Skip to main content
Log in

Comparative Analysis of Drought-Responsive Transcriptome in Different Genotype Saccharum spontaneum L.

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Saccharum spontaneum L. is one of the most drought-resistant plants among sugarcane breeding materials. To elucidate the internal molecular mechanisms that occur under drought stress conditions in drought-resistant clone 13-13 and drought-sensitive clone 84-261 of S. spontaneum, functional genes closely associated with drought resistance were identified to improve the study and utilization of stress resistance genes in S. spontaneum. High-throughput transcriptome sequencing analyses were performed on the 13-13 and 84-261 clones of this species as well as on control leaves of these materials after 7 days of drought stress. The genes in these two samples that displayed very significant differential expression mainly participated in metabolic activities associated with abiotic stress or adversity, including plant hormone signal transduction, glycolysis/gluconeogenesis, starch and sucrose metabolism, photosynthesis, and oxidative phosphorylation. This study identified some key DEGs for drought resistance, such as DEGs involved in the osmotic regulator, ROS removal system, toxin-degrading enzymes, secondary metabolism, signaling, transcription factors, and biotic and abiotic stresses. We speculated that these genes may have played an important role to resist drought in S. spontaneum. This study identified changes in gene expression and obtained functional information on DEGs in two drought-stressed samples and control. The results showed that the 13-13 had more DEGs than the 84-261. In addition, 13-13 had more down-regulated genes than up-regulated genes, whereas 84-261 had more up-regulated genes than down-regulated genes. These results confirm that drought-resistant S. spontaneum uses the constitutive expression of certain genes to respond to drought stress, whereas drought-sensitive S. spontaneum expresses drought-resistant genes only during drought stress. Thus, the S. spontaneum clone 13-13 exhibited stronger drought resistance than clone 84-261. The results of this study indicate that the response of S. spontaneum to drought stress involves the coordinated regulation of multiple genes and multiple biological metabolic processes and suggest that changes in gene expression might be the major regulatory method through which this species copes with drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad, P., and M.N.V. Prasad. 2012. Abiotic stress responses in plants. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-0634-1.

    Book  Google Scholar 

  • Bhargava, S., and K. Sawant. 2013. Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding 132: 21–32.

    CAS  Google Scholar 

  • Birol, I., S.D. Jackman, C.B. Nielsen, J.Q. Qian, R. Varhol, G. Stazyk, R.D. Morin, Y. Zhao, M. Hirst, J.E. Schein, D.E. Horsman, J.M. Connors, R.D. Gascoyne, M.A. Marra, and S.J. Jones. 2009. De novo transcriptome assembly with ABySS. Bioinformatics 25 (21): 2872–2877.

    CAS  PubMed  Google Scholar 

  • Bray, E.A., J. Bailey-Serres, and E. Weretilnyk. 2000. Responses to abiotic stresses, biochemistry and molecular biology of plants, 1158–1203. Rockville: American Society of Plant Biologists.

    Google Scholar 

  • Bremer, G. 1961. Problems in breeding and cytology of sugar cane. Euphytica 12 (1): 178–188.

    Google Scholar 

  • Chaves, M.M., J.P. Maroco, and J.S. Pereira. 2003. Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology 30 (3): 239–264.

    CAS  PubMed  Google Scholar 

  • Chen, Y.Q., Z.H. Deng, C.F. Guo, R.K. Chen, and M.Q. Zhang. 2007. Drought resistant evaluations of commonly used parents and their derived varieties. Scientia Agricultura Sinica 40 (6): 1108–1117.

    CAS  Google Scholar 

  • Cheng, Z.Y., M. Li, Y. Shi, P. He, L.L. He, and F.S. Li. 2015. Research of drought-response mechanism in sugarcane by high through-put sequencing-based digital gene expression profiling. Molecular Plant Breeding 13 (9): 2018–2028.

    CAS  Google Scholar 

  • Commodity Research Bureau. 2015. The 2015 CRB commodity yearbook. Chicago, IL: Commodity Research Bureau.

    Google Scholar 

  • Cossu, R.M., T. Giordani, A. Cavallini, and L. Natali. 2014. High-throughput analysis of transcriptome variation during water deficit in a poplar hybrid: A general overview. Tree Genetics & Genomes 10 (1): 53–66.

