Skip to main content
Log in

Ectopic Expression of a Cold-Responsive CuZn Superoxide Dismutase Gene, SodCc1, in Transgenic Rice (Oryza sativa L.)

  • ORIGINAL RESEARCH
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

A cytosolic antioxidant enzyme gene, SodCc1, encoding CuZn superoxide dismutase was characterized from rice. SodCc1 mRNA was up-regulated by cold (4°C and 12°C) and by abscisic acid (ABA) treatment. Transgenic rice plants of Ubi:SodCc1 were generated and overexpression of SodCc1 was confirmed at both transcriptional and translational levels. A stress tolerance test via chlorophyll fluorescence at the seedling stage showed no enhanced tolerance by Ubi:SodCc1 plants to cold or methyl-viologen-induced oxidative stress, but they were slightly resistant to drought. Our wilting assay demonstrated no improvement in tolerance to either cold or drought, indicating that cytosolic SodCc1 might not be significantly involved in conferring such tolerances in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    Article  PubMed  CAS  Google Scholar 

  • Beyer W, Imlay J, Fridovich I (1991) Superoxide dismutases. Progr Nucl Acid Res Mol Biol 40:221–248

    Article  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    PubMed  CAS  Google Scholar 

  • Bowler C, van Montague M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheesman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20:579–588

    Article  CAS  Google Scholar 

  • Chen DH, Roland PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Choi SM, Suh KH, Kim JS, Park YI (2001) Inactivation of photosystem I in cucumber leaves exposed to paraquat-induced oxidative stress. J Photosci 8:13–17

    CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radio-labeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Mullineaux PM (1994) Causes of photooxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, FL, USA

    Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Jackson C, Moore A, Halliwell B, Foyer CH, Hall DO (1978) Subcellular localization and identification of superoxide dismutase in the leaves of higher plants. Eur J Biochem 91:339–344

    Article  PubMed  CAS  Google Scholar 

  • Kaminaka H, Morita S, Yohoi H, Masumura T, Tanaka H (1997) Molecular cloning and characterization of cDNA for chloroplastic copper/zinc-superoxide dismutase in rice (Oryza sativa L.). Plant Cell Physiol 38:65–69

    PubMed  CAS  Google Scholar 

  • Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K (1999) Differential gene expression of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radic Res 31:S219–S225

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Lee S, Kang HG, Jeon JS, Kim KM, An G (2003) A complete sequence of the pGA1611 binary vector. J Plant Biol 46:211–214

    Article  CAS  Google Scholar 

  • Kim MS, Kim HS, Kim HN, Kim YS, Baek KH, Park YI, Joung HU, Jeon JH (2007) Growth and tuberization of transgenic potato plants expressing sense and antisense sequences of Cu/Zn superoxide dismutase from lily chloroplasts. J Plant Biol 50:490–495

    Article  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant 113:323–331

    Article  PubMed  CAS  Google Scholar 

  • Kwon SY, Jeong YZ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882

    Article  Google Scholar 

  • Lee SC, Jeon JS, Jung KH, An G (1999) Binary vectors for efficient transformation of rice. J Plant Biol 42:310–316

    Article  CAS  Google Scholar 

  • Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol Cells 19:212–218

    PubMed  CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007a) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  PubMed  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007b) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    Article  PubMed  CAS  Google Scholar 

  • Malan C, Greyling MM, Gresse J (1990) Correlation between Cu/Zn superoxide dismutase and glutathione reductase and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69:157–166

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for ethrocuprein (hemocuperin). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, D’Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot (Lond) 99:1161–1173

    Article  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1993) Effects of Cu–Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 301:34–40

    Article  PubMed  CAS  Google Scholar 

  • Payon P, Allen RD, Trolinder N, Holaday AS (1997) Overexpression of chloroplast-targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L. cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity. Photosynth Res 52:233–244

    Article  Google Scholar 

  • Perl A, Perl-Trevs R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor Appl Genet 85:568–576

    Article  CAS  Google Scholar 

  • Pitcher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA (1991) Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol 97:452–455

    Article  PubMed  CAS  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2007) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  PubMed  Google Scholar 

  • Reveillaud I, Niedzwiecki A, Bensch KG, Fleming JE (1991) Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol Cell Biol 11:632–640

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Okumura T, Ohsuga H, Tanaka K (1992) Genomic structure of the gene for copper/zinc-superoxide dismutase in rice. FEBS Lett 301:185–189

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Nosaka Y, Tanaka K (1993) Cloning and sequencing analysis of a complementary DNA for manganese-superoxide dismutase from rice (Oryza sativa L.). Plant Physiol 103:1477–1478

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Okumura T, Kaminaka H, Sumi K, Tanaka K (1995) Structure and differential response to abscisic acid of two promoters for the cytosolic copper/zinc-superoxide dismutase genes, SodCc1 and SodCc2, in rice protoplasts. FEBS Lett 358:62–66

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Scott MD, Meshnick SR, Eaton JW (1987) Superoxide dismutase rich bacteria. Paradoxidal increase in oxidant toxicity. J Biol Chem 262:3640–3645

    PubMed  CAS  Google Scholar 

  • Selote DS, Khanna-Chopra R (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol Plant 121:462–471

    Article  CAS  Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  Google Scholar 

  • Srivalli B, Sharma G, Khanna-Chopra R (2003) Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant 119:503–512

    Article  CAS  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501–511

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K (2005) A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiol 137:317–327

    Article  PubMed  CAS  Google Scholar 

  • van Breusegem F, Slootan L, Stassart JM, Moens T, Botterman J, van Montagu M, Inze D (1999) Overexpression of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40:515–523

    PubMed  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Foro DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. IRRI, Los Baños, Philippines

    Google Scholar 

Download references

Acknowledgments

We thank Kang Lee for performing the hybridization experiment and Soo-Jin Kim for rice transformation. This research was supported in part by grants from the BioGreen 21 Program, RDA Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ryong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SC., Kwon, SY. & Kim, SR. Ectopic Expression of a Cold-Responsive CuZn Superoxide Dismutase Gene, SodCc1, in Transgenic Rice (Oryza sativa L.). J. Plant Biol. 52, 154–160 (2009). https://doi.org/10.1007/s12374-009-9017-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-009-9017-y

Keywords

Navigation