Skip to main content
Log in

Birth, Growth, Maturation, and Demise of Plant Autophagic Vesicles

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Autophagy is a degradation pathway for cytoplasmic constituents, targeting various types of cargo to the vacuoles for recycling. Biogenesis and turnover of autophagic vesicles require a set of Autophagy-related (Atg) proteins, which are present in yeast, metazoans, and plants. Recent advances in autophagy research using yeast and mammalian cells have yielded better models describing how autophagic vesicles acquire membrane lipids and which molecules are involved in final steps in autophagy. These findings will further the understanding of how plant Atg homologs cooperate with other proteins to mediate autophagosome biogenesis and turnover. This mini-review provides an updated view of the molecular mechanisms underlying autophagosome dynamics in plant cells. Evidence supporting roles of actin filaments and microtubules in plant autophagosome biogenesis is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avin-Wittenberg T, Baluska F, Bozhkov PV, Elander PH, Fernie AR, Galili G, Hassan A, Hofius D, Isono E, Le Bars R, Masclaux-Daubresse C, Minina EA, Peled-Zehavi H, Coll NS, Sandalio LM, Satiat-Jeunemaitre B, Sirko A, Testillano PS, Batoko H (2018) Autophagy-related approaches for improving nutrient use efficiency and crop yield protection. J Exp Bot 69(6):1335–1353

    Article  CAS  PubMed  Google Scholar 

  • Baba M, Osumi M, Ohsumi Y (1995) Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell Struct Funct 20(6):465–471

    Article  CAS  PubMed  Google Scholar 

  • Bakula D, Muller AJ, Zuleger T, Takacs Z, Franz-Wachtel M, Thost AK, Brigger D, Tschan MP, Frickey T, Robenek H, Macek B, Proikas-Cezanne T (2017) WIPI3 and WIPI4 beta-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun 8:15637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Y, Song WM, Wang P, Yu X, Li B, Jiang C, Shiu SH, Zhang H, Bassham DC (2020) COST1 regulates autophagy to control plant drought tolerance. Proc Natl Acad Sci USA 117(13):7482–7493

    Article  CAS  PubMed  Google Scholar 

  • Bas L, Papinski D, Licheva M, Torggler R, Rohringer S, Schuschnig M, Kraft C (2018) Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion. J Cell Biol 217(10):3656–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS (2015) Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 27(9):2545–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Su ZZ, Huang L, Xia FN, Qi H, Xie LJ, Xiao S, Chen QF (2017) The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis. Front Plant Sci 8:1201

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Otomo C, Leitner A, Ohashi K, Aebersold R, Lander GC, Otomo T (2018) Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex. Proc Natl Acad Sci USA 115(42):E9792–E9801

    Article  CAS  PubMed  Google Scholar 

  • Chung T (2019) How phosphoinositides shape autophagy in plant cells. Plant Sci 281:146–158

    Article  CAS  PubMed  Google Scholar 

  • Chung T, Phillips AR, Vierstra RD (2010) ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci. Plant J 62(3):483–493

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, He Y, Cao W, Gao J, Jiang L (2018) The multivesicular body and autophagosome pathways in plants. Front Plant Sci 9:1837

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Zhao Q, Gao C, Ding Y, Zeng Y, Ueda T, Nakano A, Jiang L (2014) Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis. Plant Cell 26(5):2080–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauphinee AN, Cardoso C, Dalman K, Ohlsson JA, Fick SB, Robert S, Hicks GR, Bozhkov PV, Minina EA (2019) Chemical screening pipeline for identification of specific plant autophagy modulators. Plant Physiol 181(3):855–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277(36):33105–33114

    Article  CAS  PubMed  Google Scholar 

  • Ebine K, Inoue T, Ito J, Ito E, Uemura T, Goh T, Abe H, Sato K, Nakano A, Ueda T (2014) Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr Biol 24(12):1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179(3):485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143(3):1132–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka Y, Alam JM, Noshiro D, Mouri K, Ando T, Okada Y, May AI, Knorr RL, Suzuki K, Ohsumi Y, Noda NN (2020) Phase separation organizes the site of autophagosome formation. Nature 578(7794):301–305

