Skip to main content
Log in

Genome analysis of Rubritalea profundi SAORIC-165T, the first deep-sea verrucomicrobial isolate, from the northwestern Pacific Ocean

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Although culture-independent studies have shown the presence of Verrucomicrobia in the deep sea, verrucomicrobial strains from deep-sea environments have been rarely cultured and characterized. Recently, Rubritalea profundi SAORIC-165T, a psychrophilic bacterium of the phylum Verrucomicrobia, was isolated from a depth of 2,000 m in the northwestern Pacific Ocean. In this study, the genome sequence of R. profundi SAORIC-165T, the first deep-sea verrucomicrobial isolate, is reported with description of the genome properties and comparison to surface-borne Rubritalea genomes. The draft genome consisted of four contigs with an entire size of 4,167,407 bp and G+C content of 47.5%. The SAORIC-165T genome was predicted to have 3,844 proteincoding genes and 45 non-coding RNA genes. The genome contained a repertoire of metabolic pathways, including the Embden-Meyerhof-Parnas pathway, pentose phosphate pathway, tricarboxylic acid cycle, assimilatory sulfate reduction, and biosynthesis of nicotinate/nicotinamide, pantothenate/coenzyme A, folate, and lycopene. The comparative genomic analyses with two surface-derived Rubritalea genomes showed that the SAORIC-165T genome was enriched in genes involved in transposition of mobile elements, signal transduction, and carbohydrate metabolism, some of which might be related to bacterial enhancement of ecological fitness in the deep-sea environment. Amplicon sequencing of 16S rRNA genes from the water column revealed that R. profundi-related phylotypes were relatively abundant at 2,000 m and preferred a particle-associated life style in the deep sea. These findings suggest that R. profundi represents a genetically unique and ecologically relevant verrucomicrobial group well adapted to the deep-sea environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Annous, B.A., Becker, L.A., Bayles, D.O., Labeda, D.P., and Wilkinson, B.J. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 63, 3887–3894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awad, E.M., Khan, S.Y., Sokolikova, B., Brunner, P.M., Olcaydu, D., Wojta, J., Breuss, J.M., and Uhrin, P. 2013. Cold induces reactive oxygen species production and activation of the NFkappa B response in endothelial cells and inflammation in vivo. J. Thromb. Haemost. 11, 1716–1726.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann, G.T., Bates, S.T., Eilers, K.G., Lauber, C.L., Caporaso, J.G., Walters, W.A., Knight, R., and Fierer, N. 2011. The underrecognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce, T., Martinez, I.B., Maia Neto, O., Vicente, A.C., Kruger, R.H., and Thompson, F.L. 2010. Bacterial community diversity in the Brazilian Atlantic forest soils. Microb. Ecol. 60, 840–849.

    Article  CAS  PubMed  Google Scholar 

  • Campanaro, S., Vezzi, A., Vitulo, N., Lauro, F.M., D’Angelo, M., Simonato, F., Cestaro, A., Malacida, G., Bertoloni, G., Valle, G., et al. 2005. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6, 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., Chastain, R.A., Eloe, E.A., Nogi, Y., Kato, C., and Bartlett, D.H. 2014. A novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico Trench. Appl. Environ. Microbiol. 81, 54–60.

    Article  CAS  Google Scholar 

  • Cardman, Z., Arnosti, C., Durbin, A., Ziervogel, K., Cox, C., Steen, A.D., and Teske, A. 2014. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl. Environ. Microbiol. 80, 3749–3756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, S.K., Mikkelsen, M., Pedersen, K., and Gerdes, K. 2001. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc. Natl. Acad. Sci. USA 98, 14328–14333.

    Article  CAS  PubMed  Google Scholar 

  • DeLong, E.F., Preston, C.M., Mincer, T., Rich, V., Hallam, S.J., Frigaard, N.U., Martinez, A., Sullivan, M.B., Edwards, R., Brito, B.R., et al. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503.

    Article  CAS  PubMed  Google Scholar 

  • DeLong, E.F. and Yayanos, A.A. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228, 1101–1103.

