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Abstract Carcinoma-associated fibroblasts (CAFs) contrib-
ute to both tumor growth and cancer progression. In this
report, we applied an emerging transcription factor (TF)
activity array to fibroblasts to capture the activity of the
intracellular signaling network and to define a signature that
distinguishes mammary CAFs from normal mammary fibro-
blasts. Normal fibroblasts that restrained cancer cell inva-
sion developed into an invasion-promoting CAF phenotype
through exposure to conditioned medium from MDA-MB-
231 breast cancer cells. A myofibroblast-like CAF cell line
expressing high levels of smooth muscle actin was com-
pared to normal mammary fibroblasts before and after

induction. Comparison of TF activity profiles for all three
fibroblast types identified a TF activity signature common to
CAFs which included activation of reporters for TFs ELK1,
GATA1, retinoic acid receptor (RAR), serum response fac-
tor (SRF), and vitamin D receptor (VDR). Additionally,
CAFs resembling myofibroblasts, relative to normal fibro-
blasts, had elevated activation corresponding to NF-kappaB,
RUNX2, and YY1, and distinct activity patterns for several
differentiation-related TF reporters. Induction of CAFs by
exposure of normal fibroblasts to conditioned medium from
MDA-MB-231 cells resulted in increased activation of
reporters for HIF1, several STAT TFs, and proliferation-

Electronic supplementary material The online version of this article
(doi:10.1007/s12307-012-0121-z) contains supplementary material,
which is available to authorized users.

A. Siletz : E. Kniazeva : L. D. Shea
Department of Chemical and Biological Engineering, McCormick
School of Engineering, Northwestern University,
Technological Institute E-136, 2145 Sheridan Road,
Evanston, IL 60208, USA

A. Siletz
Medical Scientist Training Program, Northwestern University
Feinberg School of Medicine,
303 E. Chicago Avenue,
Chicago, IL 60611, USA

J. S. Jeruss
Department of Surgery, Robert H. Lurie Comprehensive Cancer
Center, Northwestern University Feinberg School of Medicine,
303 E. Superior Street,
Chicago, IL 60611, USA

J. S. Jeruss : L. D. Shea
Robert H. Lurie Comprehensive Cancer Center, Northwestern
University,
303 E. Superior Street,
Chicago, IL 60611, USA

L. D. Shea
Institute for BioNanotechnology in Medicine (IBNAM),
Northwestern University,
303 E. Superior Street, Suite 11-131,
Chicago, IL 60611, USA

L. D. Shea
Chemistry of Life Processes Institute (CLP),
Northwestern University,
2170 Campus Drive,
Evanston, IL 60208, USA

L. D. Shea (*)
Department of Chemical and Biological Engineering,
Northwestern University,
Technological Institute E-136, 2145 Sheridan Road,
Evanston, IL 60208-3120, USA
e-mail: l-shea@northwestern.edu

Cancer Microenvironment (2013) 6:91–107
DOI 10.1007/s12307-012-0121-z

http://dx.doi.org/10.1007/s12307-012-0121-z


related TFs such as AP1. Myofibroblast-like CAFs and
induced normal mammary fibroblasts promoted invasion
of breast cancer cells by distinct mechanisms, consistent
with their distinct patterns of TF activation. The TF activity
profiles of CAF subtypes provide an overview of intracel-
lular signaling associated with the induction of a pro-
invasive stroma, and provide a mechanistic link between
the microenvironmental stimuli and phenotypic response.

Keywords Carcinoma-associated fibroblasts . Breast
cancer . Transcription factors . Gene regulation . Induction

Introduction

Cancer is a disease of dysfunctional organogenesis that
cannot be fully understood by considering cancer cells in
isolation from other cell types [1–5]. The importance of
noncancerous, supportive cell types in tumor development
is reflected by the value of stromal characteristics in predic-
tion of disease progression and treatment response [6–12].
In addition to impacting response, stromal cells such as
carcinoma-associated fibroblasts (CAFs) are attractive ther-
apeutic targets, as these cells are relatively stable genetically
and less prone than cancer cells to developing resistance [2,
5, 13]. The important contribution of fibroblasts to cancer
progression, in combination with the potential to target these
cells and curtail therapeutic resistance, has fueled interest in
these supportive tumor cells.

Normal fibroblasts restrain tumor growth and help to
guide normal tissue homeostasis [14–18]. CAFs, which
resemble activated fibroblasts in wound healing and fibro-
sis, contribute to cancer progression by directly stimulating
cancer cell proliferation and invasion, as well as by promot-
ing angiogenesis, lymphangiogenesis, and immune evasion
[5, 18–28]. Myofibroblasts are increased in cancer stroma,
wounds and fibrotic tissue and can contribute to cancer
progression [5, 22, 26]. Thus, the myofibroblast protein α-
smooth muscle actin (α-SMA) is frequently used as a mark-
er for CAFs [21, 26, 29, 30]. However, some reports indi-
cate that less than half of fibroblasts in mammary tumor
stroma are α-SMA-positive [31, 32]. Additionally, α-SMA
does not always correlate with the growth- and invasion-
promoting properties of CAFs, and fibroblasts can assume a
tumor-supporting role without upregulating α-SMA [31, 33,
34]. The analysis of CAFs has identified considerable het-
erogeneity that has complicated the study of CAFs with
tumor-supporting properties [13, 21, 32, 33, 35–37]. Fibro-
blasts in noncancerous tissues with phenotypic and func-
tional heterogeneity represent distinct and stably-
differentiated fibroblast subtypes [38, 39], and we hypothe-
size that this is also true of CAFs [13].

The heterogeneity of CAFs and their function can be
investigated using a systems biology approach, as complex
effects on tumor progression likely result from alterations in
multiple cellular processes [40]. Stromal gene expression
profiles captured by microarrays have prognostic signifi-
cance in several cancers [36, 41, 42]. Furthermore, expres-
sion profiles have shown that fibroblasts exposed to tumor
cells [43] or serum [38] maintain distinctly differentiated
phenotypes. While mRNA expression profiles have provid-
ed a means to characterize these cells, additional techniques
that identify active cellular processes could facilitate a more
complete view of fibroblast activation and the promotion of
tumor invasion.