    Article  CAS  PubMed  Google Scholar 

  • Fujioka Y, Noda NN, Fujii K, Yoshimoto K, Ohsumi Y, Inagaki F (2008) In vitro reconstitution of plant Atg8 and Atg12 conjugation systems essential for autophagy. J Biol Chem 283(4):1921–1928

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Huang W, Lin TH, Groulx JF, Jean S, Nguyen J, Kuchitsu Y, Koyama-Honda I, Mizushima N, Fukuda M, Kiger AA (2017) Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. Elife 6:23367. https://doi.org/10.7554/eLife.23367

    Article  Google Scholar 

  • Gao C, Zhuang X, Cui Y, Fu X, He Y, Zhao Q, Zeng Y, Shen J, Luo M, Jiang L (2015) Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc Natl Acad Sci USA 112(6):1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Sanchez R, Rose J, Guimaraes R, Mari M, Papinski D, Rieter E, Geerts WJ, Hardenberg R, Kraft C, Ungermann C, Reggiori F (2018) Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J Cell Biol 217(8):2743–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto-Yamada S, Oikawa K, Bizan J, Shigenobu S, Yamaguchi K, Mano S, Hayashi M, Ueda H, Hara-Nishimura I, Nishimura M, Yamada K (2019) Sucrose starvation induces microautophagy in plant root cells. Front Plant Sci 10:1604

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Princely Abudu Y, Kumar S, Bissa B, Choi SW, Jia J, Lazarou M, Eskelinen EL, Johansen T, Deretic V (2019) Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs. EMBO J 38(22):e101994

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129(3):1181–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison-Lowe NJ, Olsen LJ (2008) Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 4(3):339–348

    Article  CAS  PubMed  Google Scholar 

  • Hegedus K, Takats S, Boda A, Jipa A, Nagy P, Varga K, Kovacs AL, Juhasz G (2016) The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol Biol Cell 27(20):3132–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Ye H, Cui Y, Jiang L (2020) AtSec62 is critical for plant development and is involved in ER-phagy in Arabidopsis thaliana. J Integr Plant Biol 62(2):181–200

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zheng C, Liu F, Yang C, Zheng P, Lu X, Tian J, Chung T, Otegui MS, Xiao S, Gao C, Vierstra RD, Li F (2019) Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation. Plant Cell 31(12):2973–2995

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006) AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47(12):1641–1652

    Article  CAS  PubMed  Google Scholar 

  • Ishii A, Kurokawa K, Hotta M, Yoshizaki S, Kurita M, Koyama A, Nakano A, Kimura Y (2019) Role of Atg8 in the regulation of vacuolar membrane invagination. Sci Rep 9(1):14828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151(6):1256–1269

    Article  CAS  PubMed  Google Scholar 

  • Jahreiss L, Menzies FM, Rubinsztein DC (2008) The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9(4):574–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia M, Liu X, Xue H, Wu Y, Shi L, Wang R, Chen Y, Xu N, Zhao J, Shao J, Qi Y, An L, Sheen J, Yu F (2019) Noncanonical ATG8-ABS3 interaction controls senescence in plants. Nat Plants 5(2):212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, Mizushima N (2014) The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25(8):1327–1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung H, Lee HN, Marshall RS, Lomax AW, Yoon MJ, Kim J, Kim JH, Vierstra RD, Chung T (2020) Arabidopsis cargo receptor NBR1 mediates selective autophagy of defective proteins. J Exp Bot 71(1):73–89

    Article  PubMed  Google Scholar 

  • Kalinowska K, Isono E (2018) All roads lead to the vacuole-autophagic transport as part of the endomembrane trafficking network in plants. J Exp Bot 69(6):1313–1324

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Shin KD, Kim JH, Chung T (2018) Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis. Plant Cell Rep 37(4):653–664

    Article  CAS  PubMed  Google Scholar 

  • Karanasios E, Walker SA, Okkenhaug H, Manifava M, Hummel E, Zimmermann H, Ahmed Q, Domart MC, Collinson L, Ktistakis NT (2016) Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun 7:12420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147(2):435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, Jahreiss L, Sarkar S, Futter M, Menzies FM, O'Kane CJ, Deretic V, Rubinsztein DC (2011) Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 13(4):453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani T, Kirisako H, Koizumi M, Ohsumi Y, Nakatogawa H (2018) The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc Natl Acad Sci USA 115(41):10363–10368