    Google Scholar 

  • Dang, Z.H., L.L. Zheng, J. Wang, Z. Gao, S.B. Wu, Q. Zhi, and Y.C. Wang. 2013. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics 14: 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degenkolbe, T., P.T. Do, E. Zuther, D. Repsilber, D. Walther, D.K. Hincha, and K.I. Köhl. 2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Molecular Biology 69 (1–2): 133–153.

    CAS  PubMed  Google Scholar 

  • Foyer, C.H., and S. Shigeoka. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology 155 (1): 93–100.

    CAS  PubMed  Google Scholar 

  • Goel, D., A.K. Singh, V. Yadav, S.B. Babbar, and K.C. Bansal. 2010. Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245 (1–4): 133–141.

    CAS  PubMed  Google Scholar 

  • Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29 (7): 644–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grivet, L., and P. Arruda. 2002. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5 (2): 122–127.

    CAS  PubMed  Google Scholar 

  • Guo, B.Z. 1987. Flora of China, vol 10, number 2, 40. Bejing: Science Press.

    Google Scholar 

  • Guo, J.K., J. Wu, Q. Ji, C. Wang, L. Luo, Y. Yuan, Y.H. Wang, and J. Wang. 2008. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics Genomics 35 (2): 105–118.

    CAS  PubMed  Google Scholar 

  • Harvey, P.J., B.F. Campanella, P.M.L. Castro, H. Harms, E. Lichtfouse, A.R. Schäffner, S. Smrcek, and D. Werck-Reichhart. 2002. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environmental Science and Pollution Research 9 (1): 29–47.

    CAS  PubMed  Google Scholar 

  • Hornett, E.A., and C.W. Wheat. 2012. Quantitative RNA-Seq analysis in non-model species: Assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics 13 (1): 361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, H.H., M.Q. Dai, J.L. Yao, B.Z. Xiao, X.H. Li, Q.F. Zhang, and L.Z. Xiong. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PANS 103 (35): 12987–12992.

    CAS  Google Scholar 

  • Huang, C.M., L.T. Yang, Y.R. Li, Z.N. Deng, Y.W. Wei, and Y.Q. Pan. 2009. Isolation and characterization of a gene encoding the Δ-1-pyrroline-5-carboxy-late synthetase in sugar (Saccharum officinarum L.). Guangxi Agricultural Sciences 40 (2): 113–119.

    Google Scholar 

  • Huang, L.Y., F. Zhang, F. Zhang, W.S. Wang, Y.L. Zhou, B.Y. Fu, and Z.K. Li. 2014. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genomics 15: 1026.

    PubMed  PubMed Central  Google Scholar 

  • Humbert, S., S. Subedi, J. Cohn, B. Zeng, Y.M. Bi, X. Chen, T. Zhu, P.D. McNicholas, and S.J. Rothstein. 2013. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics 14: 3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakumanu, A., M.M.M. Ambavaram, C. Klumas, A. Krishnan, U. Batlang, E. Myers, R. Grene, and A. Pereira. 2012. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiology 160 (2): 846–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwaha, H.R., A.K. Singh, S.K. Sopory, S.L. Singla-Pareek, and A. Pareek. 2009. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics 10: 200.

    PubMed  PubMed Central  Google Scholar 

  • Lembke, C.G., M.Y. Nishiyama Jr., P.M. Sato, R.F. de Andrade, and G.M. Souza. 2012. Identification of sense and antisense transcripts regulated by drought in sugarcane. Plant Molecular Biology 79 (4–5): 461–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenka, S.K., A. Katiyar, V. Chinnusamy, and K.C. Bansal. 2011. Comparative analysis of drought responsive transcriptome in indica rice genotypes with contrasting drought tolerance. Plant Biotechnology Journal 9 (3): 315–327.

    CAS  PubMed  Google Scholar 

  • Li, B., and C.N. Dewey. 2011. RSEM: Accurate transcript quantification from RNA-Seq datawith or without a reference genome. BMC Bioinformatics 12: 323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J.M., B. Liu, F. Cheng, X.W. Wang, M.G.M. Aarts, and J. Wu. 2014. Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa. New Phytologist 203 (1): 182–194.