In this study, we applied an emerging transcription factor
(TF) activity array [44, 45] to fibroblasts to capture the
activity of the intracellular signaling network associated
with distinct cellular phenotypes. TFs are powerful effectors
of cellular responses, as indicated by their ability to turn
fibroblasts into induced pluripotent stem cells [46] yet their
activity is not well captured by microarrays due to the
potential for post-translational regulation and cellular com-
partmentalization. The novel TF activity array allows for
large-scale analysis of multiple TFs simultaneously, and was
applied to normal fibroblasts and CAFs. The array was also
applied to analyze the activation of normal fibroblasts by
cancer cells. These CAFs were subsequently analyzed for
the mechanisms involved in promotion of invasion by breast
cancer cells, with the goal of connecting the pattern of TF
activity and marker expression with the cell phenotype. The
TF activity networks in CAFs provide a broad view of the
intracellular signaling associated with the induction of a pro-
invasive stroma, and may ultimately identify potential tar-
gets that will aid in the reversion of CAFs to a tumor-
suppressive role.

Materials and Methods

Cell lines and Cell Culture Normal mammary fibroblast
(NMF pBabe p53/NMFp) and carcinoma-associated fibro-
blast (CAF pBabe p53/CAFp) parent lines were a gift of Dr
Vincent Cryns. NMF pBabe p53 had been originally isolated
from reduction mammoplasty and CAF pBabe p53 had been
isolated from an invasive ductal carcinoma with enzymatic
digestion and differential centrifugation according to an IRB-
approved protocol [26, 47]. Both lines had been immortalized
by retroviral infection with pBABEp53DN followed by puro-
mycin (1 μg/mL) selection. BJ HFF were obtained from
American Type Culture Collection (ATCC). Cells were main-
tained in DMEM/F12 supplemented with 10 % fetal bovine
serum (FBS) (Benchmark), penicillin/streptomycin, non-
essential amino acids, and insulin-transferrin-selenium sup-
plement (Sigma-Aldrich) (“Fibroblast medium”). Fibroblasts
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were used before passage 15 for all experiments. MDA-MB-
231 cells were obtained from ATCC and maintained in
DMEM/F12 supplemented with 10 % FBS, penicillin/strep-
tomycin, non-essential amino acids, and sodium pyruvate
(“MEC medium”). Immortalized human mammary luminal
epithelial (HMLE) cells were a gift of Dr Robert Weinberg
and were maintained in mammary epithelial growth complete
medium (Lonza) supplemented with bovine pituitary extract
per the manufacturer’s instructions (Lonza).

Conditioned Media Experiments Fibroblast-conditioned
media were collected for treatment of mammary epithelial
cells (MECs). Fibroblasts were allowed to proliferate until
they covered approximately 30 % of the culture flask sur-
face area. Medium was then replaced with fresh MEC
medium, which was conditioned for 48 h and then filtered
(0.2 μm, Millipore) and mixed in a 1:1 ratio with fresh MEC
medium. The mixture was stored at −20 °C until use.

For culture of MECs in fibroblast-conditioned media,
MDA-MB-231 or HMLE cells were plated at a density of
2×104 cells/cm2 in NMFp-, CAFp,- iNMFp-conditioned, or
control medium. Cells were allowed to proliferate for 1 week
with complete media changes every 2–3 days. After 7 days,
cells were either collected by trypsinization and snap frozen
in liquid nitrogen for later quantitative PCR analysis
(HMLE cells), or serum starved in MEC media without
FBS overnight for invasion assays (MDA-MB-231 cells).

To generate cancer cell-conditioned medium, fresh fibro-
blast medium was conditioned by MDA-MB-231 cells cov-
ering approximately 30 % of the culture flask surface area
for 48 h before collection and filtering through a 0.2 μm
filter (Millipore). MDA-MB-231-conditioned medium was
mixed in a 1:1 ratio with fresh medium and stored at −20 °C
until use. To generate iNMFp and iCAFp (induced fibro-
blasts), NMFp and CAFp were grown in the 1:1 mixture of
conditioned:fresh media for 14 days. Following induction,
iNMFp and iCAFp were grown in fresh fibroblast medium.
Phenotypes were stable for several weeks. For all condi-
tioned media experiments, control medium was generated
by filtering fresh medium through a 0.2 μm filter, mixing
1:1 with unfiltered medium, and frozen as described for
conditioned medium, until use.

Direct Co-culture Experiments One day prior to plating in
co-culture with fibroblasts, MDA-MB-231 cells were
stained with the fluorescent vital dye CellTrace CFSE
(Invitrogen). The HMLE line expressed green fluorescent
protein at high levels so staining was not necessary to
distinguish HMLEs from co-cultured fibroblasts. For co-
culture, cells were plated at a density of 2×104 cells/cm2

(MECs): 1×104 cells/cm2 (fibroblasts) for a total of 3×104

cells/cm2. Control MECs cultured alone were plated at 3×

104 cells/cm2. Co-culture proceeded for 5 days before cells
were trypsinized, filtered (100 μm, Millipore), resuspended
in 0.5 % bovine serum albumin in phosphate-buffered sa-
line, and MEC populations isolated by fluorescence activat-
ed cell sorting (FACS) using a Beckmann Coulter MoFlo
High Speed Cell Sorter. A small amount of each isolated
MEC sample was plated in a 96-well plate following sorting
and inspected to confirm that sorting was effective in re-
moving the fibroblasts from MEC samples. Following sort-
ing, HMLE cells were pelleted by centrifugation, snap
frozen in minimal medium and stored at −80 °C for qPCR.
MDA-MB-231 cells were re-plated in MEC medium for 8 h
to allow attachment to the plate. Medium was then changed
to MEC medium without FBS and cells were incubated
overnight prior to invasion assays. In a pilot study, growing
fibroblasts in conditioned medium from the aggressive
breast adenocarcinoma MDA-MB-231 cell line produced
similar gene expression changes in fibroblasts as direct co-
culture with cancer cells. Consequently, large-scale experi-
ments were performed using conditioned medium for exper-
imental simplicity.