    Article  CAS  PubMed  Google Scholar 

  • Kriegenburg F, Ungermann C, Reggiori F (2018) Coordination of autophagosome-lysosome fusion by Atg8 family members. Curr Biol 28(8):R512–R518

    Article  CAS  PubMed  Google Scholar 

  • Kuchitsu Y, Homma Y, Fujita N, Fukuda M (2018) Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation. J Cell Sci 131(7). https://doi.org/10.1242/jcs.215442

  • Kumar S, Jain A, Farzam F, Jia J, Gu Y, Choi SW, Mudd MH, Claude-Taupin A, Wester MJ, Lidke KA, Rusten TE, Deretic V (2018) Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. J Cell Biol 217(3):997–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SI, Cho HJ, Kim SR, Park OK (2013) The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol 161(4):1722–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai LTF, Yu C, Wong JSK, Lo HS, Benlekbir S, Jiang L, Lau WCY (2020) Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9. Autophagy 16(3):575–583

    Article  CAS  PubMed  Google Scholar 

  • Le Bars R, Marion J, Le Borgne R, Satiat-Jeunemaitre B, Bianchi MW (2014) ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants. Nat Commun 5:4121

    Article  PubMed  CAS  Google Scholar 

  • Lee HN, Zarza X, Kim JH, Yoon MJ, Kim SH, Lee JH, Paris N, Munnik T, Otegui MS, Chung T (2018) Vacuolar trafficking protein VPS38 is dispensable for autophagy. Plant Physiol 176(2):1559–1572

    Article  CAS  PubMed  Google Scholar 

  • Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 17(18):1561–1567

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Kim ES, Choi Y, Hwang I, Staiger CJ, Chung YY, Lee Y (2008) The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol 147(4):1886–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Chung T, Vierstra RD (2014) AUTOPHAGY-RELATED (ATG)11 plays a critical role in general autophagy and senescence-induced mitophagy in Arabidopsis. Plant Cell 26:788–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao CY, Bassham DC (2020) Combating stress: the interplay between hormone signaling and autophagy in plants. J Exp Bot 71(5):1723–1733

    Article  PubMed  Google Scholar 

  • Liu F, Hu W, Vierstra RD (2018) The vacuolar protein sorting-38 subunit of the Arabidopsis phosphatidylinositol-3-kinase complex plays critical roles in autophagy, endosome sorting, and gravitropism. Front Plant Sci 9:781

    Article  PubMed  PubMed Central  Google Scholar 

  • Loi M, Raimondi A, Morone D, Molinari M (2019) ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress. Nat Commun 10(1):5058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeda S, Otomo C, Otomo T (2019) The autophagic membrane tether ATG2A transfers lipids between membranes. Elife 8:19. https://doi.org/10.7554/eLife.45777

    Article  Google Scholar 

  • Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190(6):1005–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall RS, Vierstra RD (2018) Autophagy: the master of bulk and selective recycling. Annu Rev Plant Biol 69:173–208

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Jiang P, Nakano S, Sakamaki Y, Yamamoto H, Mizushima N (2018) Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol 217(8):2633–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Hidema J, Sakamoto W, Ishida H, Izumi M (2018) Selective elimination of membrane-damaged chloroplasts via microautophagy. Plant Physiol 177(3):1007–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norizuki T, Kanazawa T, Minamino N, Tsukaya H, Ueda T (2019) Marchantia polymorpha, a new model plant for autophagy studies. Front Plant Sci 10:935

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23(10):1860–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa T, Ishii Y, Noda NN (2020) Human ATG2B possesses a lipid transfer activity which is accelerated by negatively charged lipids and WIPI4. Genes Cells 25(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Osawa T, Kotani T, Kawaoka T, Hirata E, Suzuki K, Nakatogawa H, Ohsumi Y, Noda NN (2019) Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat Struct Mol Biol 26(4):281–288

    Article  CAS  PubMed  Google Scholar 

  • Osawa T, Noda NN (2019) Atg2: a novel phospholipid transfer protein that mediates de novo autophagosome biogenesis. Protein Sci 28(6):1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, Bjorkoy G, Johansen T (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188(2):253–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AR, Suttangkakul A, Vierstra RD (2008) The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178(3):1339–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi H, Li J, Xia FN, Chen JY, Lei X, Han MQ, Xie LJ, Zhou QM, Xiao S (2020) Arabidopsis SINAT proteins control autophagy by mediating ubiquitylation and degradation of ATG13. Plant Cell 32(1):263–284