    Article  CAS  PubMed  Google Scholar 

  • Eloe, E.A., Malfatti, F., Gutierrez, J., Hardy, K., Schmidt, W.E., Pogliano, K., Pogliano, J., Azam, F., and Bartlett, D.H. 2011. Isolation and characterization of the first psychropiezophilic alphaproteobacterium. Appl. Environ. Microbiol. 77, 8145–8153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Sonnhammer, E.L., et al. 2014. Pfam: the protein families database. Nucleic Acids Res. 42, D222–230.

    Google Scholar 

  • Freitas, S., Hatosy, S., Fuhrman, J.A., Huse, S.M., Welch, D.B., Sogin, M.L., and Martiny, A.C. 2012. Global distribution and diversity of marine Verrucomicrobia. ISME J. 6, 1499–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin, M.Y., Makarova, K.S., Wolf, Y.I., and Koonin, E.V. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269.

    Google Scholar 

  • Gerdes, K., Christensen, S.K., and Løbner-Olesen, A. 2005. Prokaryotic toxin–antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Haukka, K., Kolmonen, E., Hyder, R., Hietala, J., Vakkilainen, K., Kairesalo, T., Haario, H., and Sivonen, K. 2006. Effect of nutrient loading on bacterioplankton community composition in lake mesocosms. Microb. Ecol. 51, 137–146.

    Article  PubMed  Google Scholar 

  • He, S., Stevens, S.L.R., Chan, L.K., Bertilsson, S., Glavina Del Rio, T., Tringe, S.G., Malmstrom, R.R., and McMahon, K.D. 2017. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes. mSphere 2, e00277–17.

    Article  Google Scholar 

  • Hedlund, B.P., Gosink, J.J., and Staley, J.T. 1997. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72, 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Hou, S., Saw, J.H., Lee, K.S., Freitas, T.A., Belisle, C., Kawarabayasi, Y., Donachie, S.P., Pikina, A., Galperin, M.Y., Koonin, E.V., et al. 2004. Genome sequence of the deep-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc. Natl. Acad. Sci. USA 101, 18036–18041.

    Article  CAS  PubMed  Google Scholar 

  • Huizing, H.J. and Rietema, H. 1975. Xylan and mannan as cell wall constituents of different stages in the life-histories of some siphoneous green algae. Br. Phycol. J. 10, 13–16.

    Article  Google Scholar 

  • Jannasch, H.W. and Taylor, C.D. 1984. Deep-sea microbiology. Annu. Rev. Microbiol. 38, 487–514.

    Article  CAS  PubMed  Google Scholar 

  • Jannasch, H.W. and Wirsen, C.O. 1984. Variability of pressure adaptation in deep sea bacteria. Arch. Microbiol. 139, 281–288.

    Article  Google Scholar 

  • Ji, J., Kan, S., Lee, J., and Lysakowski, S. 2013. Antibiotic tolerance in Escherichia coli under stringent response correlates to increased catalase activity. J. Exp. Microbiol. Immunol. 17, 40–45.

    Google Scholar 

  • Johnson, J.L. and Whitman, W.B. 2007. Similarity analysis of DNAs, p. 624. In Reddy, C.A., Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., and Snyder, L.R. (eds.), Methods for general and molecular microbiology, 3rd ed. American Society for Microbiology Press, Washington, D.C., USA.

    Book  Google Scholar 

  • Jung, K.W., Lim, S., and Bahn, Y.S. 2017. Microbial radiation-resistance mechanism. J. Microbiol. 55, 499–507.

    Article  PubMed  Google Scholar 

  • Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. 2016. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko, R., Nagata, Y., Suzuki, S., and Hamasaki, K. 2016. Depthdependent and seasonal variability in archaeal community structure in the subarctic and subtropical western North Pacific. J. Oceanogra. 72, 427–438.

    Article  Google Scholar 

  • Kasai, H., Katsuta, A., Sekiguchi, H., Matsuda, S., Adachi, K., Shinodo, K., Yoon, J., Yokota, A., and Shizuri, Y. 2007. Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum ‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57, 1630–1634.

    Article  PubMed  Google Scholar 

  • Kato, C., Sato, T., and Horikoshi, K. 1995. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers. Conserv. 4, 1–9.