Invasion Assays MDA-MB-231 cells were isolated by
FACS following direct co-culture so that changes in their
intrinsic invasive properties induced by contact with fibro-
blasts could be studied without the confounding effect of
increased matrix degradation in the presence of fibroblasts.
Serum-starved MDA-MB-231 cells were collected using a
cell scraper and plated at a density of 2×104 cells per
chamber in modified Boyden chambers (BD Biosciences)
in serum-free medium. Medium containing 10 % FBS was
used as a chemoattractant in the bottom chamber. Negative
control wells contained serum-free medium rather than
FBS-containing medium. Each well contained cells from
an independent co-culture or conditioned medium experi-
ment; for experiments involving iNMFs, each well
contained MDA-MB-231s cultured with independently-
induced iNMFs. Invasion chambers were incubated at
37 °C for approximately 72 h, after which total cells visible
in 4 separate fields per chamber were counted and averages
for each well calculated. Cells remaining in the top chamber
(i.e., cells that did not invade) were then removed with a
cotton swab and chambers were fixed and stained in 0.5 %
crystal violet solution in 60 % ethanol/40 % phosphate-
buffered saline for 1 h. Remaining (invaded) cells in 4
separate fields per well were then counted and averaged
for each well. Average invaded cells divided by average
total cells for each well was interpreted as the invasive
percentage of cells for that well. Invasion assays were re-
peated 2–6 times for each condition.

Quantitative PCR RNAwas extracted using the RNeasy kit
(Qiagen) and included DNAseI incubation (Qiagen) to
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remove genomic DNA. Total RNA was quantified using a
NanoDrop Spectrophotometer (Thermo Scientific) and an
equal amount of RNA was added to each cDNA reaction.
cDNA was reverse transcribed using the Accuscript First-
rand cDNA synthesis kit (Agilent) and random hexamer
primers. For qPCR, the following Taqman assays were used
(all from Applied Biosystems, Foster City, CA; assay ID
number follows gene name): 18 s, HS99999901_s1; α-
SMA, Hs00426835_g1; Caveolin 1, Hs00971716_m1;
E-cadherin, Hs01023894_m1; N-cadherin, H200983056;
Fibroblast activating protein, Hs00990806_m1; GAPDH,
Hs03929-97_g1; Keratin 5, H300361185_m1; MMP1,
Hs00899658_m1; MMP3, Hs00968305_m1; MMP14,
Hs00237119_m1; Vimentin, Hs01549976. Primer sequen-
ces are referenced on the Applied Biosystems website.
qPCR was performed using the Applied Biosystems
7900HT Fast Real-Time PCR System (Applied Biosys-
tems). Fold change in gene expression following treatment
was calculated using the ΔΔCt method using GAPDH (for
fibroblasts) and 18 s (for MECs) as endogenous controls
after validating that expression of these genes did not vary
with experimental conditions for each cell type. Relative
gene expression in different fibroblast cell lines was calculated
as 2^-ΔCt and reported relative to the level in NMFp. At least
three independent samples collected on different days were
run for each comparison.

Immunoassays Medium was collected from 3 to 6 indepen-
dent cultures of each fibroblast cell line, centrifuged to
remove particulates, and frozen at −80 °C until use. Prosta-
glandin E2 was quantified using the Parameter PGE2 kit
(R&D Systems); transforming growth factor β1 and stromal
cell-derived factor 1α were quantified using Duokit
enzyme-linked immunosorbent assays (R&D Systems)
according to the manufacturer’s instructions.

Collagen Staining Each fibroblast cell line was plated into
5–6 wells of chamber slides and cultured until cells covered
approximately 50 % of each well. Medium was then re-
moved and cells were fixed in 4 % paraformaldehyde for
2 h. Cultures were then stained with picrosirius red
(Polysciences) which stains collagen I and III [48] according
to the manufacturer’s instructions. Following wash, slides
were photographed and retention of picrosirius red stain
quantified using ImageJ (National Institiutes of Health).
Staining intensity values for each well were normalized to
the average level for corresponding NMFp wells within
each experiment.

TF Activity Reporter Arrays The TF activity array, like
traditional luciferase assays, uses TF-specific binding sites
driving expression of firefly luciferase to quantify TF-
dependent transactivation. The TF activity array consists

of multiplexed single transcription factor reporters with
each TF reporter expressed in parallel in a different well
of a 384-well plate. TF reporters consist of a specific
TF response element (Supplementary Table 1) cloned
upstream of a TA promoter driving the gene for firefly
luciferase (FLUC) and are packaged in self-inactivating
lentiviral vectors. The reporters are referred to using
italicized letters to indicate that data are readouts from
DNA sequences (reporter constructs) known to be trans-
activated by the specific TFs for which they are named
(Weiss et al., in preparation; Siletz, unpublished results;
additional reporter specificity and sensitivity studies are
referenced on the TRANSFAC database [49] and Prom-
ega website, www.panomics.com). The suffix –r is
added to indicate that the DNA sequence is a trans-
activation reporter, and not the gene encoding the TF
(Table 1). To fabricate arrays, fibroblasts were removed from
culture flasks by trypsinization, spun down and resuspended
in complete medium. Fibroblasts were transduced with lenti-
viral vectors at a multiplicity of infection of approximately 50,
and plated at 3×104 cells/cm2 in black 384-well plates
(Greiner Bio-One). Plated arrays were incubated for 5 days
to allow full reporter expression. On the 5th day after plating,
D-Luciferin (Caliper) was added to all wells to a final con-
centration of 1 mM and allowed to equilibrate for 10 min.
Arrays were imaged using a Lumina LTE Xenogen IVIS
camera (Caliper) and photon flux (photons/second) for each
well was measured. A basal TA-FLUC construct without
specific TF binding sequences was included in all arrays to
control for differences in basal transcription rate. To interpret
luminescent signal, luminescence for each well was nor-
malized to the average luminescence from corresponding
TA-FLUC control wells to account for differences in basal
TA activity between cell types. Normalized values were
expressed as levels relative to levels for the NMFp cell
line to account for differences in viral vector transduc-
tion efficiency between experimental replicates. Fibro-
blasts that were not transduced served as controls for
non-enzymatic D-luciferin breakdown in the array.
Transduced wells with luminescent signal that were not
significantly increased relative to non-transduced control
wells were not included in analysis; corresponding
reporters were interpreted as having insufficient data to
draw conclusions on TF activity and were listed as
“Insufficient Data” in Table 2. Each array had 4 repeats
per TF reporter and complete arrays were repeated at least 3
times on different days.

