Skip to main content

Advertisement

Log in

Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication

  • Special Feature
  • Antitumor immunity and advances in cancer immunotherapy
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Although unlike melanoma, breast cancer is not generally viewed as a highly immunogenic cancer, recent studies have described a rich tumor immune microenvironment in a subset of breast cancers. These immune infiltrates, comprised cells from the innate and adaptive immune response, can be detected and characterized in biopsy specimens and have prognostic value. Tumor-infiltrating lymphocytes (TILs) represent the majority of mononuclear immune infiltrates in the breast tumor microenvironment and can be easily identified in formalin-fixed paraffin-embedded tissues after standard hematoxylin and eosin staining. High levels of TILs are most common in HER2+ and basal-like subtypes where they are associated with good prognosis and with response to certain therapies such as the anti-HER2 antibody trastuzumab. International collaborative efforts are underway to standardize the assessment of TILs so as to facilitate their implementation as a breast cancer biomarker. Using immunohistochemistry to further characterize TILs, recent reports describe the presence of important lymphocyte populations including CD8+ cytotoxic, FOXP3+ regulatory, and CD4+ helper and follicular T cells which have overlapping associations with prognosis and response to therapies. Moreover, recently identified immune checkpoint markers (PD-1, PD-L1) are present in some breast cancers, implying some cases might be especially amenable to immune checkpoint inhibitor treatment strategies which are being evaluated in a number of active clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Heinrich EL, Walser TC, Krysan K, et al. The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenviron. 2012;5:5–18.

    CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  4. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21:687–92.

    CAS  PubMed  Google Scholar 

  5. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339:1546–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shalapour S, Karin M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Investig. 2015;125:3347–55.

    PubMed  PubMed Central  Google Scholar 

  8. Ruffell B, Au A, Rugo HS, et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA. 2012;109:2796–801.

    CAS  PubMed  Google Scholar 

  9. Gregory AD, Houghton AM. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. 2011;71:2411–6.

    CAS  PubMed  Google Scholar 

  10. Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Investig. 2014;124:5466–80.

    PubMed  PubMed Central  Google Scholar 

  11. Casbon AJ, Reynaud D, Park C, et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA. 2015;112:E566–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–61.

    CAS  PubMed  Google Scholar 

  13. Chafe SC, Lou Y, Sceneay J, et al. Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res. 2015;75:996–1008.

    CAS  PubMed  Google Scholar 

  14. Yu J, Du W, Yan F, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013;190:3783–97.

    CAS  PubMed  Google Scholar 

  15. Markowitz J, Wesolowski R, Papenfuss T, et al. Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat. 2013;140:13–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang X. Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett. 2013;332:3–10.

    CAS  PubMed  Google Scholar 

  17. Medrek C, Ponten F, Jirstrom K, Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012;12:306.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahmoud SM, Lee AH, Paish EC, et al. Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol. 2012;65:159–63.

    CAS  PubMed  Google Scholar 

  19. Tiainen S, Tumelius R, Rilla K, et al. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology. 2015;66:873–83.

    PubMed  Google Scholar 

  20. Raphael J, Gong IY, Nofech-Mozes S, et al. Tumour infiltrating lymphocytes and stromal CD68 in early stage HER2 positive breast cancer. J Clin Pathol. 2016.

  21. Hollmen M, Roudnicky F, Karaman S, Detmar M. Characterization of macrophage—cancer cell crosstalk in estrogen receptor positive and triple-negative breast cancer. Sci Rep. 2015;5:9188.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res. 2013;19:1021–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5:200ra116.

    PubMed  PubMed Central  Google Scholar 

  24. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.

    CAS  PubMed  Google Scholar 

  25. Figenschau SL, Fismen S, Fenton KA, et al. Tertiary lymphoid structures are associated with higher tumor grade in primary operable breast cancer patients. BMC Cancer. 2015;15:101.

    PubMed  PubMed Central  Google Scholar 

  26. Kroemer G, Senovilla L, Galluzzi L, et al. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21:1128–38.

    CAS  PubMed  Google Scholar 

  27. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26:259–71.