    CAS  Google Scholar 

  • Li, C.N., M.K. Srivastava, Q. Nong, L.T. Yang, and Y.R. Li. 2013. Molecular cloning and characterization of SoNCED, a novel gene encoding 9-cis-epoxycarotenoid dioxygenase from sugarcane (Saccharum officinarum L.). Genes & Genomics 35 (1): 101–109.

    CAS  Google Scholar 

  • Li, C.H., H.L. Sun, A.Q. Chen, X.X. Ning, H.F. Wu, S. Qin, Q.Z. Xue, and J.M. Zhao. 2010. Identification and characterization of an intracellular Cu, Zn-superoxide dismutase (icCu/ZnSOD) gene from clam Venerupis philippinarum. Fish & Shellfish Immunology 28 (3): 499–503.

    CAS  Google Scholar 

  • Liu, H.B., X.L. Liu, H.S. Su, X. Lu, C.H. Xu, J. Mao, X.Q. Lin, C.J. Li, X.J. Li, and Q.Y. Zi. 2017. Transcriptome difference analysis of Saccharum spontaneum roots in response to drought stress. Scientia Agricultura Sinica 50 (6): 1167–1178.

    Google Scholar 

  • Liu, J.X., Y.X. Que, J.L. Guo, L.P. Xu, J.Y. Wu, and R.K. Chen. 2012. Molecular cloning and expression analysis of a WRKY transcription factor in sugarcane. African Journal of Biotechnology 11 (24): 6434–6444.

    CAS  Google Scholar 

  • Liu, F.X., W.Y. Xu, Q. Wei, Z.H. Zhang, Z. Xing, L.B. Tan, C. Di, D.X. Yao, C.C. Wang, Y.J. Tan, H. Yan, Y. Ling, C.Q. Sun, Y.B. Xue, and Z. Su. 2010. Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica) and 93-11 (Indica) during oxidative stress. PLoS ONE 5: e8632.

    PubMed  PubMed Central  Google Scholar 

  • Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25 (4): 402–408.

    CAS  PubMed  Google Scholar 

  • Ma, W.J. 2013. Physiological change and gene expression response of Catalpa bungei superior clone 2–8 seedlings to drought stress. Beijing: Chinese Academy of Forestry.

    Google Scholar 

  • Ma, H., Z.Q. Lu, B.B. Liu, Q. Qiu, and J.Q. Liu. 2013. Transcriptome analyses of a Chinese hazelnut species Corylus mandshurica. BMC Plant Biology 13 (1): 152.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi, M., N.N.V. Kav, and M.K. Deyholos. 2007. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant, Cell and Environment 30 (5): 630–645.

    CAS  PubMed  Google Scholar 

  • Morant, M., S. Bak, B.L. Møller, and D. Werck-Reichhart. 2003. Plant cytochromes P450: Tools for pharmacology, plant protection and phytoremediation. Current Opinion in Biotechnology 14 (2): 151–162.

    CAS  PubMed  Google Scholar 

  • Oh, S.J., Y.S. Kim, C.W. Kwon, H.K. Park, J.S. Jeong, and J.K. Kim. 2009. Over expression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiology 150 (3): 1368–1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patade, V.Y., S. Bhargava, and P. Suprasanna. 2012. Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Molecular Biology Reports 39 (3): 3311–3318.

    CAS  PubMed  Google Scholar 

  • Patade, V.Y., A.N. Rai, and P. Suprasanna. 2010. Expression analysis of sugarcane shaggy-like kinase (SuSK) gene identified through cDNA subtractive hybridization in sugarcane (Saccharum officinarum L.). Protoplasma 248 (3): 613–621.

    PubMed  Google Scholar 

  • Prabu, G., and D.T. Prasad. 2012. Functional characterization of sugarcane MYB transcription factor gene promoter (PCcMYBAS1) in response to abiotic stresses and hormones. Plant Cell Reports 31 (4): 661–669.

    CAS  PubMed  Google Scholar 

  • Price, A.H., J.E. Cairns, P. Horton, H.G. Jones, and H. Griffiths. 2002. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: Progress and new opportunities to integrate stomatal and mesophyll responses. Journal of Experimental Botany 53 (371): 989–1004.