Statistical Analysis For analyses comparing more than 2
groups, one-way analysis of variance with Tukey post-test
was used to determine the significance of differences. For
analyses comparing 2 groups, a two-tailed unpaired t-test
was used.
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Results

Activated Fibroblast Cell Lines Relate to Differing Reports
of Carcinoma-Associated Fibroblasts in the Literature

A schematic of experiments to assess fibroblast subtypes is
presented in Fig. 1. Two immortalized human mammary
fibroblast lines were obtained, one isolated from normal
mammary tissue (NMF pBabe p53, abbreviated NMFp)
and the other from invasive ductal carcinoma (CAF pBabe

p53, abbreviated CAFp). The two fibroblast cell lines were
noted to have morphological differences consistent with
previous reports [23, 29] (Fig. 2a). NMFp morphology
was similar to that of other normal fibroblasts with
spindle-shaped cell morphology and alignment of long axes
of multiple cells in one direction as the cells became con-
fluent. CAFp fibroblasts were broader, more pleiomorphic,
and had disorganized orientation, consistent with the phe-
notype of activated myofibroblasts known to promote tumor
growth and spread [22, 26, 29]. Both NMFp and CAFp

Table 1 List of TF reporters
broadly divided into categories
of biological function of associ-
ated TFs. Note many TFs have
well-characterized roles in mul-
tiple categories; assignment to a
given category of broad biologi-
cal functions facilitates discus-
sion of results. General
biological functions are
referenced on the TRANSFAC
database (Matys et al. 2003,
Reference #49 in text) and the
Online Mendelian Inheritance in
Man database (http://omim.org).
Reporter TF binding sequences
and references are listed in
Supplementary Table 1

Category Reporter name General biological functions of associated TF

Apoptosis and DNA repair E2F1-r Cell cycle arrest, apoptosis

FOXO3A-r Apoptosis, DNA repair

SP1-r Apoptosis, differentiation

Canonical pathways β-CATENIN-r Wnt response, Cell cycle, differentiation

CREB-r cAMP response

ELK1-r MAPK response, proliferation, apoptosis

GLI1-r Sonic hedgehog pathway response, transformation

GR-r Glucocorticoid pathway response

RAR-r Retinoic Acid response pathway, differentiation,
apoptosis

SMAD3-r TGF-β pathway response

VDR-r Cholecalciferol response, differentiation, immune
modulation

Cell cycle and proliferation AP1-r Cell cycle/Proliferation

AP3-r Cell cycle/Proliferation

C-MYC-r Proliferation, transformation

ETS1-r Proliferation, differentiation, migration, invasion

PTTG-r Proliferation, Transformation

WT1-r Proliferation, differentiation

YY1-r Proliferation, differentiation

Differentiation and development AP2-r Development, transformation

AP4-r Proliferation, differentiation

FOXA-r Differentiation, development

GATA1-r Hematopoeitic differentiation

GATA2-r Endothelial and adipocyte differentiation,
angiogenesis

GATA3-r Adipocyte differentiation, T-cell differentiation

MNX1-r Differentiation

RUNX1-r Hematopoietic differentiation

RUNX2-r Osteogenesis, transformation

Inflammatory response NFAT-r Inflammatory response, differentiation

NFκB-r Inflammation, transformation, metastasis

STAT1-r Interferon response

STAT3-r Acute phase response

STAT4-r IL-12 response

Pluripotency KLF4-r Pluripotency, differentiation

Hypoxia response HIF1-r Hypoxia response, angiogenesis

Wound response SRF-r Serum response, proliferation, differentiation
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expressed the fibroblast marker vimentin at levels compara-
ble to the well-characterized dermal fibroblast cell line, BJ
HFF. Additionally, none of the 3 fibroblast lines expressed
the myoepithelial marker keratin 5 [23, 30] (Fig. 2b).

The exposure of normal fibroblasts to cancer cells or
cancer cell-secreted factors induced the normal fibroblasts
to adopt a CAF phenotype, consistent with previous reports
[23, 29, 33]. NMFp fibroblasts cultured in MDA-MB-231
conditioned medium were designated iNMFp to indicate
induction by cancer cell secreted factors. Following treat-
ment with conditioned medium, iNMFp cells displayed a
phenotype intermediate between NMFp and CAFp, with
broadening of cell bodies and some loss of organization of
long axes (Fig. 2a). These changes were consistent with
previous reports of cancer cell exposure inducing a CAF
phenotype in normal fibroblasts [29] and the cellular
changes were stable for several passages following removal
of conditioned medium.

Gene expression changes associated with growth- and
invasion-promoting properties of CAFs were observed in
CAFp and iNMFp. Expression levels of α-SMA, matrix
metalloproteinases (MMPs), caveolin-1, and fibroblast acti-
vation protein (FAP) were investigated, as expression of
these factors in breast tumor stroma have demonstrated
prognostic significance (Fig. 2c and d) [10, 12, 50–52].
Relative to NMFp, CAFp expressed high levels of α-SMA
message, consistent with the activated myofibroblast phe-
notype that contributes to cancer progression in the desmo-
plastic stroma around many carcinomas [5, 22, 26]. No
difference in mRNA levels for FAP, caveolin-1, MMP1,
MMP3, and MMP14 was observed between CAFp and
NMFp. In contrast, iNMFp had decreased expression of α-
SMA message compared to parental NMFp, and had strong
induction of all matrix metalloproteinases assayed, a modest
increase in FAP message, and a reduction in caveolin-1
message. Taken together, both CAFp and iNMFp displayed

known properties of CAFs, yet the two cell lines had distinct
gene expression profiles.