    CAS  PubMed  Google Scholar 

  28. Aaltomaa S, Lipponen P, Eskelinen M, et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer. 1992;28A:859–64.

    CAS  PubMed  Google Scholar 

  29. Vinayak S, Gray RJ, Adams S, Jensen KC, Manola J, Afghahi A, Goldstein LJ, Ford JM, Badve SS, Telli ML. Association of increased tumor-infiltrating lymphocytes (TILs) with immunomodulatory (IM) triple-negative breast cancer (TNBC) subtype and response to neoadjuvant platinum-based therapy in PrECOG0105. J Clin Oncol. 2014;32(suppl; abstr 1000^):5s.

    Google Scholar 

  30. Adams S, Gray RJ, Demaria S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32:2959–66.

    PubMed  PubMed Central  Google Scholar 

  31. Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31:860–7.

    CAS  PubMed  Google Scholar 

  32. Loi S, Michiels S, Salgado R, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25:1544–50.

    CAS  PubMed  Google Scholar 

  33. Francis P, Crown J, Di Leo A, et al. Adjuvant chemotherapy with sequential or concurrent anthracycline and docetaxel: Breast International Group 02-98 randomized trial. J Natl Cancer Inst. 2008;100:121–33.

    CAS  PubMed  Google Scholar 

  34. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.

    CAS  PubMed  Google Scholar 

  35. Perez EA, Ballman KV, Tenner KS, et al. Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol. 2016;2:56–64.

    PubMed  PubMed Central  Google Scholar 

  36. Denkert C, von Minckwitz G, Brase JC, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33:983–91.

    CAS  PubMed  Google Scholar 

  37. Issa-Nummer Y, Darb-Esfahani S, Loibl S, et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer—a substudy of the neoadjuvant GeparQuinto trial. PLoS One. 2013;8:e79775.

    PubMed  PubMed Central  Google Scholar 

  38. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli N, et al. Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (abstract). Cancer Res. 2013;73(24 Suppl):Abstract nr S1-05.

    Google Scholar 

  39. Salgado R, Denkert C, Campbell C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 2015;1:448–54.

    PubMed  Google Scholar 

  40. Varadan V, Gilmore HL, Miskimen KL, et al. Immune signatures following single dose trastuzumab predict pathologic response to preoperative trastuzumab and chemotherapy in HER2-positive early breast cancer. Clin Cancer Res. 2016.

  41. Liu S, Lachapelle J, Leung S, et al. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14:R48.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahmoud SM, Paish EC, Powe DG, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29:1949–55.

    PubMed  Google Scholar 

  43. Ali HR, Provenzano E, Dawson SJ, et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol. 2014;25:1536–43.

    CAS  PubMed  Google Scholar 

  44. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dookeran KA, Dignam JJ, Ferrer K, et al. p53 as a marker of prognosis in African–American women with breast cancer. Ann Surg Oncol. 2010;17:1398–405.

    PubMed  Google Scholar 

  46. Winslow S, Leandersson K, Edsjo A, Larsson C. Prognostic stromal gene signatures in breast cancer. Breast Cancer Res. 2015;17:23.

    PubMed  PubMed Central  Google Scholar 

  47. Oda N, Shimazu K, Naoi Y, et al. Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast Cancer Res Treat. 2012;136:107–16.

    CAS  PubMed  Google Scholar 

  48. Seo AN, Lee HJ, Kim EJ, et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109:2705–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee HJ, Seo JY, Ahn JH, et al. Tumor-associated lymphocytes predict response to neoadjuvant chemotherapy in breast cancer patients. J Breast Cancer. 2013;16:32–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu-Trantien C, Loi S, Garaud S, et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Investig. 2013;123:2873–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mahmoud SM, Paish EC, Powe DG, et al. An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat. 2011;127:99–108.

    CAS  PubMed  Google Scholar 

  53. Droeser R, Zlobec I, Kilic E, et al. Differential pattern and prognostic significance of CD4+, FOXP3+ and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer. 2012;12:134.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. West NR, Kost SE, Martin SD, et al. Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2013;108:155–62.

    CAS  PubMed  Google Scholar 

  55. Lee S, Cho EY, Park YH, et al. Prognostic impact of FOXP3 expression in triple-negative breast cancer. Acta Oncol. 2013;52:73–81.

