colonna A, Malik W, Ranasinghe D, López TS, Yan N, Tavilampi M (2008) Sensor-enabled RFID tag handbook. BRIDGE EU Project, IST-2005-033546

  125. Sankaran S, Panigrahi S, Mallik S (2011) Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens Actuators B Chem 155(1):8–18

    CAS  Google Scholar 

  126. Sehra G, Cole M, Gardner JW (2004) Miniature taste sensing system based on dual SH-SAW sensor device: an electronic tongue. Sens Actuators B Chem 103(1):233–239

    CAS  Google Scholar 

  127. Shih DH, Sun PL, Yen DC, Huang SM (2006) Taxonomy and survey of RFID anti-collision protocols. Comput Commun 29(11):2150–2166

    Google Scholar 

  128. Sidek O, Quadri SA, Kabir S, Bin Afzal MH (2013) Application of carbon nanotube in wireless sensor network to monitor carbon dioxide. J Exp Nanosci 8(2):154–161

    CAS  Google Scholar 

  129. Siden J, Nilsson HE (2007) Line width limitations of flexographic-screen-and inkjet printed RFID antennas. In: Proceedings of antennas and propagation IEEE international symposium, pp 1745–1748

  130. Skolnik MI (1962) Introduction to radar system. McGraw-Hill Book Co. Inc., New York

    Google Scholar 

  131. Smits E, Schram J, Nagelkerke M, Kusters R, van Heck G, van Acht V, Gerlinck G (2012) Development of printed RFID sensor tags for smart food packaging. IMCS 2012—the 14th international meeting on chemical sensors. Nuremberg, ICMS, pp 403–406

    Google Scholar 

  132. Springer A, Weigel R, Pohl A, Seifert F (1999) Wireless identification and sensing using surface acoustic wave devices. Mechatronics 9:745–756

    Google Scholar 

  133. Srinivas PR, Philbert M, Vu TQ, Huang Q, Kokini JL, Saos E, Chen H, Peterson CM, Friedl KE, McDade-Ngutter C, Hubbard V, Starke-Reed P, Miller N, Betz JM, Dwyer J, Milner J, Ross SA (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140(1):119–124

    CAS  Google Scholar 

  134. Stankovic J, Abdelzaher T, Lu C, Sha L, Hou J (2003) Real-time communication and coordination in embedded sensor networks. Proc IEEE 91:1002–1022

    Google Scholar 

  135. Steinberg IM, Steinberg MD (2009) Radio-frequency tag with optoelectronic interface for distributed wireless chemical and biological sensor applications. Sens Actuators B Chem 138(1):120–125

    CAS  Google Scholar 

  136. Stevens DS, et al.(2010). Applications of wireless temperature measurement using saw resonators. In: Proceedings of fourth international symposium on acoustic wave devices for future mobile communication systems, Chiba University, Japan

  137. Stutzman WL, Thiele GA (2013) Antenna theory and design. Wiley, Colorado

    Google Scholar 

  138. Summers L (1992) Intelligent packaging. Centre for Exploitation of Science and Technology, London

    Google Scholar 

  139. Taoukis PS, Labuza TP (1989) Applicability of time-temperature indicators as shelf life monitors of food products. J Food Sci 54(4):783–788

    Google Scholar 

  140. Taoukis PS, Labuza TP (2003) Time-temperature indicators (TTIs). In: Ahvenainen R (ed) Novel food packaging techniques. CRC Press, Boca Raton, pp 103–126

    Google Scholar 

  141. Tourette S, Chommelouxa L, Le Guen JF, Friedt JM, Ménage P, Collin G, Staraj R, Hermelin D, Bailandras S, Luxey C, Le Thuc P (2010) Implantable SAW sensor for telemetry of temperature and blood pressure: the ANR-TECSAN CIMPA project. IRBM 31(2):101–106

    Google Scholar 

  142. Tudu B, Shaw L, Jana A, Bhattacharyya N, Bandyopadhyay R (2012) Instrumental testing of tea by combining the responses of electronic nose and tongue. J Food Eng 110(3):356–363

    Google Scholar 

  143. Twede D, Harte B (2003) Logistical packaging for food marketing systems. In: Coles R, Mcdowell D, Kirwan MJ (eds) Food packaging technology. CRC Press, Boca Raton

    Google Scholar 

  144. Ukkonen L, Schaffrath M, Kataja J, Sydanheimo L, Kivikoski M (2006) Evolutionary RFID tag antenna design for paper industry applications. Int J Radio Freq Ident Technol Appl 1(1):107–122

    Google Scholar 

  145. Unander T, Nilsson HE (2009) Characterization of printed moisture sensors in packaging surveillance applications. IEEE Sens J 9(8):922–928

    Google Scholar 

  146. US Department of Energy (1998) Innovative technology, surface acoustic wave/gas chromatography system for trace vapor analysis. US Department of Energy, USA