Factors implicated in CAF paracrine function were sub-
sequently measured, including stromal cell-derived factor 1
(SDF-1) [26]; transforming growth factor β1 (TGF-β1)
[53]; and prostaglandin E2 (PGE2) [34]. Quantification of
SDF-1α showed increased expression in α–SMA-overex-
pressing CAFp but not in iNMFp (Fig. 3a), consistent with
previous reports of myofibroblast function in tumors [26]. In
contrast, TGF-β1 and PGE2 were not increased in CAFp
and iNMFp relative to NMFp (Fig. 3b and c). Increased
deposition of collagen by CAFs is a hallmark of the desmo-
plastic reaction that characterizes the stroma of many breast
tumors, and increased collagen in tumor stroma has been
associated with poor prognosis [6, 30]. Collagen accumula-
tion assayed by picrosirius red stain was greater in both
CAFp and iNMFp cultures compared to NMFp cultures
(Fig. 3d). In summary, the CAFp line expresses α–SMA at
high levels and has increased production of SDF-1 and
collagen, indicative of an activated myofibroblast pheno-
type. In contrast, NMFp expressed PGE2 and contact with
MDA-MB-231 cells induced expression of MMPs, FAP,
collagen, and decreased caveolin-1 expression in iNMFp,
suggesting a non-myofibroblast CAF phenotype.

Distinct Mechanisms of Inducing Cancer Invasion by CAF
Subtypes

The mechanisms by which the fibroblast subtypes alter the
invasive properties of breast cancer cells was subsequently
investigated by culturing fibroblast subtypes with MDA-
MB-231 cells. Relative to MDA-MB-231 cells cultured
alone, co-culture with CAFp or iNMFp significantly in-
creased the invasiveness of the MDA-MB-231 cells, while
NMFp did not significantly impact invasion (Fig. 4b). The
effect of paracrine factors secreted by each fibroblast type

Table 2 Summary of transcription factor reporters with altered activity in myofibroblast-like CAFp and cancer cell conditioned medium-induced
iNMFp fibroblasts

Common to CAFp
and iNMFp

CAFp only iNMFp only No significant
difference in either

Insufficient data

Increased ELK1-r GATA1-r
RAR-r SRF-r
VDR-r

NFAT-r NFkB-r
RUNX2-r YY1-r

AP1-r AP4-r E2F1-r
HIF1-r STAT1-r
STAT3-r STAT4-r

AP2-r AP3-r CRE-
r FOXA-r
FOXO3A-r
GATA3-r
SMAD3-r SP1-r

β-CATENIN-r GL1-r GR-r
KLF4-r PTTG-r

TOTAL (percent
of all reporters)

5 (14 %) 4 (11 %) 7 (20 %)

Decreased C-MYC-r E2F1-r
GATA2-r MNX1-r
RUNX1-r WT1-r

ETS1-r

Total (percent of
all reporters)

0 6 (17 %) 1 (3 %) 8 (23 %) 1 (3 %) undetectable in both
cell lines 4 (11 %)
nonsignificant in one cell
line, undetectable in the
other
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was then examined by exposing the breast cancer cells to
conditioned media from the fibroblasts (Fig. 4c). Condi-
tioned medium from CAFp had no significant effect on
cancer cell invasiveness. Conditioned medium from iNMFp
significantly increased invasion, although to a lesser extent
than the effect of direct co-culture, implicating induction of
invasion by both paracrine and direct cell-cell or cell-matrix
interactions. Interestingly, conditioned medium from NMFp
restrained invasion relative to cancer cells cultured alone.
Taken together, CAFp induced invasiveness in the MDA-
MB-231 cell line by either direct cell-cell contact or depo-
sition of factors such as matrix components, while iNMFp
induced invasiveness by a mechanism that included secre-
tion of paracrine factors and this invasiveness was augment-
ed by direct co-culture.

The ability of each fibroblast line to induce epithelial-
mesenchymal transition (EMT) in co-cultured immortalized
human mammary luminal epithelial cells (HMLE) was also
assessed. EMT is a mechanism by which epithelial-derived
breast carcinoma cells become invasive. Hallmarks of EMT
include decreased expression of E-cadherin, as well as in-
creased expression of mesenchymal markers such as N-
cadherin, fibronectin, vimentin, and matrix metalloproteinases.

We investigated whether fibroblasts could induce inva-
siveness in a well-differentiated, non-tumorigenic mam-
mary epithelial line representing the earliest stages of
carcinogenesis. CAFp induced a downward trend in E-
cadherin mRNA expression and a significant upregula-
tion of mesenchymal markers in HMLEs in direct co-
culture (Fig. 4d). Conditioned medium from CAFp in-
duced variable expression, with a significant decrease in
E-cadherin expression but induction of fewer mesenchy-
mal genes than in direct co-culture, paralleling the find-
ings in MDA-MB-231 cells (Fig. 4e). iNMFp also
induced expression of mesenchymal genes, but did not
repress E-cadherin in direct co-culture and conditioned
medium studies. NMFp fibroblasts in direct co-culture
had a variable expression pattern, with induction of
some mesenchymal genes and repression of others, con-
sistent with the net insignificant effect on invasion seen
in experiments with MDA-MB-231 cells. Conditioned
medium from NMFp induced expression of some mes-
enchymal genes, repressed others, and had a trend of
increased expression of E-cadherin that was not statisti-
cally significant. Taken together, these results indicate
that the direct cell-cell contact and paracrine effects of
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fibroblast lines on EMT in the nontumorigenic HMLE cell
line did not completely parallel the effects on invasion in an
advanced adenocarcinoma cell line.