    CAS  PubMed  Google Scholar 

  • Qi, X.H., X.W. Xu, X.J. Lin, W.J. Zhang, and X.H. Chen. 2012. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99: 160–168.

    CAS  PubMed  Google Scholar 

  • Rabbani, M.A., K. Maruyama, H. Abe, M.A. Khan, K. Katsura, Y. Ito, K. Yoshiwara, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology 133 (4): 1755–1767.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy, A.R., W. Ramakrishna, A.C. Sekhar, N. Ithal, P.R. Babu, M.F. Bonaldo, M.B. Soares, and J.L. Bennetzen. 2002. Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L. subsp. Indica cv. Nagina 22). Genome 45 (1): 204–211.

    CAS  PubMed  Google Scholar 

  • Rodriguez-uribe, L., S.M. Higbie, J.M. Stewart, T. Wilkins, W. Lindemann, C. Sengupta-Gopalan, and J.F. Zhang. 2011. Identification of salt responsive genes using comparative microarray analysis in upland cotton (Gossypium hirsutum L.). Plant Science 180 (3): 461–469.

    CAS  PubMed  Google Scholar 

  • Ross, J., Y. Li, E. Lim, and D.J. Bowles. 2001. Higher plant glycosyltransferases. Genome Biology 2: reviews3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton, P.J., and I.E. Somssich. 1998. Transcriptional control of plant genes to responsive to pathogens. Current Opinion in Plant Biology 1 (4): 311–315.

    CAS  PubMed  Google Scholar 

  • Schuler, M.A., and D. Werck-Reichhart. 2003. Functional genomics of P450s. Annual Review of Plant Biology 54: 629–667.

    CAS  PubMed  Google Scholar 

  • Schweighofer, A., H. Hirt, and I. Meskiene. 2004. Plant PP2C phosphatases: Emerging functions in stress signaling. Trends in Plant Science 9 (5): 236–243.

    CAS  PubMed  Google Scholar 

  • Shan, X.H., Y.D. Li, Y. Jiang, Z.L. Jiang, W.Y. Hao, and Y.P. Yuan. 2013. Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Molecular Biology Reporter 31 (6): 1485–1491.

    CAS  Google Scholar 

  • Shanker, A.K., M.M. Maheswari, S.K. Yadav, S. Desai, D. Bhanu, N.B. Attal, and B. Venkateswarlu. 2014. Drought stress responses in crops. Functional & Integrative Genomics 14 (1): 11–22.

    CAS  Google Scholar 

  • Shi, T., Z.H. Gao, L.J. Wang, Z. Zhang, W.B. Zhuang, H.L. Sun, and W.J. Zhong. 2012. Identification of differentially-expressed genes associated with pistil abortion in Japanese apricot by genome-wide transcriptional analysis. PLoS ONE 7 (10): e47810.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki, K., and K. Yamaguchi-Shinozaki. 1997. Gene expression and signal transduction in water stress response. Plant Physiology 115 (2): 327–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki, K., and K. Yamaguchi-Shinozaki. 2000. Molecular responses to dehydration and low temperature: Differences and cross talk between two stress signaling pathways. Current Opinion Plant Biology 3 (3): 217–223.

    CAS  Google Scholar 

  • Shinozaki, K., and K. Yamaguchi-Shinozaki. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58 (2): 221–227.

    CAS  PubMed  Google Scholar 

  • Sreeinivasan, T.V., B.S. Ahloowalia, D.J. Heinz, and D.J. Heinz. 1987. Sugarcane improvement through breeding, 211–253. Amsterdam: Elsevier.

    Google Scholar 

  • Tao, X., Y.H. Gu, H.Y. Wang, W. Zheng, X. Li, C.W. Zhao, and Y.Z. Zhang. 2012. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS ONE 7 (4): e36234.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo, L.E., M. Sotolongo, C. Menéndez, M.E. Ochogavía, Y. Coll, I. Hernández, O. Borrás-Hidalgo, B.P. Thomma, P. Vera, and L. Hernández. 2008. SodERF3, a novel sugarcane ethylene responsive factor (ERF) enhances salt and drought tolerance when over expressed in tobacco plants. Plant and Cell Physiology 49 (4): 512–525.

    CAS  PubMed  Google Scholar 

  • Valliyodan, B., and H.T. Nguyen. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology 9 (2): 189–195.

