Skip to main content
Log in

Induced Response of Sugarcane Variety Co 86032 for Thermotolerance

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

A study was conducted to investigate the induced and non-induced response of sugarcane variety Co 86032 by heat acclimation both under in vivo and in vitro conditions. For in vivo condition, 30 days old sugarcane settlings (Co 86032) were subjected to optimum induction temperature (40 °C with 10 h time) followed by critical temperature condition of 48 °C with 10 h. For in vitro condition, calli of Co 86032 were subjected to optimum induction temperature condition of 42 °C with 10 h time followed by critical temperature condition of 48 °C with 15 h. Adaptive response of settlings and calli by heat acclimation were estimated in terms of soluble protein, total sugars, total phenolics, proline, glycine-betaine (GB) and ROS scavenging enzymes activities (SOD, POX and APX) and isozyme pattern (SOD and POX). Higher levels of soluble sugars, proteins, proline and GB were observed in pretreated settlings and calli. Significant differences in responses of SOD, POX and APX activities were observed in both induced and non induced settlings and calli. However heat acclimations (induced) led to higher activities of these enzymes and thereby protect the cells from oxidative damage. Exposure to high temperature caused a significant increase in lipid peroxidation (MDA content) and cell membrane injury (%), however pre treated settling and calli recorded lesser cell membrane damage. Formation of additional protein bands of different molecular weights (90, 70 and 27 kDa) showed the expression of these proteins upon heat acclimation particularly at 40 °C in settlings and 42 °C in calli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate. 1
Plate. 2
Plate. 3

Similar content being viewed by others

References

  • Ashraf, M., and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59: 206–216.

    Article  CAS  Google Scholar 

  • Ashraf, M., M.M. Saeed, and M.J. Qureshi. 1994. Tolerance to high temperature in Cotton (Gossypium hirsutum L.) at initial growth stages. Environmental and Experimental Botany 34: 275–283.

    Article  Google Scholar 

  • Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44(1): 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert, H.J., Q. Gong, P. Li, and S. Ma. 2006. Unraveling abiotic stress tolerance mechanisms—getting genomics going. Current Opinion in Plant Biology 9: 180–188.

    Article  PubMed  CAS  Google Scholar 

  • Blum, A., N. Klueva, and H.T. Nguyen. 2001. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117: 117–123.

    Article  Google Scholar 

  • Chaitanya, K.V., D. Sundar, and A.R. Reddy. 2001. Mulberry leaf metabolism under high temperature stress. Biologia Plantarum 44: 379–384.

    Article  CAS  Google Scholar 

  • Chen, T.H.H., Z.Y. Shen, and P.H. Lee. 1982. Adaptability of crop plants to high temperature stress. Crop Science 22: 719–725.

    Article  Google Scholar 

  • Cushman, J.C., and H.J. Bohnert. 2000. Genomic approaches to plant stress tolerance. Plant biology 3: 117–124.

    CAS  Google Scholar 

  • Gomathi, R., S. Vasantha, G. Hemaprabha, S. Alarmelu, and R.M. Shanthi. 2011. Evaluation of elite sugarcane clones for drought tolerance. Journal of Sugar Research. 1: 55–62.

    Google Scholar 

  • Gong, M., S.N. Chen, Y.Q. Song, and Z.G. Li. 1997. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Australian Journal of Plant Physiology. 24: 371–379.

    Article  CAS  Google Scholar 

  • Gong, M., M.R. Knight, and A.J. Trewavas. 1998. Heat-shock-induced changes of intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiology 116: 429–437.

    Article  CAS  Google Scholar 

  • Grieve, C.M., and S.R. Grattan. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil 70: 303–307.

    Article  CAS  Google Scholar 

  • Hatice, G., and E. Atilla. 2003. Some physiological changes in strawberry (Fragaria × ananassa ‘Camarosa’) plants under heat stress. Journal of Horticultural Science and Biotechnology 78: 894–898.

    Google Scholar 

  • Heath, R.L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives In Biochemistry and Biophysics 125: 189–198.