    Google Scholar 

  147. Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39(1):47–62

    CAS  Google Scholar 

  148. Vermeiren L, Devlieghere F, Van Beest M, De Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10(3):77–86

    CAS  Google Scholar 

  149. Virtanen J, Ukkonen L, Bjorninen T, Elsherbeni AZ, Sydanheimo L (2011) Inkjet-printed humidity sensor for passive UHF RFID systems. IEEE Trans Instrum Meas 60(8):2768–2777

    CAS  Google Scholar 

  150. Vogt H (2002) Efficient object identification with passive RFID tags. Pervasive computing, vol 2414., Lecture notes in computer scienceSpringer, Berlin, pp 98–113

    Google Scholar 

  151. Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput Electron Agric 50:1–14

    CAS  Google Scholar 

  152. Wang Y, Jia Y, Chen Q, Wang Y (2008) A passive wireless temperature sensor for harsh environment applications. Sensors 8(12):7982–7995

    Google Scholar 

  153. Wang Y, Yang Z, Hou Z, Xu D, Wei L, Kong ESW, Zhang Y (2010) Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection. Sens Actuators B Chem 150(2):708–714

    CAS  Google Scholar 

  154. Want R (2006) An introduction to RFID technology. Pervas Comput IEEE 5(1):25–33

    Google Scholar 

  155. Weigel R, Morgan DP, Owens JM, Ballato A, Lakin KM, Hashimoto KY, Ruppel CC (2002) Microwave acoustic materials, devices, and applications. IEEE Trans Microw Theory Tech 50(3):738–749

    CAS  Google Scholar 

  156. Wentworth SM (2003) Microbial sensor tags. In: The 2003 IFT (The Institute of Food Technology) annual meeting book of abstracts, Chicago, Illinois, USA, July, pp 12–16

  157. Wilson CL (ed) (2010) Intelligent and active packaging for fruit and vegetables. CRC Press, Boca Raton

    Google Scholar 

  158. Wilson AD (2013) Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13(2):2295–2348

    CAS  Google Scholar 

  159. Wohltjen H, Ballantine D, White R, Martin S, Ricco A, Zellers E, Frye G (1997) Acoustic wave sensor: theory, design, and physico-chemical applications. Academic Press, San Diego

    Google Scholar 

  160. Wong CP, Moon KS, Li Y (eds) (2010) Nano-bio-electronic, photonic and MEMS packaging. Springer, Berlin

    Google Scholar 

  161. Yam KL (ed) (2009) The wiley encyclopedia of packaging technology, 3rd edn. Wiley, Danvers

    Google Scholar 

  162. Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):R1–R10

    CAS  Google Scholar 

  163. Yang L, Tentzeris MM (2007) Design and characterization of novel paper-based inkjet-printed RFID and microwave structures for telecommunication and sensing applications. IEEE microwave symposium, IEEE/MTT-S International, pp 1633–1636

  164. Yang L, Rida A, Vyas R, Tentzeris MM (2007) RFID Tag and RF structures on a paper substrate using Inkjet-printing technology. IEEE Trans Microw Theory Tech 55(12):2894–2901

    Google Scholar 

  165. Yang L, Rida A, Vyas R, Tentzeris MM (2007b) Novel “enhanced-cognition” RFID architectures on organic/paper low-cost substrates utilizing inkjet technologies. Int J Antennas and Propagation. Vol 2007, Article ID 68385, 7 p, doi:10.1155/2007/68385

  166. Yang L, Zhang R, Staiculescu D, Wong CP, Tentzeris MM (2009) A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas Wirel Propag Lett 8:653–656

    Google Scholar 

  167. Yezza IA (2009) Printed intelligence in packaging: Current and potential applications of nanotechnology. In: Proc Symp Nanomaterials for Flexible Packaging, Columbus, Code 80863

  168. Yi X, Wu T, Wang Y, Leon RT, Tentzeris MM, Lantz G (2011) Passive wireless smart-skin sensor using RFID-based folded patch antennas. Int J Smart Nano Mater 2(1):22–38

    Google Scholar 

  169. Zhou F, Chen C, Jin D, Huang C, Min H (2004) Evaluating and optimizing power consumption of anti-collision protocols for applications in RFID systems. In: Proceedings 2004 international symposium on low power electronics and design, pp 357–362

  170. Zhu L, Xiu Y, Hess DW, Wong CP (2005) Aligned carbon nanotube stacks by water-assisted selective etching. Nano Lett 5(12):2641–2645

    CAS  Google Scholar 

  171. Zhu L, Sun Y, Hess DW, Wong CP (2006) Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. Nano Lett 6(2):243–247

    CAS  Google Scholar 

Download references

Acknowledgments

This review has been written during the realization of the ADFRESH Project (2011–2014), funded by a group of Spanish Agri-Food Companies, and the Center for Industrial Technological Development (CDTI, Spanish Ministry of Economy and Competitiveness).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio López-Gómez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Gómez, A., Cerdán-Cartagena, F., Suardíaz-Muro, J. et al. Radiofrequency Identification and Surface Acoustic Wave Technologies for Developing the Food Intelligent Packaging Concept. Food Eng Rev 7, 11–32 (2015). https://doi.org/10.1007/s12393-014-9102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-014-9102-y

Keywords

Navigation