Mimicking Fibroblast Crosstalk in Cancer Invasion

Stromal fibroblasts in tumors have significant heterogeneity
[31, 32], so consequences of fibroblast heterogeneity in the
tumor microenvironment were modeled by incorporating
both activated fibroblast subtypes. As CAFp primarily in-
creased invasion in direct co-culture, while iNMFp in-
creased invasion by paracrine factors, MDA-MB-231 cells

were cultured in direct contact with CAFp while treating
with conditioned medium from iNMFp to combine effects
from both subtypes. Following isolation, MDA-MB-231
cells displayed an additive increase in invasion compared
to the individual effects of direct CAFp culture and iNMFp
conditioned medium (Fig. 5a).

Apart from cancer cell-stromal interactions, tumor pro-
gression also involves numerous stromal interactions [5].
The effect of fibroblast interactions was further assessed
by exposing CAFp to media conditioned by NMFp and
iNMFp. Expression of α-SMA was significantly divergent
when CAFp fibroblasts were exposed to medium condi-
tioned by fibroblasts, with normal fibroblasts decreasing
and activated fibroblasts increasing expression of α-SMA
(Fig. 5b). Accumulation of collagen was not significantly
altered upon exposure to iNMFp medium; however, colla-
gen accumulation was significantly decreased upon expo-
sure to NMFp medium (Fig. 5c). This result suggests that
normal mammary fibroblasts can maintain tissue homeosta-
sis by restraining the abnormal behavior of both mammary
epithelial cells (Fig. 3) and other resident fibroblasts (Fig. 5b
and c). The functional consequences of fibroblast heteroge-
neity observed in this simplified model underscore the need
for high-resolution studies to elucidate CAF biology.

Distinct TF Circuitry Underlies Carcinoma-Associated
Fibroblast Phenotypes

The TF activity array was applied to stromal fibroblasts to
identify active pathways and processes associated with fi-
broblast activation. The array was applied to NMFp, CAFp,
and iNMFp fibroblasts, with TF activity derived from spe-
cific binding sequences driving expression of firefly lucif-
erase to quantify TF-dependent activity. Reporters are
named for the TF that is known to bind each sequence
during transactivation (Table 1, Supplementary Table 1),
with the suffix –r indicating the measured quantity is
DNA reporter transactivation from which activity of the
TF can be inferred. The 35 TF reporters assayed included
those for TFs that act in inflammatory, wound healing, the
hypoxia response, pluripotency, and cellular differentiation
processes as well as downstream mediators of canonical
signaling (Table 1). Of the 35 TF reporters, 15 (43 %) had
altered TF activity in CAFp compared to the normal mam-
mary fibroblast line (Table 2, Supplementary Table 2). Nine-
teen (54 %) had no significant difference and luminescence
from one reporter (3 %) was too low to be analyzed in both
cell lines. Thirteen of the 35 (37 %) TF reporters had altered
TF activity in iNMFp compared to untreated normal mam-
mary fibroblasts; 17 (49 %) showed no significant differ-
ence and luminescence from 5 reporters (14 %) was too low
for reliable analysis in iNMFp (Table 2, Supplementary
Table 3). The TF reporters with insufficient activity for
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serum in growth medium and non-specific binding effect. d Quantifi-
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different from NMFp with p≤0.05. n≥3 for all experiments
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measurement in iNMFp were not significantly different
between CAFp and NMFp.

The TF activity array identified distinctive patterns with-
in the two CAF subtypes. Both CAFp and iNMFp had
increased transactivation of ELK1-r, GATA1-r, RAR-r, SRF-
r, and VDR-r (Fig. 6b, Table 2). This result suggests a set of
TFs involved in cell growth and differentiation relate to the
activation of invasion-promoting fibroblasts. CAFp had
elevated transactivation of inflammatory reporters (NFAT-r,
NFkB-r), as well as divergent transactivation of various
reporters relating to differentiation (GATA2-r, MNX1-r,
RUNX1-r, RUNX2-r,) and cell proliferation (C-MYC-r ,
E2F1-r, WT1-r, YY1-r) compared to NMFp (Fig. 6c, Table 2,
Supplementary Table 2). By contrast, iNMFp had mostly

increased transactivation of proliferation-related reporters
(AP1-r, AP4-r, E2F1-r, ETS1-r) as well as an increase in
inflammatory (STAT1-r, STAT3-r, and STAT4-r) and hypoxia
response (HIF1-r) reporters (Fig. 6d, Table 2, Supplemen-
tary Table 3) relative to NMFp. Interestingly, many of the
TF activities that were significant in only one activated
fibroblast type trended in the opposite direction in the other
activated fibroblast type. Ten of the 15 TF activity alter-
ations observed in CAFp relative to NMFp (67 %) and eight
of the 13 TF activity alterations in iNMFp relative to NMFp
(62 %) were unique to that cell line. Thus the TF regulatory
circuitry in CAFp and iNMFp fibroblasts appeared distinc-
tive, which is consistent with the observation of multiple
CAF phenotypes.
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cence of fibroblast population (left gate) (FL1 is non-GFP

fluorescence). For direct co-culture (b and d), controls were MECs
cultured alone. b Relative invasion of MDA-MB-231 adenocarcinoma
cells in direct co-culture (abbreviated DCC) with fibroblasts after
isolation from fibroblasts using FACS. c Relative invasion of MDA-
MB-231 adenocarcinoma cells cultured in conditioned media (abbre-
viated CM) from fibroblasts. d Expression of epithelial and mesenchy-
mal markers by quantitative PCR in immortalized mammary epithelial
(HMLE) cells after direct co-culture with fibroblasts. e Expression of
epithelial and mesenchymal markers by quantitative PCR in HMLE
cells exposed to conditioned media from fibroblasts. Error bars indi-
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Fibroblasts have Distinct Responses to Cancer Cell
Conditioned Medium

The observation of gene regulatory differences in CAFp and
iNMFp motivated studies on CAFp exposed to MDA-MB-
231-conditioned medium in order to distinguish induction
responses that are specific to the conditioned medium from
those that are due to the intrinsic properties of the fibro-
blasts. CAFp exposed to conditioned medium, designated
iCAFp, maintained a similar phenotype to parental CAFp
(data not shown). In contrast to the response of NMFp to
conditioned medium, iCAFp further upreguated α-SMA
expression and decreased matrix metalloproteinase expres-
sion, increasing the disparity between CAFp and iNMFp
(Fig. 7a). Thus the specific response to cancer cell secreted
factors was intrinsic to fibroblasts, based on the gene ex-
pression markers shown in Fig. 7a.