    Article  CAS  Google Scholar 

  • Hong, S.-W., U. Lee, and E. Vierling. 2003. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiology 132: 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Ismail, A.M., and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science 39: 1762–1768.

    Article  Google Scholar 

  • Jain, M., G. Mathur, S. Koul, and N.B. Sarin. 2001. Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines ground nut (Archis hypogea L.). Plant cell reproduction 20: 463–468.

    Article  CAS  Google Scholar 

  • Jiang, Y., and B. Haung. 2001. Plants and the environment. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany 52: 341–349.

    Article  PubMed  CAS  Google Scholar 

  • Koning, A.J., R. Rose, and L. Comai. 1992. Developmental expression of tomato heat-shock cognate protein 80. Plant Physiology 100: 801–811.

    Article  PubMed  CAS  Google Scholar 

  • Krishna, P., and G. Gloor. 2001. The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6: 238–246.

    Article  PubMed  CAS  Google Scholar 

  • Krishna, P., M. Sacco, J.F. Cherutti, and S. Hill. 1995. Cold-induced accumulation of Hsp90 transcripts in Brassica napus. Plant Physiology 107: 915–923.

    PubMed  CAS  Google Scholar 

  • Larkindale, J., and B. Huang. 2004. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology 161: 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, J., 1980. Responses of plants to environmental stresses. Chilling, Freezing and High Temperature Stresses.vol. 1. New York: Academic Press.

  • Leopold, A.C., M.E. Musgrave, and K.M. Williams. 1981. Solute leakage resulting from leaf desiccation. Plant Physiology 68: 1222–1225.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Malik, C.P., and M.B. Singh. 1980. Plant enzymology and histo- enzymology. New Delhi: Kalyani Publishers.

    Google Scholar 

  • Marcum, K.B. 1998. Cell membrane thermostability and whole plant heat tolerance of Kentucky bluegrass. Crop Science 38: 1214–1218.

    Article  Google Scholar 

  • Marrs, K.A., E.S. Casey, S.A. Capitant, R.A. Bouchard, P.S. Dietrich, I.J. Mettler, and R.M. Sinibaldi. 1993. Characterization of two maize Hsp90 heat shock protein genes: expression during heat shock, embryogenesis, and pollen development. Developmental Genetics 14: 27–41.

    Article  PubMed  CAS  Google Scholar 

  • Matysik, J., B. Alia Bhalu, and P. Mohanty. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science 82: 525–532.

    CAS  Google Scholar 

  • Moyer, R.A., K.E. Hummer, C.E. Finn, B. Frei, and R.E. Wrolstad. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, Rubus, and Ribes. Journal of Agricultural Food Chemistry 50: 519–525.

    Article  CAS  Google Scholar 

  • Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiology 22: 867–880.

    CAS  Google Scholar 

  • Quan, R., M. Shang, H. Zhang, Y. Zhao, and J. Zhang. 2004. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal 2: 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Rutherford, S., J.R. Knapp, and P. Csermely. 2007. Hsp90 and developmental networks. Advances in Experimental Medical Biology. 594: 192–197.

    Google Scholar 

  • Sairam, R.K., and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86: 407–421.

    CAS  Google Scholar 

  • Sakamoto, A., and N. Murata. 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environment 25: 163–171.

    Article  CAS  Google Scholar 

  • Sangwan, V., and R.S. Dhindsa. 2002. In vivo and in vitro activation of temperature-responsive plant map kinases. FEBS Letters 531: 561–564.

    Article  PubMed  CAS  Google Scholar 

  • Sanjam, M.J., B. Tucic, and G. Matic. 2010. Differential expression of Heat Shock proteins Hsp70 and Hsp90 in vegetative and reproductive tissues of Iris pumila. Acta Physiologia Plantarum. 33: 233–240.

    Google Scholar 

  • Scandalios, J.G., A. Acevedo, and S. Ruzsa. 2000. Catalase gene expression in response to chronic high temperature stress in maize. Plant Science 156: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Scharf, K.D., H. Heider, I. Hohfeld, R. Lyck, E. Schmidt, and L. Nover. 1998. The tomato Hsf system: hsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology 18: 2240–2251.