    CAS  PubMed  Google Scholar 

  56. Liu S, Foulkes WD, Leung S, et al. Prognostic significance of FOXP3+ tumor-infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res. 2014;16:432.

    PubMed  PubMed Central  Google Scholar 

  57. Kim ST, Jeong H, Woo OH, et al. Tumor-infiltrating lymphocytes, tumor characteristics, and recurrence in patients with early breast cancer. Am J Clin Oncol. 2013;36:224–31.

    CAS  PubMed  Google Scholar 

  58. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209:1241–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95.

    CAS  PubMed  Google Scholar 

  60. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat Rev Immunol. 2015;15:45–56.

    CAS  PubMed  Google Scholar 

  61. Ghebeh H, Barhoush E, Tulbah A, et al. FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer. 2008;8:57.

    PubMed  PubMed Central  Google Scholar 

  62. Muenst S, Soysal SD, Gao F, et al. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2013;139:667–76.

    CAS  PubMed  Google Scholar 

  63. Sun S, Fei X, Mao Y, et al. PD-1(+) immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother. 2014;63:395–406.

    CAS  PubMed  Google Scholar 

  64. Schmidt M, van de Sandt L, Heimes A, Battista M, Lebrecht A, Almstedt K, Hoffmann G, Rahnenführer J, Hengstler JG. Prognostic significance of immune checkpoint receptors in node-negative breast cancer (abstract). Cancer Res. 2015;76(4 Suppl):Abstract nr P2-08-07.

    Google Scholar 

  65. Basu GD, Ghazalpour A, Vader R, et al. Abstract P5-04-08: expression of novel immunotherapeutic targets in luminal breast cancer patients. Cancer Res. 2015;75:P5-04-08.

    Google Scholar 

  66. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    CAS  PubMed  Google Scholar 

  67. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    PubMed  Google Scholar 

  68. Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    CAS  PubMed  Google Scholar 

  70. Vonderheide RH, LoRusso PM, Khalil M, et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res. 2010;16:3485–94.

    CAS  PubMed  Google Scholar 

  71. Schalper KA, Velcheti V, Carvajal D, et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res. 2014;20:2773–82.

    CAS  PubMed  Google Scholar 

  72. Sabatier R, Finetti P, Mamessier E, et al. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 2015;6:5449–64.

    PubMed  Google Scholar 

  73. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer (abstract). Cancer Res. 2014;75(9 Suppl):Abstract nr S1-09.

    Google Scholar 

  74. Emens LA, Braiteh FS, Cassier PA, Delord J, Eder JP, Shen X, et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (abstract). Cancer Res. 2015;75(9 Suppl):Abstract nr PD1-6.

    Google Scholar 

  75. Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2016;13:228–41.

    CAS  PubMed  Google Scholar 

  76. Hansen AR, Siu LL. PD-L1 testing in cancer: challenges in companion diagnostic development. JAMA Oncol. 2016;2:15–6.

    PubMed  Google Scholar 

  77. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    CAS  PubMed  Google Scholar 

  78. Derer A, Deloch L, Rubner Y, et al. Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses—pre-clinical evidence and ongoing clinical applications. Front Immunol. 2015;6:505.

    PubMed  PubMed Central  Google Scholar 

  79. Page DB, Yuan J, Diab A A, Dong Z, Ginsberg A, Wong P, et al. Integrated immunologic assessment of tumor infiltrating lymphocytes (TILs) and peripheral blood to assess synergy of cryoablation (cryo) plus ipilimumab (ipi) in early stage breast cancer (ESBC) patients (abstract). Cancer Res. 2015;75(9 Suppl):Abstract nr P2-15-01.

    Google Scholar 

  80. Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185:4977–82.

    CAS  PubMed  Google Scholar 

  81. Mohammed ZM, Going JJ, Edwards J, et al. The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2013;109:1676–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mahmoud SM, Lee AH, Paish EC, et al. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat. 2012;132:545–53.