TF activities were analyzed in iCAFp to identify key
processes and pathways associated with cancer cell-
stromal crosstalk. Increased activation of NFκB-r, RUNX2-
r, and YY1-r was observed in CAFp and iCAFp but not
iNMFp (Figs. 7b and 8, Supplementary Table 4). These
results indicate a stable subtype-specific set of TFs whose
activity is not altered by exposure to cancer cells. Similarly,
although both iNMFp and iCAFp were exposed to the same
cancer cell conditioned medium, the increased activation of
AP1-r, AP4-r, E2F1-r, and STAT4-r observed in iNMFp was
not observed in iCAFp. Thus, these reporters captured TF
activity that was distinct from normal fibroblasts, and could
distinguish CAF subtypes regardless of the specific activat-
ing signals from cancer cells. The iCAFp TF activity profile
also shared some features with the iNMFp profile that were
not seen in parental CAFp fibroblasts. iCAFp displayed
increased activation of HIF1-r, STAT1-r and STAT3-r and
decreased activation of ETS1-r, consistent with iNMFp and
indicating a common response in fibroblasts of dissimilar
background to specific cancer cell signals. TF reporters
with significantly increased activation in both CAFp and
iNMFp were also increased in iCAFp (Fig. 8, Supplemen-
tary Table 4). These TFs may represent a fundamental
activated fibroblast regulatory profile, as they are elevated
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in CAFs of different origin and inductive treatment. Taken
together, these results illustrate TF activity changes that

depend on intrinsic fibroblast biology, or intrinsic cancer
cell biology, respectively.
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Discussion

Tumor invasion is a property critical to cancer progression
that arises from interactions between cancer cells and the
surrounding stroma [20]. In this report, we investigated two
stromal fibroblast populations (CAFp, iNMFp), which had
distinct invasion-promoting actions. These fibroblasts dif-
ferentially expressed gene products implicated in tumor-
supportive function, which would indicate distinct roles for
CAF subtypes pending confirmation with human tumors.
CAFp fibroblasts, similar to previous reports on CAFs,
resemble myofibroblasts in their increased expression of
α-SMA, SDF-1, and collagen, relative to normal fibroblasts
[5, 26, 30, 54]. CAFp fibroblasts induced an invasive phe-
notype from cancer cells when grown in direct co-culture,
which could not be recapitulated with conditioned medium,
suggesting an effect mediated by direct cell-cell contact or
interactions of cancer cells with extracellular matrix pro-
duced by fibroblasts. Conversely, iNMFp did not have high
expression of α-SMA but nevertheless supported cancer
invasion by both direct co-culture and paracrine mecha-
nisms. The NMFp cell line expressed high levels of PGE2

and increased expression of MMPs upon induction to
iNMFps. High levels of MMP1 [33] and PGE2 [34] have
been previously described in CAFs that lack high α-SMA
expression. Taken together, our results demonstrate that the

distinctly differentiated phenotypes of CAFp and iNMFp
influence cancer invasion by unique mechanisms. Our
results (Fig. 5) also suggest that in addition to fibroblast-
cancer cell communication, crosstalk between fibroblast
subpopulations may influence the malignant potential of
the microenvironment. Characterization of these active pro-
cesses may ultimately have prognostic and therapeutic sig-
nificance for human breast tumors and other malignancies
[13, 19, 34, 36].

TFs are the downstream targets of signaling pathways,
and the TF array reflects the activity within the intracellular
signaling network. These measurements complement the
gene expression profiles provided by microarray technolo-
gy, by identifying TFs associated with the phenotypes of
normal and activated fibroblasts. Significant differences in
TF activity within activated fibroblasts relative to normal
fibroblasts were detected by nearly two-thirds (63 %) of the
35 TF reporters included in this study. Of these, five reporter
activity changes (14 % of total) were common to CAFp and
iNMFp, with similar findings in iCAFp although ELK1-r
and RAR-r elevation did not quite reach significance in
iCAFp (Fig. 8). Three additional reporters (9 % of total)
had significantly altered activity in CAFp and iCAFp, and
four additional reporters (11 % of total) had altered activity
in iNMFp and iCAFp (Fig. 8). The 5 reporter constructs that
had increased activity in all CAFs relative to normal fibro-
blasts were ELK1-r, GATA1-r, RAR-r, SRF-r and VDR-r.
ELK1 and SRF direct the gene expression response to
serum, which has prognostic significance in breast cancer
[8, 41]. Increased transactivation of SRF-r echoes the grow-
ing body of evidence suggesting that tumor biology has a
pathologic similarity to wound biology [8, 30, 55]. Further-
more, ELK1 function is increased in activated fibroblasts
from the pathologically-exaggerated wound healing re-
sponse of keloid scars [56]. Elevated VDR-r activity has
also been connected to a wound-like response, with gene
expression induced by serum [57]. GATA1 and RAR are
important drivers of cellular differentiation in a number of
cell systems, such as hematopoietic differentiation [58, 59].
Fibroblasts in normal tissues progress through stages of
differentiation with distinct levels of mitotic activity and
patterns of protein synthesis [39]. The common transactiva-
tion differences induced by the tumor microenvironment in
biologically-distinct CAF subtypes also suggest a conserved
set of factors associated with fibroblast activation.