    Article  CAS  PubMed  Google Scholar 

  • Reggiori F, Monastyrska I, Shintani T, Klionsky DJ (2005) The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol Biol Cell 16(12):5843–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reggiori F, Ungermann C (2017) Autophagosome maturation and fusion. J Mol Biol 429(4):486–496

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Chevalier J, Olsen J, Ansbol J, Kapousidou V, Zuo Z, Svenning S, Loefke C, Koemeda S, Drozdowskyj PS, Jez J, Durnberger G, Kuenzl F, Schutzbier M, Mechtler K, Ebstrup EN, Lolle S, Dagdas Y, Petersen M (2020) Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells. EMBO J 39(4):e103315

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Furlan C, Domozych D, Qian W, Enquist PA, Li X, Zhang C, Schenk R, Winbigler HS, Jackson W, Raikhel NV, Hicks GR (2019) Interaction between VPS35 and RABG3f is necessary as a checkpoint to control fusion of late compartments with the vacuole. Proc Natl Acad Sci USA 116(42):21291–21301

    Article  CAS  PubMed  Google Scholar 

  • Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, Stenmark H (2007) ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17(20):1817–1825

    Article  CAS  PubMed  Google Scholar 

  • Schafer JA, Schessner JP, Bircham PW, Tsuji T, Funaya C, Pajonk O, Schaeff K, Ruffini G, Papagiannidis D, Knop M, Fujimoto T, Schuck S (2020) ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast. EMBO J 39(2):e102586

    Article  PubMed  CAS  Google Scholar 

  • Schutter M, Giavalisco P, Brodesser S, Graef M (2020) Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy. Cell 180(1):135–149.e14

    Article  PubMed  CAS  Google Scholar 

  • Shin KD, Lee HN, Chung T (2014) A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol Cells 37(5):399–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinozaki D, Merkulova EA, Naya L, Horie T, Kanno Y, Seo M, Ohsumi Y, Masclaux-Daubresse C, Yoshimoto K (2020) Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency. Plant Physiol 182(3):1284–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh MK, Kruger F, Beckmann H, Brumm S, Vermeer JE, Munnik T, Mayer U, Stierhof YD, Grefen C, Schumacher K, Jurgens G (2014) Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB-vacuole fusion. Curr Biol 24(12):1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Son O, Kim S, Kim D, Hur YS, Kim J, Cheon CI (2018) Involvement of TOR signaling motif in the regulation of plant autophagy. Biochem Biophys Res Commun 501(3):643–647

    Article  CAS  PubMed  Google Scholar 

  • Soto-Burgos J, Bassham DC (2017) SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLoS ONE 12(8):e0182591

    Article  PubMed  PubMed Central  Google Scholar 

  • Su T, Li X, Yang M, Shao Q, Zhao Y, Ma C, Wang P (2020) Autophagy: an intracellular degradation pathway regulating plant survival and stress response. Front Plant Sci 11:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N (2003) The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15(12):2885–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutipatanasomboon A, Herberth S, Alwood EG, Haweker H, Muller B, Shahriari M, Zienert AY, Marin B, Robatzek S, Praefcke GJK, Ayscough KR, Hulskamp M, Schellmann S (2017) Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death. Sci Rep 7(1):8677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23(10):3761–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y (2013) Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci 126(Pt 11):2534–2544

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, He H, Tang Z, Hattori T, Liu Y, Young MM, Serfass JM, Chen L, Gebru M, Chen C, Wills CA, Atkinson JM, Chen H, Abraham T, Wang HG (2018) An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun 9(1):2855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi Y, Liang X, Hattori T, Tang Z, He H, Chen H, Liu X, Abraham T, Imamura-Kawasawa Y, Buchkovich NJ, Young MM, Wang HG (2019) VPS37A directs ESCRT recruitment for phagophore closure. J Cell Biol 218(10):3336–3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N (2016) The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354(6315):1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Valverde DP, Yu S, Boggavarapu V, Kumar N, Lees JA, Walz T, Reinisch KM, Melia TJ (2019) ATG2 transports lipids to promote autophagosome biogenesis. J Cell Biol 218(6):1787–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Van de Cotte B, Stes E, Van Bel M, Storme V, Impens F, Gevaert K, Vandepoele K, De Smet I, De Jaeger G (2019) Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat Plants 5(3):316–327