    PubMed  CAS  Google Scholar 

  • Sgherri, C., B. Stevanovic, and F. Navari-Izzo. 2004. Role of phenolics in the antioxidative status of the resurrection plant Ramonda serbica during dehydration and rehydration. Physiologia Plantarum 122: 478–488.

    Article  CAS  Google Scholar 

  • Steel, R.G.D., J.H. Torrie, and D.A. Dickey. 1996. Principles and procedures of statistics: a biometrical approach, 3rd ed. New York: McGraw Hill.

    Google Scholar 

  • Sung, D.-Y., F. Kaplan, K.-J. Lee, and C.L. Guy. 2003. Acquired tolerance to temperature extremes. Trends in Plant Science 8: 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Taiz, L., and E. Zeiger. 2006. Plant Physiology. Massachusetts: Sinauer Associates Inc. Publishers.

    Google Scholar 

  • Tripathy, J.N., J. Zhang, S. Robin, T.T. Nguyen, and H.T. Nguyen. 2000. QTLs for cellmembrane stability mapped in rice (Oryza sativa L.) under drought stress. Theoretical and Applied Genetics 100: 1197–1202.

    Article  CAS  Google Scholar 

  • Vierling, E. 1991. The role of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology. 42: 579–620.

    Article  CAS  Google Scholar 

  • Wahid, A., and A. Ghazanfar. 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology 163: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Wahid, A., and A. Shabbir. 2005. Induction of heat stress tolerance in Barely seedlings by pre sowing seed treatment with glycinebetaine. Plant Growth Regulation 46: 133–141.

    Article  CAS  Google Scholar 

  • Wahid, A., and T.J. Close. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum 51: 104–109.

    Article  CAS  Google Scholar 

  • Wang, L.J., and S.H. Li. 2006. Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis Vinifera L.) leaves. Plant Growth Regulation 48: 137–144.

    Article  CAS  Google Scholar 

  • Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.H., T. Caspar, J. Browse, S. Lindquist, and C. Somerville. 1988. Characterization of an Hsp 70 cognate gene family in Arabidopsis. Plant Physiology 88: 731–740.

    Article  PubMed  CAS  Google Scholar 

  • Xu, S., J. Li, X. Zhang, H. Wei, and L. Cui. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultra structure of chloroplasts in two cool-season turf grass species under heat stress. Environmental and Experimental Botany 56: 274–285.

    Article  CAS  Google Scholar 

  • Ye, L.A., H.Y. Gao, and Q. Zou. 2000. Responses of antioxidant system and xanthophylls cycle in Phaseolus vulgaris to combined stress of high irradiance and high temperature. Photosynthesis 38: 205–210.

    Article  CAS  Google Scholar 

  • Yin, H., Q.M. Chen, and M.F. Yi. 2008. Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation 54: 45–54.

    Article  CAS  Google Scholar 

  • Yoshida, S., D.A. Forno, J.H. Cock, and K.U. Gomaz. 1976. Laboratory Manual for Physiological Studies of Rice. Los Baños: IRRI.

    Google Scholar 

  • Yuan, Y., H. Qian, Y. Yu, F. Lian, and D. Tang. 2011. Thermotolerance and antioxidant response induced by heat acclimation in Freesia seedlings. Acta Physiologiae Plantarum 33: 1001–1009.

    Article  CAS  Google Scholar 

  • Zhaolong, W., and H. Bingru. 2004. Physiological recovery of Kentucky bluegrass from simulation drought and leaf stress. Crop Science 44: 1729–1736.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Director, Sugarcane Breeding Institute, Coimbatore and Head, Division of Crop Production for providing facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gomathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomathi, R., Yukashini, K., Shiyamala, S. et al. Induced Response of Sugarcane Variety Co 86032 for Thermotolerance. Sugar Tech 15, 17–26 (2013). https://doi.org/10.1007/s12355-012-0192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-012-0192-7

Keywords

Navigation