The array captured differences in CAFp and iNMFp asso-
ciatedwith distinct effects of each fibroblast line on cancer cell
invasion. Relative to normal fibroblasts, CAFp had signifi-
cantly altered activation of reporters associated with cell pro-
liferation (MYC, E2F1 [decreased], and YY1), differentiation
(RUNX2, GATA2, MNX1, RUNX1, and YY1), and inflam-
mation (NFκB, NFAT). In contrast, iNMFp had significantly
altered activity for reporters associated with proliferation

Fig. 8 Venn diagram summarizing TF reporter activation compared to
NMFp in CAF subtypes. *E2F1-r activity was significantly elevated in
iNMFp compared to NMFp fibroblasts. The increased activity seen in
iCAFp was not significantly different from NMFp levels, but was
significantly greater than parental CAFp levels. Significant elevation
of E2F1-r activity relative to baseline is therefore a common response
of iNMFp and iCAFp fibroblasts to MDA-MB-231 conditioned medi-
um, and the opposite is seen in CAFp. Note ELK1-r and RAR-r
activities were nonsignificantly elevated relative to NMFp in iCAFp
fibroblasts; for ELK1-r p00.06 and for RAR-r p00.08. For all other TF
reporters shown p≤0.05 for all comparisons
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(AP1, E2F1 [increased], ETS1); differentiation (AP4), hypox-
ia (HIF1); and inflammation (STAT1, STAT3, STAT4). While
processes such as proliferation, differentiation, and inflamma-
tion are common to the TF activity profiles, the specific
factors associated with these processes differ. Activity of the
inflammation-associated reporters is consistent with an in-
flammatory microenvironment [28, 60, 61], yet, increased
activity of NFκB-r was stable for CAFp/iCAFp but not ob-
served in the NMFp/iNMFp line. Both cell lines had increased
activation of STAT1-r and STAT3-r in response to MDA-MB-
231 cells (Figs. 6d and 7b, iNMFp and iCAFp), but iNMFp
was distinguished by the ability to increase STAT4-r activity.
Differential activation of NFκB and STAT4 links alternative
maturation signals to discrete functional features in dendritic
cell populations [62]. CAFp had an increased activity of
RUNX2-r, which is a master regulator of osteogenic differen-
tiation and is upregulated in breast tumors that metastasize to
bone [63]. An osteogenic gene expression signature induced
in breast cancer cells and breast stroma has been proposed as
the origin of the breast cancer cell/bone stromal interactions
that allow for the development of bone metastases [64]. CAFp
also had increased transactiviation of YY1-r and NFκB-r,
which together control the differentiation of myoblasts, and
are persistently activated in rhabdomyosarcomas [65]. AYY1
binding site is present in the SDF-1 promoter [49] which was
upregulated in CAFp but not iNMFp and can endow myofi-
broblasts with proangiogenic properties [26]. Finally, we
note that a striking feature of iNMF gene expression
studies was the greatly increased expression of matrix
metalloproteinases 1 and 3 (Fig. 2). A TRANSFAC database
analysis of sequences within and proximal to the promoters of
MMP1 and MMP3 [49] revealed binding sites for AP1 and
STAT factors, which were not highly active in CAFp. The TF
activity data that is specific to either CAFp or iNMFp suggests
these factors may contribute to a fibroblast subtype-specific
differentiation program.

The comparison of iNMFp to NMFp and iCAFp to CAFp
can identify conserved and differential TF activation during
induction by MDA-MB-231 cells. Breast cancer cells likely
induce inflammatory and wound-healing responses in their
surroundings through specific mechanisms driven by mo-
lecular subtype [66]. Conditioned medium from MDA-MB-
231 cells contains numerous growth factors and mediators
of inflammation, notably IL-6, which canonically activates
STAT3, and PDGF, TGF-β, and FGF factors, which are
linked to CAF activation by cancer cells [5, 67]. Accord-
ingly, inflammatory (STAT1-r, STAT3-r) and growth-related
(ETS1-r) TF reporters had altered activity in iNMFp and
iCAFp relative to normal and CAFp fibroblasts (Fig. 8).
E2F1-r and HIF1-r activities in iCAFp and iNMFp were
significantly increased relative to parental CAFp and NMFp
levels, which is also consistent with a common response to
MDA-MB-231 paracrine signaling. The response to

conditioned medium between fibroblast subtypes differed
in proliferation and inflammation related reporters. AP1-r,
AP4-r, and STAT4-r activities were elevated in iNMFp,
while AP2-r and AP3-r (an alternate ETS family reporter)
were elevated in iCAFp. Activation of proliferation-related
reporters is consistent with the markedly increased prolifer-
ation of activated fibroblasts [5] and variations in specific
proliferation-related activities likely reflects distinct cellular
signaling states that integrate paracrine input from the can-
cer cells to direct fibroblast phenotype. Importantly, all
experiments with iNMFs and iCAFs were performed days
to weeks after removal of MDA-MB-231 conditioned me-
dium, with stable activity profiles, mRNA expression, and
morphology observed over time.

In conclusion, this report investigated TF activity profiles
in invasion-promoting mammary fibroblasts. TF activity
signatures were identified in multiple CAF functional phe-
notypes, which promoted invasion through distinct mecha-
nisms. Comparison of TF activity profiles for all three
fibroblast types identified a TF activity signature common
to CAFs, which may represent TF regulatory events com-
mon to activated fibroblast phenotypes. Additionally, CAFs
resembling myofibroblasts had distinct TF reporter activity
relative to normal fibroblasts that were induced to an acti-
vated phenotype by cancer cells. These TF activity profiles
complement DNA microarray studies, and may provide a
mechanistic link between tumor microenvironmental stimuli
and phenotypic response. The systems biology approach
described in this study links intracellular (TF) and intercel-
lular (cancer cell-fibroblast and fibroblast-fibroblast) networks
in breast cancer invasion, and may ultimately identify poten-
tial targets to facilitate return of CAFs to a tumor-suppressive
role. Further studies will be needed that assess human tumors
for the multiple CAF subtypes at the functional, marker ex-
pression, and TF activity levels.
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