    Article  Google Scholar 

  • Konstantinidis, K.T., Braff, J., Karl, D.M., and DeLong, E.F. 2009. Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl. Environ. Microbiol. 75, 5345–5355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauro, F.M., Eloe-Fadrosh, E.A., Richter, T.K.S., Vitulo, N., Ferriera, S., Johnson, J.H., and Bartlett, D.H. 2014. Ecotype diversity and conversion in Photobacterium profundum strains. PLoS One 9, e96953.

    Article  CAS  Google Scholar 

  • Lauro, F.M., Tran, K., Vezzi, A., Vitulo, N., Valle, G., and Bartlett, D.H. 2008. Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J. Bacteriol. 190, 1699–1709.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.C., Webb, R.I., Janssen, P.H., Sangwan, P., Romeo, T., Staley, J.T., and Fuerst, J.A. 2009. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol. 9, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leduc, L.G. and Ferroni, G.D. 1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 14, 103–119.

    Article  CAS  Google Scholar 

  • Lei, Y., Xiao, Y., Li, L., Jiang, C., Zu, C., Li, T., and Cao, H. 2017. Impact of tillage practices on soil bacterial diversity and composition under the tobacco-rice rotation in China. J. Microbiol. 55, 349–356.

    Article  CAS  PubMed  Google Scholar 

  • Markowitz, V.M., Mavromatis, K., Ivanova, N.N., Chen, I.M., Chu, K., and Kyrpides, N.C. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25, 2271–2278.

    Article  CAS  PubMed  Google Scholar 

  • Martín-Cuadrado, A.B., López-García, P., Alba, J.C., Moreira, D., Monticelli, L., Strittmatter, A., Gottschalk, G., and Rodríguez-Valera, F. 2007. Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 2, e914.

    Article  CAS  Google Scholar 

  • Matelska, D., Steczkiewicz, K., and Ginalski, K. 2017. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res. 45, 6995–7020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittl, P.R. and Schneider-Brachert, W. 2007. Sel1-like repeat proteins in signal transduction. Cell Signal. 19, 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Moody, R.G. and Williamson, M.P. 2013. Structure and function of a bacterial Fasciclin I Domain Protein elucidates function of related cell adhesion proteins such as TGFBIp and periostin. FEBS Open Bio. 3, 71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustacich, D. and Powis, G. 2000. Thioredoxin reductase. Biochem. J. 346, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarrete, A.A., Soares, T., Rossetto, R., van Veen, J.A., Tsai, S.M., and Kuramae, E.E. 2015. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie van Leeuwenhoek 108, 741–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, W.C., Wollerman, L., Bhaya, D., and Heidelberg, J.F. 2011. Analysis of insertion sequences in thermophilic cyanobacteria: exploring the mechanisms of establishing, maintaining, and withstanding high insertion sequence abundance. Appl. Environ. Microbiol. 77, 5458–5466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogi, Y., Hosoya, S., Kato, C., and Horikoshi, K. 2004. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int. J. Syst. Evol. Microbiol. 54, 1627–1631.

    Article  CAS  PubMed  Google Scholar 

  • Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glöckner, F.O. 2013. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196.

    Article  CAS  Google Scholar 

  • Qin, Q.L., Zhang, X.Y., Wang, X.M., Liu, G.M., Chen, X.L., Xie, B.B., Dang, H.Y., Zhou, B.C., Yu, J., and Zhang, Y.Z. 2010. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. BMC Genomics 11, 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi, M.H., Kato, C., and Horikoshi, K. 1998. Purification of two pressure-regulated c-type cytochromes from a deep-sea barophilic bacterium, Shewanella sp. strain DB-172F. FEMS Microbiol. Lett. 161, 301–309.

    Article  CAS  Google Scholar 

  • Scheuermayer, M., Gulder, T.A., Bringmann, G., and Hentschel, U. 2006. Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘Verrucomicrobia’, isolated from a sponge (Porifera). Int. J. Syst. Evol. Microbiol. 56, 2119–2124.

    Article  CAS  PubMed  Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebenaller, J.F. and Garrett, D.J. 2002. The effects of the deep-sea environment on transmembrane signaling. Comp. Biochem. Physiol. B 131, 675–694.