    Article  PubMed  CAS  Google Scholar 

  • Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N (2012) Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell 23(5):896–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131(3):1191–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vietri M, Radulovic M, Stenmark H (2020) The many functions of ESCRTs. Nat Rev Mol Cell Biol 21(1):25–42

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Nolan TM, Yin Y, Bassham DC (2020) Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy 16(1):123–139

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Pleskot R, Zang J, Winkler J, Wang J, Yperman K, Zhang T, Wang K, Gong J, Guan Y, Richardson C, Duckney P, Vandorpe M, Mylle E, Fiserova J, Van Damme D, Hussey PJ (2019) Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat Commun 10(1):5132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Richardson C, Hawes C, Hussey PJ (2016) Arabidopsis NAP1 regulates the formation of autophagosomes. Curr Biol 26(15):2060–2069

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zheng X, Yu B, Han S, Guo J, Tang H, Yu AY, Deng H, Hong Y, Liu Y (2015) Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy 11(12):2259–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42(4):535–546

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198(2):219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Shen W, Yang L, Sun Y, Li X, Lai M, Wei J, Wang C, Xu Y, Li F, Liang S, Yang C, Zhong S, Luo M, Gao C (2020) HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation. Mol Plant 13(3):515–531

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Chung T (2019) Protein and RNA quality control by autophagy in plant cells. Mol Cells 42(4):285–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16(11):2967–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ding X, Marshall RS, Paez-Valencia J, Lacey P, Vierstra RD, Otegui MS (2020) Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. Elife 9:51918. https://doi.org/10.7554/eLife.51918

    Article  Google Scholar 

  • Zhen Y, Spangenberg H, Munson MJ, Brech A, Schink KO, Tan KW, Sorensen V, Wenzel EM, Radulovic M, Engedal N, Simonsen A, Raiborg C, Stenmark H (2019) ESCRT-mediated phagophore sealing during mitophagy. Autophagy 2:1–16

    Article  CAS  Google Scholar 

  • Zheng X, Wu M, Li X, Cao J, Li J, Wang J, Huang S, Liu Y, Wang Y (2019) Actin filaments are dispensable for bulk autophagy in plants. Autophagy 15(12):2126–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Wu Z, Zhao M, Murtazina R, Cai J, Zhang A, Li R, Sun D, Li W, Zhao L, Li Q, Zhu J, Cong X, Zhou Y, Xie Z, Gyurkovska V, Li L, Huang X, Xue Y, Chen L, Xu H, Xu H, Liang Y, Segev N (2019) Rab5-dependent autophagosome closure by ESCRT. J Cell Biol 218(6):1908–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Zou S, Chen Y, Lipatova Z, Sun D, Zhu X, Li R, Wu Z, You W, Cong X, Zhou Y, Xie Z, Gyurkovska V, Liu Y, Li Q, Li W, Cheng J, Liang Y, Segev N (2017) A Rab5 GTPase module is important for autophagosome closure. PLoS Genet 13(9):e1007020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuang X, Chung KP, Cui Y, Lin W, Gao C, Kang BH, Jiang L (2017) ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc Natl Acad Sci USA 114(3):E426–E435

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Chung KP, Luo M, Jiang L (2018) Autophagosome biogenesis and the endoplasmic reticulum: a plant perspective. Trends Plant Sci 23(8):677–692

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Cui Y, Gao C, Jiang L (2015) Endocytic and autophagic pathways crosstalk in plants. Curr Opin Plant Biol 28:39–47

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a 2-Year Research Grant of the Pusan National University.

Author information

Authors and Affiliations

Authors

Contributions

JHK, HJ, and TC wrote and revised the manuscript; TC made the figures. All authors agreed on the content of the paper and post no conflicting interest.

Corresponding author

Correspondence to Taijoon Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Jung, H. & Chung, T. Birth, Growth, Maturation, and Demise of Plant Autophagic Vesicles. J. Plant Biol. 63, 155–164 (2020). https://doi.org/10.1007/s12374-020-09252-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09252-8

Keywords

Navigation