    CAS  PubMed  Google Scholar 

  83. Olkhanud PB, Damdinsuren B, Bodogai M, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res. 2011;71:3505–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Iglesia MD, Vincent BG, Parker JS, et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res. 2014;20:3818–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Turbin DA, Leung S, Cheang MC, et al. Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases. Breast Cancer Res Treat. 2008;110:417–26.

    CAS  PubMed  Google Scholar 

  86. Riber-Hansen R, Vainer B, Steiniche T. Digital image analysis: a review of reproducibility, stability and basic requirements for optimal results. APMIS. 2012;120:276–89.

    PubMed  Google Scholar 

  87. Stalhammar G, Fuentes Martinez N, Lippert M, et al. Digital image analysis outperforms manual biomarker assessment in breast cancer. Mod Pathol. 2016.

  88. Maeda I, Abe K, Koizumi H, et al. Comparison between Ki67 labeling index determined using image analysis software with virtual slide system and that determined visually in breast cancer. Breast Cancer. 2015.

  89. Lal A, Chan L, Devries S, et al. FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Res Treat. 2013;139:381–90.

    CAS  PubMed  Google Scholar 

  90. Chang AY, Bhattacharya N, Mu J, et al. Spatial organization of dendritic cells within tumor draining lymph nodes impacts clinical outcome in breast cancer patients. J Transl Med. 2013;11:242.

    PubMed  PubMed Central  Google Scholar 

  91. Nawaz S, Heindl A, Koelble K, Yuan Y. Beyond immune density: critical role of spatial heterogeneity in estrogen receptor-negative breast cancer. Mod Pathol. 2015;28:766–77.

    CAS  PubMed  Google Scholar 

  92. Webb JR, Milne K, Watson P, et al. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res. 2014;20:434–44.

    CAS  PubMed  Google Scholar 

  93. Dolled-Filhart M, Gustavson M, Camp RL, et al. Automated analysis of tissue microarrays. Methods Mol Biol. 2010;664:151–62.

    CAS  PubMed  Google Scholar 

  94. Brown JR, Wimberly H, Lannin DR, et al. Multiplexed quantitative analysis of CD3, CD8, and CD20 predicts response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res. 2014;20:5995–6005.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ascierto ML, Kmieciak M, Idowu MO, et al. A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat. 2012;131:871–80.

    CAS  PubMed  Google Scholar 

  96. Lee HJ, Lee JJ, Song IH, et al. Prognostic and predictive value of NanoString-based immune-related gene signatures in a neoadjuvant setting of triple-negative breast cancer: relationship to tumor-infiltrating lymphocytes. Breast Cancer Res Treat. 2015;151:619–27.

    CAS  PubMed  Google Scholar 

  97. Perez EA, Thompson EA, Ballman KV, et al. Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group n9831 Adjuvant Trastuzumab Trial. J Clin Oncol. 2015;33:701–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yuan J, Hegde PS, Clynes R, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer. 2016;4:3.

    PubMed  PubMed Central  Google Scholar 

  99. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Anderson AC. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res. 2014;2:393–8.

    CAS  PubMed  Google Scholar 

  103. Scurr M, Ladell K, Besneux M, et al. Highly prevalent colorectal cancer-infiltrating LAP(+) Foxp3(−) T cells exhibit more potent immunosuppressive activity than Foxp3(+) regulatory T cells. Mucosal Immunol. 2014;7:428–39.

    CAS  PubMed  Google Scholar 

  104. Camisaschi C, Casati C, Rini F, et al. LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J Immunol. 2010;184:6545–51.

    CAS  PubMed  Google Scholar 

  105. Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.

    CAS  PubMed  Google Scholar 

  106. Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gao X, Zhu Y, Li G, et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One. 2012;7:e30676.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Breast Cancer Foundation (Grant #16094). SB is a recipient of a studentship from the Fonds de recherche du Québec – Santé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten O. Nielsen.

Ethics declarations

Conflict of interest

SB and KA have no conflicts of interest to disclose. TON holds a proprietary interest in the Prosigna intrinsic subtype classifier, not used in this study. TON has received honoraria and research support from NanoString technologies.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burugu, S., Asleh-Aburaya, K. & Nielsen, T.O. Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer 24, 3–15 (2017). https://doi.org/10.1007/s12282-016-0698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-016-0698-z

Keywords

Navigation