    CAS  PubMed  Google Scholar 

  • Waclawovsky, A.J., P.M. Sato, C.G. Lembke, P.H. Moore, and G.M. Souza. 2010. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnology Journal 8 (3): 263–276.

    CAS  PubMed  Google Scholar 

  • Wang, L., P.H. Li, and T.P. Brutnell. 2010. Exploring plant transcriptomes using ultra high-throughput sequencing. Briefings in Functional Genomics 9 (2): 118–128.

    CAS  PubMed  Google Scholar 

  • Wang, T.J., X.H. Wang, and Q.H. Yang. 2017. Comprehensive evaluation on drought resistance difference of twenty-six Saccharum spontaneum L. accessions. Chinese Journal of Tropical Crops 38 (9): 1–7.

    Google Scholar 

  • Wang, H.G., H.L. Zhang, F.H. Gao, J.X. Li, and Z.C. Li. 2007. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theoretical and Applied Genetics 115: 1109–1126.

    CAS  PubMed  Google Scholar 

  • Winicov, I. 1998. New molecular approaches to improving salt tolerance in crop plants. Annals of Botany 82 (6): 703–710.

    CAS  Google Scholar 

  • Wu, H.L., D. Chen, J.X. Li, B. Yu, X.Y. Qiao, H.L. Huang, and Y.M. He. 2013. De Novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensis). Plant Molecular Biology Reporter 31 (3): 524–538.

    CAS  Google Scholar 

  • Xue, T., D. Wang, S. Zhang, J. Ehlting, F. Ni, S. Jakab, C. Zheng, and Y. Zhong. 2008. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9: 550–570.

    PubMed  PubMed Central  Google Scholar 

  • Yu, L.J., Y.F. Luo, B. Liao, L.J. Xie, L. Chen, S. Xiao, J.T. Li, S.N. Hu, and W.S. Shu. 2012a. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytologist 195 (1): 97–112.

    CAS  Google Scholar 

  • Yu, S.C., F.L. Zhang, Y.J. Yu, D.S. Zhang, X.Y. Zhao, and W.H. Wang. 2012b. Transcriptome profiling of dehydration stress in the Chinese Cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Molecular Biology Reporter 30 (1): 17–28.

    CAS  Google Scholar 

  • Zhou, Z.S., S.N. Yang, H. Li, C.C. Zhu, Z.P. Liu, and Z.M. Yang. 2013. Molecular dissection of mercury responsive transcriptome and sense/antisense genes in Medicago truncatula. Journal of Hazardous Materials 252–253: 123–131.

    PubMed  Google Scholar 

  • Zhu, J.K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology 124 (3): 941–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J.H., P.E. Verslues, X.W. Zheng, B.H. Lee, X.Q. Zhan, Y. Manabe, I. Sokolchik, Y.M. Zhu, C.H. Dong, J.K. Zhu, P.M. Hasegawa, and R.A. Bressan. 2010. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Nati Acad Sci USA 102 (28): 9966–9971.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Major Project of the National Natural Science Foundation of China (Nos. 31460372, 31260348, 31760417).

Author information

Authors and Affiliations

Authors

Contributions

QHY, XHW, and TJW conceived and designed the experiments and contributed to the writing of the manuscript. TJW performed the experiments. TJW and XHW analyzed the data. QHY contributed reagents/materials. All authors read and approved the final manuscript. With the consent of all copyright owners, the above paper will be published on ‘Sugar Tech.’

Corresponding authors

Correspondence to Xian-Hong Wang or Qing-Hui Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 9, 10, 11, and 12.

Fig. 9
figure 9

Top 20 pathway entries of the DEGs for Q1 versus Q2

Fig. 10
figure 10

Top 20 pathway entries of the DEGs for R1 versus R2

Fig. 11
figure 11

Top 20 pathway entries of the DEGs for Q1 versus R1

Fig. 12
figure 12

Top 20 pathway entries of the DEGs for Q2 versus R2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TJ., Wang, XH. & Yang, QH. Comparative Analysis of Drought-Responsive Transcriptome in Different Genotype Saccharum spontaneum L.. Sugar Tech 22, 411–427 (2020). https://doi.org/10.1007/s12355-019-00774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-019-00774-1

Keywords

Navigation