    Article  PubMed  Google Scholar 

  • Song, J., Lim, Y., Joung, Y., Cho, J.C., and Kogure, K. 2018. Rubritalea profundi sp. nov., isolated from deep-seawater and emended description of the genus Rubritalea in the phylum Verrucomicrobia. Int. J. Syst. Evol. Microbiol. 68, 1384–1389.

    Article  Google Scholar 

  • Sprenger, H., Kienesberger, S., Pertschy, B., Pöltl, L., Konrad, B., Bhutada, P., Vorkapic, D., Atxmüller, D., Feist, F., Högenauer, C., et al. 2017. Fic proteins of Campylobacter fetus subsp. venerealis form a network of functional toxin-antitoxin systems. Front. Microbiol. 8, 1965.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spring, S., Bunk, B., Spröer, C., Schumann, P., Rohde, M., Tindall, B.J., and Klenk, H.P. 2016. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME J. 10, 2801–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stothard, P. and Wishart, D.S. 2005. Circular genome visualization and exploration using CGView. Bioinformatics 21, 537–539.

    Article  CAS  PubMed  Google Scholar 

  • Sun, B., Li, L., and Zhou, X. 2018. Comparative analysis of the gut microbiota in distinct statin response patients in East China. J. Microbiol. 56, 886–892.

    Article  CAS  PubMed  Google Scholar 

  • Takasu, H. and Nagata, T. 2015. High proline content of bacteriasized particles in the western North Pacific and its potential as a new biogeochemical indicator of organic matter diagenesis. Front. Mar. Sci. 2, 110.

    Article  Google Scholar 

  • Ting, L., Williams, T.J., Cowley, M.J., Lauro, F.M., Guilhaus, M., Raftery, M.J., and Cavicchioli, R. 2010. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ. Microbiol. 12, 2658–2676.

    CAS  PubMed  Google Scholar 

  • Tseng, C.H., Chiang, P.W., Lai, H.C., Shiah, F.K., Hsu, T.C., Chen, Y.L., Wen, L.S., Tseng, C.M., Shieh, W.Y., Saeed, I., et al. 2015. Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea. BMC Genomics 16, 219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vigil-Stenman, T., Ininbergs, K., Bergman, B., and Ekman, M. 2017. High abundance and expression of transposases in bacteria from the Baltic Sea. ISME J. 11, 2611–2623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk, T. and Hoffert, M.I. 1985. Ocean carbon pumps: analysis of relative strength and efficiencies of in ocean-driven circulation atmospheric CO2 changes, pp. 99–110. In Sundquist, E.T. and Broecker, W.S. (eds.), The Carbon cycle and atmospheric CO2: Natural variation archean to present: AGU monograph 32. American Geophysical Union, Washington, D.C., USA.

    Google Scholar 

  • Walsh, N.P., Alba, B.M., Bose, B., Gross, C.A., and Sauer, R.T. 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113, 61–71.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Wang, J., Jian, H., Zhang, B., Li, S., Wang, F., Zeng, X., Gao, L., Bartlett, D.H., Yu, J., et al. 2008. Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One 3, e1937.

    Article  CAS  Google Scholar 

  • Wylie, J.L. and Worobec, E.A. 1995. The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa. J. Bacteriol. 177, 3021–3026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, M., Nakasone, K., Tamegai, H., Kato, C., Usami, R., and Horikoshi, K. 2000. Pressure regulation of soluble cytochromes c in a deep-sea piezophilic bacterium, Shewanella violacea. J. Bacteriol. 182, 2945–2952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yayanos, A.A., Dietz, A.S., and Van Boxtel, R. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205, 808–810.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Li, Q., Yin, C., Fang, X., and Xu, X. 2015. Role of spermidine in overwintering of Cyanobacteria. J. Bacteriol. 197, 2325–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kangseok Lee or Jang-Cheon Cho.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Kang, I., Joung, Y. et al. Genome analysis of Rubritalea profundi SAORIC-165T, the first deep-sea verrucomicrobial isolate, from the northwestern Pacific Ocean. J Microbiol. 57, 413–422 (2019). https://doi.org/10.1007/s12275-019-8712-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8712-8

Keywords

Navigation